首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymorphic influences on the phase behavior of two types of binary mixtures of saturated monoacid 1,3-propanediol esters (PADEs), dipalmitate/distearate (PP/SS) and dimyristate/distearate (MM/SS) were examined by X-ray diffraction (XRD), differential scanning calorimetry (DSC), and by solid fat content (SFC), hardness and microscopy measurements. Three stacking modes have been found in the PP/SS binary system. Mixed SS-PP bilayers were detected in all mixtures, SS-SS bilayers in x(PP)=0.0-0.4 mixtures and PP-PP bilayers in x(PP)=0.6-0.1 mixtures. Two different but close beta polymorphs and one beta' polymorph were detected for this system. beta' was only detected in x(PP)=0.5-0.9 mixtures for the mixed bilayers. For the MM/SS binary system, only MM-MM and SS-SS bilayers were detected and both solid phases crystallized in two different beta forms. XRD data evidenced clearly that the MM and SS components were completely immiscible in the solid state. The phase diagrams constructed using DSC data, exhibited a typical eutectic-type phase boundary. The presence of eutectics, the shape of the solidus lines as well as the analysis of the individual enthalpies of melting indicated typical phase separation for both systems. A thermodynamic study based on the Hildebrand equation and using the Bragg-Williams approximation for non-ideality of mixing confirmed the phase separation in the solid phase and suggested that the PP and SS were miscible in the liquid phase and that SS formed an ideal mixing with MM. Avrami analysis of SFC vs. time curves indicated heterogeneous nucleation and spherulitic crystal development from sporadic nuclei, and suggested that the nucleation rate was higher for the mixture at the eutectic composition. The relative hardness was correlated with the enthalpies, the final SFC and the microscopy measurements.  相似文献   

2.
Six pure fatty acid esters of 1,3-propanediol (PADE) molecules were investigated. A careful analysis of XRD, DSC as well as SFC results has allowed the determination of their structure and phase behavior. Two beta polymorphs were observed for C10-C18 and three beta polymorphs for C8. The same first polymorph (beta1) was observed for all the samples. The second polymorph (beta2) observed for C12-C18 was different from the second beta-form observed for C8 and C10. For all properties, the short chain length C8 and C10 samples were distinguished from the C12 to C18 samples and this explained much of the observed trends in behavior. Their lamellar packing was similar and has been explained by a simple addition of multiples of the length of a carbon bond to a primitive structure. The estimated long-range order highlighted a geometric effect that enabled the small chain molecules to better order than the longest molecules. The XRD results have been confirmed by DSC. The difference in property between the short and long chain molecules has also been clearly verified by the evolution of the energy of activation for nucleation as well as the enthalpy of melting and confirmed by microscopy measurements. For all the samples, the hardness which increased with increasing chain length is correlated with final %SFC. Avrami analysis of SFC versus time indicated heterogeneous nucleation and spherulitic crystal development from sporadic nuclei, and suggested that the rate of nucleation was higher for longer chain molecules.  相似文献   

