首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TGF-beta and cancer   总被引:2,自引:0,他引:2  
The relationships between transforming growth factor-beta (TGF-beta) and cancer are varied and complex. The paradigm that is emerging from the experimental evidence accumulated over the past decade or so is that TGF-beta can play two different and opposite roles with respect to the process of malignant progression. During early stages of carcinogenesis, TGF-beta acts predominantly as a potent tumor suppressor and may mediate the actions of chemopreventive agents such as retinoids and nonsteroidal anti-estrogens. However, at some point during the development and progression of malignant neoplasms, bioactive TGF-betas make their appearance in the tumor microenvironment and the tumor cells escape from TGF-beta-dependent growth arrest. In many cases, this resistance to TGF-beta is the consequence of loss or mutational inactivation of the genes that encode signaling intermediates. These include the types I and II TGF-beta receptors, as well as receptor-associated and common-mediator Smads. The stage of tumor development or progression at which TGF-beta-resistant clones come to dominate the tumor cell population in different types of neoplasm remains to be defined. The phenotypic switch from TGF-beta-sensitivity to TGF-beta-resistance that occurs during carcinogenesis has several important implications for cancer prevention and treatment.  相似文献   

2.
We have examined cell cycle control of anchorage-independent growth in nontransformed fibroblasts. In previous studies using G0-synchronized NRK and NIH-3T3 cells, we showed that anchorage-independent growth is regulated by an attachment-dependent transition at G1/S that resembles the START control point in the cell cycle of Saccharomyces cerevisiae. In the studies reported here, we have synchronized NRK and NIH-3T3 fibroblasts immediately after this attachment-dependent transition to determine if other portions of the fibroblast cell cycle are similarly regulated by adhesion. Our results show that S-, G2-, and M-phase progression proceed in the absence of attachment. Thus, we conclude that the adhesion requirement for proliferation of these cells can be explained in terms of the single START-like transition. In related studies, we show that TGF-beta 1 overrides the attachment-dependent transition in NRK and AKR-2B fibroblasts (lines in which TGF-beta 1 induces anchorage-independent growth), but not in NIH-3T3 or Balb/c 3T3 fibroblasts (lines in which TGF-beta 1 fails to induce anchorage- independent growth). These results show that (a) adhesion and TGF-beta 1 can have similar effects in stimulating cell cycle progression from G1 to S and (b) the differential effects of TGF-beta 1 on anchorage- independent growth of various fibroblast lines are directly reflected in the differential effects of the growth factor at G1/S. Finally, we have randomly mutagenized NRK fibroblasts to generate mutant lines that have lost their attachment/TGF-beta 1 requirement for G1/S transit while retaining their normal mitogen requirements for proliferation. These clones, which readily proliferate in mitogen-supplemented soft agar, appear non-transformed in monolayer: they are well spread, nonrefractile, and contact inhibited. The existence of this new fibroblast phenotype demonstrates (a) that the growth factor and adhesion/TGF-beta 1 requirements for cell cycle progression are genetically separable, (b) that the two major control points in the fibroblast cell cycle (G0/G1 and G1/S) are regulated by distinct extracellular signals, and (c) that the genes regulating anchorage- independent growth need not be involved in regulating contact inhibition, focus formation, or growth factor dependence.  相似文献   

3.
Cross-linking of B-cell membrane immunoglobulin (Ig) receptors induces growth arrest at G1-S, leading to apoptosis and cell death in the immature lymphomas WEHI-231 and CH31, but not in the CH12 B-cell line. In this system, which has been used as a model for B-cell tolerance, we have established that these lymphomas produce active transforming growth factor beta (TGF-beta) when treated with anti-Ig and that their hierarchy of sensitivity to TGF-beta generally correlates with their growth inhibition by anti-Ig. TGF-beta, in turn, has been shown to interfere with the phosphorylation of the retinoblastoma gene product, pRB. Herein, we also demonstrate that in WEHI-231 B-lymphoma cells treated with anti-Ig for 24 h, the pRB protein is found to be predominantly in the underphosphorylated form, as previously reported for cells arrested by the exogenous addition of TGF-beta. However, neutralizing antibodies to TGF-beta failed to prevent growth inhibition by anti-Ig in WEHI-231 and CH31. When WEHI-231 lymphoma cells were selected for growth in TGF-beta, the majority of the TGF-beta-resistant clones remained sensitive to anti-Ig-mediated growth inhibition. In these clones, the retinoblastoma gene product was found to be in the underphosphorylated form after 24-h treatment with anti-Ig, but not with TGF-beta. These data show that anti-Ig treatment of murine B-cell lymphomas stimulates the production of active TGF-beta but that a TGF-beta-independent pathway may be responsible for the pRB underphosphorylation and cell cycle blockade.  相似文献   

