首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The two enzymes involved in the assimilatory pathway of nitrate in Azotobacter vinelandii are corregulated. Nitrate reductase and nitrite reductase are inducible by nitrate and nitrite. Ammonium represses induction by nitrate of both reductases. Repression by ammonium is higher in media containing 2-oxo-glutarate as carbon source than in media containing sucrose. Mutants in the gene ntrC lost nitrate and nitrite reductase simultaneously. Ten chlorate-resistant mutants with a new phenotype were isolated. In media without ammonium they had a normal phenotype, being sensitive to the toxic effect of chlorate. In media containing low ammonium concentrations they were resistant to chlorate. These mutants seem to be affected in the repression of nitrate and nitrite reductases by ammonium.  相似文献   

2.
Bacteroids of Bradyrhizobium japonicum strain CB1809, unlike CC705, do not have a high level of constitutive nitrate reductase (NR; EC 1.7.99.4) in the soybean (Glycine max. Merr.) nodule. Ex planta both strains have a high activity of NR when cultured on 5 mM nitrate at 2% O2 (v/v). Nitrite reductase (NiR) was active in cultured cells of bradyrhizobia, but activity with succinate as electron donor was not detected in freshly-isolated bacteroids. A low activity was measured with reduced methyl viologen. When bacteroids of CC705 were incubated with nitrate there was a rapid production of nitrite which resulted in repression of NR. Subsequently when NiR was induced, nitrite was utilized and NR activity recovered. Nitrate reductase was induced in bacteroids of strain CB1809 when they were incubated in-vitro with nitrate or nitrite. Increase in NR activity was prevented by rifampicin (10 g· ml-1) or chloramphenicol (50 g·ml-1). Nitrite-reductase activity in bacteroids of strain CB1809 was induced in parallel with NR. When nitrate was supplied to soybeans nodulated with strain CC705, nitrite was detected in nodule extracts prepared in aqueous media and it accumulated during storage (1°C) and on further incubation at 25°C. Nitrite was not detected in nodule extracts prepared in ethanol. Thus nitrite accumulation in nodule tissue appears to occur only after maceration and although bacteroids of some strains of B. japonicum have a high level of a constitutive NR, they do not appear to reduce nitrate in the nodule because this anion does not gain access to the bacteroid zone. Soybeans nodulated with strains CC705 and CB1809 were equally sensitive to nitrate inhibition of N2 fixation.Abbreviations NR nitrate reductase - NiR nitrite reductase - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

3.
Summary A biochemical analysis of mutants altered for nitrate assimilation in Neurospora crassa is described. Mutant alleles at each of the nine nit (nitrate-nonutilizing) loci were assayed for nitrate reductase activity, for three partial activities of nitrate reductase, and for nitrite reductase activity. In each case, the enzyme deficiency was consistent with data obtained from growth tests and complementation tests in previous studies. The mutant strains at these nit loci were also examined for altered regulation of enzyme synthesis. Such exeriments revealed that mutations which affect the structural integrity of the native nitrate reductase molecule can result in constitutive synthesis of this enzyme protein and of nitrite reductase. These results provide very strong evidence that, as in Aspergillus nidulans, nitrate reductase autogenously regulates the pathway of nitrate assimilation. However, only mutants at the nit-2 locus affect the regulation of this pathway by nitrogen metabolite repression.  相似文献   

4.
Two strains ofRhizobium, cowpeaRhizobium 32H1 andRhizobium japonicum CB 1809, showed a marked stimulation in growth on addition of formate to the minimal medium containing nitrate as the sole source of nitrogen. The amount of accumulated nitrite and specific nitrate reductase activity was much higher in cultures supplemented with formate than in the control medium. In contrast, growth, consumption of nitrite and specific nitrite reductase activity in minimal medium + nitrite was greatly reduced by the addition of formate. A chlorate resistant mutant (Chl-16) was isolated spontaneously which contained a nitrite reductase which was not inhibited by formate. The results suggest that formate serves as an electron donor for nitrate reductase and inhibits nitrite assimilation inRhizobium  相似文献   