3.
The phase behavior of a binary system constituted of purified 1,3-dicaproyl-2-stearoyl-sn-glycerol (CSC) and 1,2-dicaproyl-3-stearoyl-sn-glycerol (CCS) was investigated at a very slow (0.1 °C/min) and a relatively fast (3.0 °C/min) cooling rate using differential scanning calorimetry (DSC), low resolution NMR, X-ray diffraction (XRD), and polarized light microscopy (PLM). Related forms of the β′ polymorph were detected for all mixtures as well as a β form for CSC-rich mixtures. A double chain length (DCL) stacking of the non-mixed CCS-CCS and CSC-CSC phases and a triple chain length (TCL) stacking of mixed CCS-CSC structure were detected for the different β′ forms. The kinetic phase diagram demonstrated an apparent eutectic at the 0.5CSC composition when cooled at 0.1 °C/min and at the 0.25CSC composition when cooled at 3.0 °C/min. The application of a thermodynamic model based on the Hildebrand equation suggests that compounds CSC and CCS are not fully miscible. In addition, the miscibility changes according to the structure of the growing solid phase which is dependent on CSC molar ratio as well as on the kinetics. It was also shown that the miscibility is concentration dependent and that the solid phase, which is growing at conditions well away from equilibrium, is determined kinetically. The molecular interactions were found to be strong and to favor the formation of CSC-CCS pairs in the liquid state. CSC and CCS were also shown to be immiscible in the solid state. Depressions in solid fat content (SFC) were observed for both rates. Relatively complex networks made of needle-like, spherulitic and granular crystals were observed in the CSC/CCS system. A pure CSC phase was found to be instrumental in promoting a higher SFC, and more stable polymorphic forms. The microstructure was shown to be strongly dependent on the cooling rate and was linked to the different polymorphic forms observed by DSC and XRD. Correlations between SFC and the eutectic behavior have been observed for the 3.0 °C/min cooling rate, but not directly in the case of the 0.1 °C/min cooling rate, where slower kinetics which favors the metastable to stable phase conversion processes prevented the same shifts in behavior.  相似文献   

4.
Diverse variations in membrane properties are observed in binary phosphatidylcholine/cholesterol mixtures. These mixtures are nonideal, displaying single or phase coexistence, depending on chemical composition and other thermodynamic parameters. When compared with pure phospholipid bilayers, there are changes in water permeability, bilayer thickness and thermomechanical properties, molecular packing and conformational freedom of phospholipid acyl chains, in internal dipolar potential and in lipid lateral diffusion. Based on the phase diagrams for DMPC/cholesterol and DPPC/cholesterol, we compare the equivalent polarity of pure bilayers with specific compositions of these mixtures, by using the Py empirical scale of polarity. Besides the contrast between pure and mixed lipid bilayers, we find that liquid-ordered (l(o)) and liquid-disordered (l(d)) phases display significantly different polarities. Moreover, in the l(o) phase, the polarities of bilayers and their thermal dependences vary with the chemical composition, showing noteworthy differences for cholesterol proportions at 35, 40, and 45 mol%. At 20 degrees C, for DMPC/cholesterol at 35 and 45 mol%, the equivalent dielectric constants are 21.8 and 23.8, respectively. Additionally, we illustrate potential implications of polarity in various membrane-based processes and reactions, proposing that for cholesterol containing bilayers, it may also go along with the occurrence of lateral heterogeneity in biological membranes.  相似文献   

5.
1,3‐propanediol is an important chemical widely used in polymer production. In this study, two strains, Zygosacharomyces rouxii JL2011 and Klebsiella pneumoniae S6, were used as a mixed culture for 1,3‐propanediol production directly from glucose. Two important parameters including inoculation time of K. pneumoniae S6 at stage of mixed culture and initial cell ratio of Z. rouxii JL2011 to K. pneumoniae S6 in mixed fermentation were optimized in culture flasks. In those experiments, the best results were obtained with a yield of 6.8 g/L 1,3‐propanediol from glucose when K. pneumoniae S6 was inoculated after 48 h in the culture of Z. rouxii JL2011 by mixed culture of Z. rouxii JL2011 and K. pneumoniae S6 with initial cell ratio of 1:200. In a 7‐L bioreactor, the maximum 1,3‐propanediol production could reach up to 15.2 g/L. Thus, this study presents an effective process for 1,3‐propanediol microbial production from glucose by using mixed culture of Z. rouxii JL2011 and K. pneumoniae S6. This work does not only demonstrate a new way to produce 1,3‐propanediol from a low‐cost feedstock, but may also make a valuable contribution to the development of a cost‐effective fermentation based on renewable resources.  相似文献   