4.
5.
At least one member of the TGF-beta family, TGF-beta 1, has been previously shown to inhibit the anchorage-independent growth of some human breast cancer cell lines (Knabbe et al., 1987; Arteaga et al., 1988). Members of the TGF-beta family might, therefore, provide new strategies for breast cancer therapy. We have studied the inhibitory effects of TGF-beta 1 and TGF-beta 2 on the anchorage-independent growth of the oestrogen receptor-negative cell lines MDA-MB-231, SK-BR-3, Hs578T, MDA-MB-468, and MDA-MB-468-S4 (an MDA-MB-468 clone not growth inhibited by EGF) and the estrogen receptor-positive cell lines MCF7, ZR-75-1, T-47D. TGF-beta 1 and TGF-beta 2 caused a 75-90% growth inhibition of MDA-MB-231, SK-BR-3, Hs578T, and MDA-MB-468 cells and a 50% growth inhibition of ZR-75-1 and early passage (less than 100) MCF7 cells. T-47D cells responded to TGF-beta only in serum-free conditions in the presence of IGF-1 or EGF. The growth of MDA-MB-468-S4 cells and late passage (greater than 500) MCF7 cells was not inhibited by TGF-beta 1 or TGF-beta 2. TGF-beta-sensitive MCF7 and MDA-MB-231 cells did not respond to Muellerian inhibiting substance (MIS), a TGF-beta-related polypeptide. TGF-beta 1 or TGF-beta 2 were mutually competitive for receptor binding with a similar affinity (Kd 25-130 pM, 1,000-13,000 sites per cell). To determine the time course of the TGF-beta effect, an anchorage-dependent growth assay was carried out using MDA-MB-231 cells. Growth inhibition occurred at 6 days, and cell-cycle changes were seen 12 hr after the addition of TGF-beta. Cells accumulated in the G1 phase and were thus inhibited from entering the S-phase. These data indicate that TGF-beta is a potent growth inhibitor in most breast cancer cell lines and provide a basis for studying TGF-beta effects in vivo.  相似文献   

6.
7.
Transforming growth factor-beta 1 (TGF-beta 1) is a pleiotropic polypeptide hormone known to play an important role as a modulator of hematopoietic processes in human and murine cells. One of the characteristics of TGF-beta 1 is the ability to inhibit the growth of several cell types, including cells of the myeloid lineage. To study the mechanism by which TGF-beta 1 inhibits the growth of myeloid cells, we have used three murine myeloid cell lines, the parental interleukin-3-dependent 32D-123 cell line and two retrovirally infected interleukin-3-independent cell lines (32D-abl, 32D-src), all of which are growth inhibited by TGF-beta 1. Each of these oncogene-transfected cells expresses a greater number of TGF-beta 1 receptors than the parental cell line and responds to TGF-beta 1 with increased sensitivity; 32D and 32D-src cells are 2- and 58-fold more sensitive to TGF-beta 1 inhibition than the parental cell line (ED50 = 35 pM). Both 32D-abl- and 32D-src-transformed cell lines expressed higher levels of the 65- and 85-kDa TGF-beta 1 receptor species than did the parental cells. We observed a correlation between the greater sensitivity of 32D-src cells to TGF-beta 1 and the more rapid down-modulation and reappearance of cell surface TGF-beta 1 receptors on 32D-src cells. Thus, the level of TGF-beta 1 receptor expression and rate of reexpression both have a crucial regulatory effect on the functional activity of the TGF-beta 1 ligand.  相似文献   