5.
Summary Three plants, R9201 and R11301 (from cv. Maris Mink) and R12202 (from cv. Golden Promise), were selected by screening M2 populations of barley (Hordeum vulgare L.) seedlings (mutagenised with azide in the M1) for resistance to 10 mM potassium chlorate. Selections R9201 and R11301 were crossed with the wild-type cv. Maris Mink and analysis of the F2 progeny showed that one quarter lacked shoot nitrate reductase activity. These F2 plants also withered and died in the continuous presence of nitrate as sole nitrogen source. Loss of nitrate reductase activity and withering and death were due in each case to a recessive mutation in a single nuclear gene. All F1 progeny derived from selfing selection R12202 lacked shoot nitrate reductase activity and also withered and subsequently died when maintained in the continuous presence of nitrate as sole nitrogen source. All homozygous mutant plants lacked not only shoot nitrate reductase activity but also shoot xanthine dehydrogenase activity. The plants took up nitrate, and possessed wild-type or higher levels of shoot nitrite reductase activity and NADH-cytochrome c reductase activity when treated with nitrate for 18 h. We conclude that loss of shoot nitrate reductase activity, xanthine dehydrogenase activity and withering and death, in the three mutants R9201, R11301 and R12202 is due to a mutation affecting the formation of a functional molybdenum cofactor. The mutants possessed wild-type levels of molybdenum and growth in the presence of unphysiologically high levels of molybdate did not restore shoot nitrate reductase or xanthine dehydrogenase activity. The shoot molybdenum cofactor of R9201 and of R12202 is unable to reconstitute NADPH nitrate reductase activity from extracts of the Neurospora crassa nit-1 mutant and dimerise the nitrate reductase subunits present in the respective barley mutant. The shoot molybdenum cofactor of R11301 is able to effect dimerisation of the R11301 nitrate reductase subunits and can reconstitute NADPH-nitrate reductase activity up to 40% of the wild-type molybdenum cofactor levels. The molybdenum cofactor of the roots of R9201 and R11301 is also defective. Genetic analysis demonstrated that R9201, but not R11301, is allelic to R9401 and Az34 (nar-2a), two mutants previously shown to be defective in synthesis of molybdenum cofactor. The mutations in R9401 and R9201 gave partial complementation of the nar-2a gene such that heterozygotes had higher levels of extractable nitrate reductase activity than the homozygous mutants.We conclude that: (a) the nar-2 gene locus encodes a step in molybdopterin biosynthesis; (b) the mutant R11301 represents a further locus involved in the synthesis of a functional molybdenum cofactor; (c) mutant Rl2202 is also defective in molybdopterin biosynthesis; and (d) the nar-2 gene locus and the gene locus defined by R11301 govern molybdenum cofactor biosynthesis in both shoot and root.  相似文献   

6.
Three nitrate reductase activities were detected in Alcaligenes eutrophus strain H16 by physiological and mutant analysis. The first (NAS) was subject to repression by ammonia and not affected by oxygen indicating a nitrate assimilatory function. The second (NAR) membrane-bound activity was only formed in the absence of oxygen and was insensitive to ammonia repression indicating a nitrate respiratory function. The third (NAP) activity of potential respiratory function occurred in the soluble fraction of cells grown to the stationary phase of growth. In contrast to NAR and NAS, expression of NAP did not require nitrate for induction and was independent of the rpoN gene product. Genes for the three reductases map at different loci. NAR and NAS are chromosomally encoded whereas NAP is a megaplasmid-borne activity in A. eutrophus.  相似文献   

7.
E. Fernández  J. Cárdenas 《Planta》1981,153(3):254-257
Wild-type Chlamydomonas reinhardii cells have xanthine dehydrogenase activity when grown with nitrate, nitrite, urea, or amino acid media. Mutant strains 102, 104, and 307 of Chlamydomonas, lacking both xanthine dehydrogenase and nitrate reductase activities, were incapable of restoring the NADPH-nitrate reductase activity of the mutant nit-1 of Neurospora crassa, whereas wild type cells and mutants 203 and 305 had xanthine dehydrogenase and were able to reconstitute the nitrate reductase activity of nit-1 of Neurospora. Therefore, it is concluded that in Chlamydomonas a common cofactor is shared by xanthine dehydrogenase and nitrate reductase. Xanthine dehydrogenase is repressed by ammonia and seems to be inessential for growth of Chlamydomonas.  相似文献   