6.
7.
Aims: Saccharomyces cerevisiae is a safe micro‐organism used in fermentation industry. 1,3‐Propanediol is an important chemical widely used in polymer production, but its availability is being restricted owing to its expensively chemical synthesis. The aim of this study is to engineer a S. cerevisiae strain that can produce 1,3‐propanediol at low cost. Methods and Results: By using d ‐glucose as a feedstock, S. cerevisiae could produce glycerol, but not 1,3‐propanediol. In this study, we have cloned two genes yqhD and dhaB required for the production of 1,3‐propanediol from glycerol, and integrated them into the chromosome of S. cerevisiae W303‐1A by Agrobacterium tumefaciens‐mediated transformation. Both genes yqhD and dhaB functioned in the engineered S. cerevisiae and led to the production of 1,3‐propanediol from d ‐glucose. Conclusion: Saccharomyces cerevisiae can be engineered to produce 1,3‐propanediol from low‐cost feedstock d ‐glucose. Significance and Impact of the Study: To our knowledge, this is the first report on developing S. cerevisiae to produce 1,3‐propanediol by using A. tumefaciens‐mediated transformation. This study might lead to a safe and cost‐efficient method for industrial production of 1,3‐propanediol.  相似文献   

8.
The conversion of glycerol into high value products, such as hydrogen gas and 1,3‐propanediol (PD), was examined using anaerobic fermentation with heat‐treated mixed cultures. Glycerol fermentation produced 0.28 mol‐H2/mol‐glycerol (72 mL‐H2/g‐COD) and 0.69 mol‐PD/mol‐glycerol. Glucose fermentation using the same mixed cultures produced more hydrogen gas (1.06 mol‐H2/mol‐glucose) but no PD. Changing the source of inoculum affected gas production likely due to prior acclimation of bacteria to this type of substrate. Fermentation of the glycerol produced from biodiesel fuel production (70% glycerol content) produced 0.31 mol‐H2/mol‐glycerol (43 mL H2/g‐COD) and 0.59 mol‐PD/mol‐glycerol. These are the highest yields yet reported for both hydrogen and 1,3‐propanediol production from pure glycerol and the glycerol byproduct from biodiesel fuel production by fermentation using mixed cultures. These results demonstrate that production of biodiesel can be combined with production of hydrogen and 1,3‐propanediol for maximum utilization of resources and minimization of waste. Biotechnol. Bioeng. 2009; 104: 1098–1106. © 2009 Wiley Periodicals, Inc.  相似文献   

9.
The binary phase behavior of purified 1,3-dilauroyl-2-stearoyl-sn-glycerol (LSL) and 1,2-dilauroyl-3-stearoyl-sn-glycerol (LLS) was investigated at a slow (0.1 °C/min) and a relatively fast (3.0 °C/min) cooling rate in terms of melting and crystallization, polymorphism, solid fat content (SFC), hardness and microstructure. Much of the behavior of the system is explained by its polymorphism and the influence of thermal processing. The α-form and the β′-form of a double chain length structure were detected in the mixtures cooled at 3.0 °C/min, whereas only the β′-form was detected in those cooled at 0.1 °C/min. X-ray diffraction data as well as thermodynamic data propose that the most stable phases are promoted by the symmetrical LSL. The measured trends in structural characteristics, thermal properties, SFC, relative hardness and microstructure delimit three groups of mixtures which imply a competition between the stabilizing effect of LSL and disordering introduced by kinetic effects: (a) LLS-rich mixtures with LSL molar fractions (XLSL) less than 0.3, (b) mixtures with XLSL clustered around 0.5 and (c) LSL-rich mixtures with XLSL  0.7. The balance between ordering and kinetic effects determines the polymorphism of the mixtures, which in turn determines the behavior of the LSL/LLS system. The kinetic phase diagram of the LSL/LLS binary system constructed using heating differential scanning calorimetry thermograms displayed a singularity at the 0.5LSL molar fraction which delimits two distinct behaviors: eutectic behavior in one region and monotectic behavior in the other. The molecular interactions, as depicted by a non-ideality parameter of mixing obtained from a thermodynamic model based on the Hildebrand equation, suggests an almost ideal mixing behavior and a moderate tendency to the formation of unlike-pairs in the liquid state.  相似文献   

10.
The miscibility properties of branched phosphatidylcholines in mixtures of aqueous dispersions were studied by means of differential scanning calorimetry. The phase diagrams of four pseudo-binary systems from mixing type unbranched phosphatidylcholine/branched phosphatidylcholine/water (50 wt. % water) were investigated and discussed. The unbranched dipalmitoylphosphatidylcholine acts as a reference component of the mixtures. The phase diagrams of these four pseudo-binary phosphatidylcholine systems showed some connections between chain structure of the branched phosphatidylcholines and miscibility of the components. A change of the phase diagram type has been observed according to the branching and/or chain length differences of the phosphatidylcholines: complete miscibility and peritectic mixing behaviour. Generally we observed complete miscibility in the high-temperature phase (La-phase) and demixing in the low-temperature phases (gel phase). This is dependent on the branching and chain length differences of the mixing components.  相似文献   

11.
The binary phase behavior of pure 1,3-dimyristoyl-2-stearoyl-sn-glycerol (MSM) and 1,2-dimyristoyl-3-stearoyl-sn-glycerol (MMS) was investigated in terms of polymorphism, melting and crystallization behavior, SFC, hardness and microstructure. Samples were crystallized at cooling rates of 3.0 and 0.1 degrees C/min. The asymmetric TAG demonstrated lower melting and crystallization points at both cooling rates. All samples crystallized in the beta' polymorph when cooled at 0.1 degrees C/min and in the alpha polymorph when cooled at 3.0 degrees C/min. The experimentally determined kinetic phase diagram of MSM-MMS was monotectic for both cooling rates. This data was well described by a thermodynamic model using the Bragg-Williams approximation for non-ideality of mixing and suggested that in both the solid and liquid states, like pair interactions (MSM-MSM and MMS-MMS) were favored over MSM-MMS interaction. A strong tendency to phase separation in the solid phase was also observed. For both cooling rates, the fit of the SFC (%)-time curves to a modified form of the Avrami model indicated that crystallization occurred in two distinct kinetic steps. Depressions seen in SFC did not correspond to depressions in hardness or melting temperatures.  相似文献   

12.
A new separation and purification process was developed for recovering 1,3‐propanediol (1,3‐PD) from crude glycerol‐based fermentation broth with high purity. The downstream process integrated chitosan flocculation, activated carbon decolorization, fixed bed cation exchange resin adsorption, and vacuum distillation. Breakthrough curves were measured considering the effect of sample concentration, flow rate, temperature, and resin stack height. Yoon–Nelson model was proposed to fit the fixed bed adsorption. The characteristic column parameters were calculated. Optimal condition for adsorption was 1,3‐PD, 30.0 g/L; flow rate, 1.00 mL/min; stacking height, 30.0 cm; and temperature, 298 K. Ethanol‐water (75%, 1 mL/min) was used as eluent to separate 1,3‐PD and glycerol with 95.3% 1,3‐PD elution rate. After vacuum distillation, the overall purity and yield of 1,3‐PD were 99.2% and 80.8% in the purification process, respectively. This is a simple and efficient downstream strategy for 1,3‐PD purification.  相似文献   

13.
Liquid domains in model lipid bilayers are frequently studied as models of raft domains in cell plasma membranes. Micron-scale liquid domains are easily produced in vesicles composed of ternary mixtures of a high melting temperature lipid, a low melting temperature lipid, and cholesterol. Here, we describe the rich phase behavior observed in binary and ternary systems. We then discuss experimental challenges inherent in mapping phase diagrams of even simple lipid systems. For example, miscibility behavior varies with lipid type, lipid ratio, lipid oxidation, and level of impurity. Liquid domains are often circular, but can become noncircular when membranes are near critical points. Finally, we reflect on applications of phase diagrams in model systems to rafts in cell membranes.  相似文献   