8.
Three nitrate reductase mutants were independently isolated and characterized in the colonial alga, Eudorina elegans Ehrenberg. nar-1 is a leaky mutant, deficient in the production of nitrate reductase. nar-2 and nar-3 both lack the ability to produce nitrate reductase. However, nar-2 grows and nar-3 does not grow when hypoxanthine is the sole nitrogen source. The specific activity of the next enzyme, in the pathway, nitrite reductase is increased in nar-3 when compared to wild-type, nar-1 and nar-2.  相似文献   

9.
The effect of the nitrogen source on nitrate reductase and nitrite reductase synthesis has been studied in several filamentous dinitrogen-fixing cyanobacteria belonging to the genera Anabaena, Nostoc and Calothrix. Nitrate and nitrite uptake were also studied. High levels of both nitrate reductase and nitrite reductase were found only in the presence of nitrate or nitrite, as long as ammonium was absent from the culture medium. On the other hand, whereas nitrate uptake is an active process, two components, diffusion of nitrous acid and active transport of nitrite, appear to contribute to nitrite uptake.Abbreviations DCCD N,N-dicyclohexylcarbodiimide - MOPS 3-(N-morpholino)propanesulfonic acid - TES N-tris(hydroxymethyl)methyl-2-aminoethane-sulfonic acid - Tricine N-tris(hydroxymethyl)methylglycine  相似文献   

10.
Three genotypically different chlorate resistant mutants, chl I, chl II and chl III, appeared to lack completely nitrate reductase A, chlorate reductase C and tetrathionate reductase activity. Fumarate reductase is only partially affected in chl I and chl III and unaffected in chl II. Formate dehydrogenase is only partially diminished in chl II, hydrogenase is diminished in chl I and chl II and completely absent in chl III.Subunits of nitrate reductase A, chlorate reductase C and tetrathionate reductase have been identified in protein profiles of purified cytoplasmic membranes from the wild type and the three mutant strains, grown under various conditions. Only the presence and absence of the largest subunits of these enzymes appeared to be correlated with their repression and derepression in the wild type membranes. On the cytoplasmic membranes of the chl I and chl III mutants these subunits lack for the greater part. In the chl II mutant, however, these subunits are inserted in the membrane all together after anaerobic growth with or without nitrate.A model for the repression/derepression mechanism for the reductases has been proposed. It includes repression by cytochrome b components, whereas the redox-state of the nitrate reductase A molecule itself is also involved in its derepression under anaerobic conditions.  相似文献   

11.
A number of Tn5 mutants were isolated which were unable to fix nitrogen and showed enhanced ammonium repression of the nitrate/nitrite assimilation genes. They also had reduced nitrate reductase activity under fully inducing conditions. Insertions were localized within the nifB gene, and inability to fix nitrogen was shown to be due to disruption of the nifB gene. However, enhanced ammonium repression proved to be the result of constitutive expression of the downstream nifO gene from an `out' promoter present in Tn5. Our results suggest that molybdenum metabolism might function as a regulatory factor that acts through the nitrate reductase. Received: 4 December 1996 / Accepted: 27 March 1997  相似文献   

12.
Klebsiella aerogenes W70 could grow aerobically with nitrate or nitrite as the sole nitrogen source. The assimilatory nitrate reductase and nitrite reductase responsible for this ability required the presence of either nitrate or nitrite as an inducer, and both enzymes were repressed by ammonia. The repression by ammonia, which required the NTR (nitrogen regulatory) system (A. Macaluso, E. A. Best, and R. A. Bender, J. Bacteriol. 172:7249-7255, 1990), did not act solely at the level of inducer exclusion, since strains in which the expression of assimilatory nitrate reductase and nitrite reductase was was independent of the inducer were also susceptible to repression by ammonia. Insertion mutations in two distinct genes, neither of which affected the NTR system, resulted in the loss of both assimilatory nitrate reductase and nitrite reductase. One of these mutants reverted to the wild type, but the other yielded pseudorevertants at high frequency that were independent of inducer but still responded to ammonia repression.  相似文献   