14.
The objective of this paper was to review our recent investigations of silica xerogel and aerogel-supported lipid bilayers. These systems provide a format to observe relationships between substrate curvature and supported lipid bilayer formation, lipid dynamics, and lipid mixtures phase behavior and partitioning. Sensitive surface techniques such as quartz crystal microbalance and atomic force microscopy are readily applied to these systems. To inform current and future investigations, we review the experimental literature involving the impact of curvature on lipid dynamics, lipid and phase-separated lipid domain localization, and membrane-substrate conformations and we review our molecular dynamics simulations of supported lipid bilayers with the atomistic and molecular information they provide.  相似文献   

15.
We have determined the average location and dynamic reorientation of the fluorophore 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) attached to a C12 sn-2 chain of a phosphatidylserine (PS) analogue (C12-NBD-PS) in zwitterionic phosphatidylcholine (PC) and negatively charged phosphatidylserine (PS) host membranes. (1)H magic angle spinning nuclear Overhauser enhancement spectroscopy indicates a highly dynamic reorientation of the aromatic molecule in the membrane. The average location of NBD is characterized by a broad distribution function along the membrane director with a maximum indicating the location of the probe in the lipid/water interface of the lipid membrane. This behavior can be explained by a backfolding of the sn-2 chain towards the aqueous phase. Small differences in the distribution profiles of the NBD group along the membrane normal between PC and PS host membranes were found: in a PC host membrane, the NBD distribution has its maximum in the glycerol region; in a PS host membrane, NBD resides mostly in the upper chain region. These differences may be accounted for by packing differences in the PC versus PS host membranes. As seen by (2)H NMR order parameters, PS bilayers show a much higher packing density compared to PC membranes. Consequently, backfolding of the sn-2 chain with the NBD group attached causes a larger decrease of molecular order of the sn-1 chain in PS than in PC membranes. The broad distributions obtained for lipid chain attached NBD molecules reflect the motional freedom and molecular disorder in the liquid-crystalline lipid membrane.  相似文献   

16.
The phase behavior of 1-palmitoyl-2,3-distearoyl-sn-glycerol (PSS)/tristearoylglycerol (SSS) binary system was investigated in terms of polymorphism, crystallization and melting behavior, microstructure and solid fat content (SFC) using widely different constant cooling rates. Kinetic phase diagrams were experimentally determined from the DSC heating thermograms and analyzed using a thermodynamic model to account for non-ideality of mixing. The kinetic phase diagram presented a typical eutectic behavior with a eutectic point at the 0.5(PSS) mixture with a probable precipitation line from 0.5(PSS) to 1.0(PSS), regardless of the rate at which the sample was cooled. The eutectic temperature decreased only slightly with increasing cooling rate. PSS has a strong effect on the physical properties of the PSS-SSS mixtures. In fact, the overall phase behavior of the PSS-SSS binary system was determined, for a very large part, by the asymmetrical TAG. Moreover, PSS is a key driver of the high stability observed in crystal growth, polymorphism and phase development. Levels as low as 10% PSS, when cooled slowly, and 30% when cooled rapidly, were found to be sufficient to suppress the effect of thermal processing.  相似文献   

17.
The phase behavior of mixtures formed with palmitic acid (PA) and one of the following sterols (dihydrocholesterol, ergosterol, 7-dehydrocholesterol, stigmasterol and stigmastanol), in a PA/sterol molar ratio of 3/7, has been characterized by IR and 2H NMR spectroscopy at different pH. Our study shows that it is possible to form liquid-ordered (lo) lamellar phases with these binary non-phospholipid mixtures. The characterization of alkyl chain dynamics of PA in these systems revealed the large ordering effect of the sterols. It was possible to extrude these systems, using standard extrusion techniques, to form large unilamellar vesicles (LUVs), except in the case of ergosterol-containing mixture. The resulting LUVs displayed a very limited passive permeability consistent with the high sterol concentration. In addition, the stability of these PA/sterol self-assembled bilayers was also found to be pH-sensitive, therefore, potentially useful as nanovectors. By examining different sterols, we could establish some correlations between the structure of these bilayers and their permeability properties. The structure of the side chain at C17 of the sterol appears to play a prime role in the mixing properties with fatty acid.  相似文献   

18.
The 1,3-regiospecific lipase from Candida deformanscatalysed the esterification of oleic acid and propanediol in biphasic aqueous/lipid medium without organic solvent. The highest conversion of oleic acid into 1,2-propanediol ester was 74% in 24 h with 6.25 mol/l 1,2-propanediol and 0.08 mol/l oleic acid, and produced 100% monoester. The esterification of 1,3-propanediol converted up to 98% of oleic acid into esters in 24 h (with 7.5 mol/l 1,3-propanediol and 0.08 mol/l oleic acid) and formed 35-90% monoester depending on 1,3-propanediol initial concentration (2.5-10 mol/l).  相似文献   

19.
The bilayer phase transitions of a series of ether-linked phospholipids, 1,2-dialkylphosphatidylcholines containing linear saturated alkyl chain (C(n)=12, 14, 16 and 18), were observed by differential scanning calorimetry (DSC) under ambient pressure and light-transmittance measurements under high pressure. The thermodynamic quantities of the pre- and main-transitions for the ether-linked PC bilayer membranes were calculated and compared with those of a series of ester-linked PCs, 1,2-diacylphosphatidylcholines. The thermodynamic quantities of the main transition for the ether-linked PC bilayers showed distinct dependence on alkyl-chain length and were slightly different from those of the ester-linked PC bilayers. From the comparison of thermodynamic quantities for the main transition between both PC bilayers, we revealed that the attractive interaction in the gel phase for the ether-linked PC bilayers is weaker than that for the ester-linked PC bilayers. Regarding the pretransition, although changes in enthalpy and entropy for both PC bilayers were comparable to each other, the volume changes of the ether-linked PC bilayers roughly doubled those of the ester-linked PC bilayers. The larger volume change results from the smallest partial molar volume of the ether-linked PC molecule in the interdigitated gel phase. Further, we constructed the temperature-pressure phase diagrams for the ether-linked PC bilayers by using the phase-transition data. The region of the interdigitated gel phase in the phase diagrams was extended by applying pressure and by increasing the alkyl-chain length of the molecule. Comparing the phase diagrams with those for the ester-linked PC bilayers, it was proved that the phase behavior of the ester-linked PC bilayers under high temperature and pressure is almost equivalent to that of the ether-linked PC bilayers in the vicinity of ambient pressure.  相似文献   

20.
We have examined the mixing properties of phosphatidylethanolamine (PE) and phosphatidylglycerol (PG), the major components of many bacterial membranes. The phase transition behavior of dilute aqueous suspensions of PE:PG mixtures with different chain lengths (n = 14, 16) in 0.1 M NaCl at pH 7 and pH 2 was investigated by differential scanning calorimetry (DSC). The DSC curves were simulated using an approach which takes into account the broadening of the phase transition in addition to symmetric, non-ideal mixing in the gel and the liquid-crystalline phase. Based on the temperatures for onset and end of “melting” obtained by the simulations, the phase diagrams were constructed and then refined using a regular solution model with non-symmetric mixing in both phases. The mixing properties of PE:PG mixtures were analyzed as a function of pH and acyl chain length. In almost all cases, non-symmetric mixing behavior was observed, i.e. the non-ideality parameters are different for bilayers with low PG content compared to bilayers with high PG content. For equimolar mixtures at pH 7, when PG is negatively charged, the non-ideality parameters are negative for both phases, indicating preferential formation of mixed pairs. This mixed pair formation is more pronounced for the gel phase. At pH 2, when PG is partly protonated, the non-ideality parameter is less negative and the formation of mixed pairs is reduced compared to pH 7. The formation of PE:PG mixed pairs at pH 7 might be of benefit to a bacterial membrane, because it prevents demixing of lipid components with a concomitant destabilization of the membrane. Received: 3 August 1998 / Revised version: 4 October 1999 / Accepted: 12 October 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号