13.
Summary Nitrate uptake and reductase activities of the cyanobacterium Anabaena cycadeae and its mutant, lacking glutamine synthetase, (the glutamine auxotroph) were measured. The levels of both these enzymes were up to 25-fold higher in the mutant than in the parent (Anabaena cycadeae). the data indicate operation of a common genetic regulatory mechanism controlling the loss of the primary ammonia assimilating enzyme, glutamine synthetase, and derepression of the nitrate uptake and reductase systems.Abbreviations Chl Chlorophyll - GS Glutamine Synthetase - HEPES 4-(2-hydroxyethyl)-1-piperazine ethanesulphonic acid - MSX l-methionine-dl-sulphoximine - SDS sodium dodecyl sulphate - Tricine N-tris(hydroxymethyl) methyl glycine - Tris Tris(hydroxymethyl) aminomethane  相似文献   

14.
Fifteen nitrate assimilation-deficient mutants of the euryhaline green alga, Dunaliella tertiolecta Butcher were selected by their chlorate resistance. Ten mutants, unable to grow on NO3? but able to grow on NO2?, had no detectable nitrate reductase activity. Five mutants, unable to grow on either NO3? or NO2?, had depressed levels of both nitrate and nitrite reductase. A method for assaying methyl viologen-nitrate reductase in the presence of nitrite reductase is described.  相似文献   

15.
An experimental system has been devised for induction of nitrate reductase in suspensions of wild type Paracoccus denitrificans incubated with limited aeration in the presence of azide, nitrate or nitrite. Azide promoted maximum synthesis of enzyme, accompanied by formation of excess b-type cytochrome; the level of enzyme attained with nitrate was less and c-type cytochrome predominated in the membrane. The nitrate reductase was solubilized with deoxycholate from membranes of azide-induced cells and was identified as a major polypeptide M r =150,000 by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Mutants strains lacking nitrate reductase activity were isolated on the basis of resistance to chlorate and mutant M-1 was examined in detail. When incubated in the cell suspension system M-1 formed a membrane protein M r =150,000 similar to that attributed to nitrate reductase in the wild type. Maximum formation of the protein by M-1 occurred without inducer and it was accompanied by synthesis of excess b-type cytochrome. The observations with wild type and M-1 indicate that nitrate reductase protein and b-type cytochrome are coregulated and that the active enzyme has a role in regulating its own synthesis.Non-standard Abbreviations SDS sodium dodecyl sulphate - PAGE polyacrylamide gel electrophoresis - DOC sodlum deoxycholate  相似文献   

16.
17.
Summary Six mutant strains (301, 102, 203, 104, 305, and 307) affected in their nitrate assimilation capability and their corresponding parental wild-type strains (6145c and 21gr) from Chlamydomonas reinhardii have been studied on different nitrogen sources with respect to NAD(P)H-nitrate reductase and its associated activities (NAD(P)H-cytochrome c reductase and reduced benzyl viologen-nitrate reductase) and to nitrite reductase activity. The mutant strains lack NAD(P)H-nitrate reductase activity in all the nitrogen sources. Mutants 301, 102, 104, and 307 have only NAD(P)H-cytochrome c reductase activity whereas mutant 305 solely has reduced benzyl viologen-nitrate reductase activity. Both activities are repressible by ammonia but, in contrast to the nitrate reductase complex of wild-type strains, require neither nitrate nor nitrite for their induction. Moreover, the enzyme from mutant 305 is always obtained in active form whereas nitrate reductase from wild-types needs to be reactivated previously with ferricyanide to be fully detected. Wild-type strains and mutants 301, 102, 104, and 307, when properly induced, exhibit an NAD(P)H-cytochrome c reductase distinguishable electrophoretically from contitutive diaphorases as a rapidly migrating band. Nitrite reductase from wild-type and mutant strains is also repressible by ammonia and does not require nitrate or nitrite for its synthesis. These facts are explained in terms of a regulation of nitrate reductase synthesis by the enzyme itself.  相似文献   

18.
GENETIC STUDIES OF NITRATE ASSIMILATION IN ASPERGILLUS NIDULANS   总被引:29,自引:0,他引:29  
(1) In Aspergillus nidulans, at least 16 genes can mutate to affect the reduction of nitrate to ammonium, a process requiring two enzymes, nitrate reductase and nitrite reductase. (2) niaD is the only gene whose effects on enzyme structure are confined to nitrate reductase alone. It specifies a core polypeptide, one or more of which form the basic subunit of nitrate reductase, molecular weight 50000. (3) At least five cnx genes together specify a molybdenum co-factor, necessary for the activity of nitrate reductase, and of xanthine dehydrogenases I and II. The cnxH gene specifies a polypeptide component of this co-factor, and the cnxE and F gene products are involved in co-factor elaboration, The role of the remaining cnx genes is at present unknown. (4) Functional nitrate reductase has a molecular weight of 200000 and is likely to consist of four subunits, together with one or more molecules of the cnx-specified co-factor. (5) The co-factor plays a catalytic role in the aggregation of nitrate-reductase subunits. (6) The niiA gene is the structural gene for nitrite reductase. (7) Other genes affecting nitrate assimilation are either regulatory or bring about their effects indirectly. (8) Of the genes affecting nitrate assimilation, close linkage is found only between the niiA and niaD genes. (9) Nitrate and nitrite reductases are subject to control by nitrate induction and ammonium repression. (10) Nitrate induction is mediated by the nirA gene whose product must be active for the niiA and niaD genes to be expressed. Since most niaD mutants produce nitrite reductase constitutively, it is likely that the nirA gene product is normally inactivated by nitrate reductase, but only when the latter is not complexed with nitrate, (11) Ammonium repression is mediated by the areA gene, whose product must be active for the expression of the niiA and niaD genes, and which is inactive in the presence of ammonium. (12) The tamA gene may function similarly to the areA gene, both gene products being necessary for the expression of the niiA and niaD genes. (13) Although the niiA and niiD genes are probably contiguous, they are not likely to be organized into a structure equivalent to a bacterial operon. (14) Whereas the areA and nirA genes regulate the synthesis of nitrate and nitrite reductases, it is probable that at least nitrate reductase is also subject to post-translational control, the presence of active enzyme being correlated with high levels of NADPH. (15) The regulation of the pentose-phosphate pathway, of mannitol-I-phosphate dehydrogenase and of certain activities required for the catabolism of some nitrogen-containing compounds appears to be connected with that of nitrate assimilation. In all cases, it is probable that the nirA gene and nitrate reductase itself are involved.  相似文献   

19.
The denitrifying ability of thirteen strains of Rhizobium meliloti was tested. Most of the strains were able to reduce nitrate to nitrous oxide or dinitrogen. However, they failed to use nitrate as electron acceptor for ATP generation or growth at low oxygen tensions. Under micro-aerobic conditions, free-living cells of R. meliloti 102-F-51 strain exhibited a constitutive nitrate reductase activity independent of the presence of nitrate. On the other hand, nitrite reductase activity was dependent not only on low levels of oxygen but also on the presence of a high nitrate concentration in the medium. Denitrification activity proceeded immediately once a threshold level of nitrite was accumulated in the medium or in cells incubated with 1mM nitrite. However, a lag period was required when cells were incubated with nitrate.  相似文献   

20.
Abstract The wild-type strain Rhodobacter sphaeroides DSM 158 is a nitrate-reducing bacterium with a periplasmic nitrate reductase. Addition of chlorate to the culture medium causes a stimulation of the phototrophic growth, indicating that this strain is able to use chlorate as an ancillary oxidant. Several mutant strains of R. sphaeroides deficient in nitrate reductase activity were obtained by transposon Tn5 mutagenesis. Mutant strain NR45 exhibited high constitutive nitrate and chlorate reductase activities and phototrophic growth was also increased by the presence of chlorate. In contrast, the stimulation of growth by chlorate was not observed in mutant strains NR8 and NR13, in which transposon Tn5 insertion causes the simultaneous loss of both nitrate and chlorate reductase activities. Tn5 insertion probably does not affect molybdenum metabolism since NR8 and NR13 mutants exhibit both xanthine dehydrogenase and nitrogenase activities. These results that a single enzyme could reduce both nitrate and chlorate in R. sphaeroides DSM 158.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号