8.
The human placenta is a highly invasive tumor-like structure in which a subpopulation of placental trophoblast cells known as the "extravillous trophoblast" (EVT) invades the uterine decidua and its vasculature to establish adequate fetal-maternal exchange of molecules. By utilizing in vitro-propagated short-lived EVT cell lines we found that molecular mechanisms responsible for their invasiveness are identical to those of cancer cells; however, unlike cancer cells, their proliferation, migration, and invasiveness in situ are stringently controlled by decidua-derived transforming growth factor (TGF)-beta. By SV40T antigen transfection of normal EVT cells followed by a forced crisis regimen in culture we produced an immortalized premalignant derivative that is hyperproliferative, hyperinvasive, and deficient in gap-junctional intercellular communication. Both premalignant and malignant EVT (JAR and JEG-3 choriocarcinoma) cell lines were found to be TGF-beta-resistant. Using these cell lines, we investigated genetic changes responsible for transition of the normal EVT cells to premalignant and malignant phenotype. Hyperinvasiveness in both cases resulted from a downregulation of tissue inhibitor of metalloprotease (TIMP)-1 and plasminogen activator inhibitor (PAI)-1 genes. In contrast to normal EVT cells, both cell types failed to upregulate these genes in response to TGF-beta. Loss of TGF-beta response in malignant EVT cells was explained by the loss of expression of Smad3 gene. Differential mRNA display of normal and premalignant EVT cells identified up- and down-regulation of numerous known or novel genes in premalignant EVT cells, with potential oncogenic and (or) tumor-suppressor functions, e.g., loss of fibronectin and insulin-like growth factor binding protein (IGFBP-5). Premalignant EVT cells also lost IGF receptor type 2 (IGFR-II). IGFBP-5 was shown to be a negative regulator of IGF-1-induced proliferation of premalignant EVT cells, so that loss of IGFBP-5 as well as IGFR-II permitted their unrestricted proliferation in an IGF-I-rich microenvironment of the fetal-maternal interface. The present model may be a good prototype for identifying genetic changes underlying epithelial tumor progression.  相似文献   

9.
Selection of mutant Mv1Lu mink lung epithelial cells resistant to growth inhibition by transforming growth factor-beta (TGF-beta) has led to the isolation of cell clones with distinct alterations in type I and II TGF-beta receptors. Certain mutant clones present a decreased number or complete loss of detectable type I receptor. Other clones show a loss and/or altered electrophoretic mobility of the type II receptor, with concomitant loss of the type I receptor. Using somatic cell hybridization analysis we demonstrate the recessive nature of these mutants with respect to the wild-type phenotype and define various mutant complementation groups. Among these, hybrids between cells that express only type II receptor (R mutants) and cells that express neither receptor type (DRa mutants) rescue wild-type expression of type I receptors. Moreover, these hybrids regain full responsiveness to TGF-beta 1, as measured by inhibition of DNA synthesis as well as stimulation of fibronectin and plasminogen activator inhibitor-1 production. These results provide evidence for an interaction between TGF-beta receptor components I and II and show that, in Mv1Lu cells, expression of both receptor types is required for mediation of biological responses to TGF-beta 1.  相似文献   

10.
Transforming growth factor-β (TGF-β),a multifunctional cytokine,exerts contradictory rolesin different kinds of cells.A number of studies have revealed its involvement in the progression of many typesof tumors.To investigate the effect of TGF-β on gastric carcinoma,SGC7901,BGC823 and MKN28 (aTGF-β-resistant cell line) adenocarcinoma clones were used.After pretreatment in serum-free medium withor without 10 ng/ml TGF-β1,their experimental metastatic potential,chemotaxis,and invasive and adhesiveability were measured.Furthermore,zymography for gelatinase was processed.Liver colonies were alsomeasured 4 weeks after inoculation of SGC7901,BGC823 and MKN28 in Balb/c nude mice,and an increasein the number of surface liver metastases was seen in SGC7901 (from 11.0±3.0 to 53.3±3.3) and BGC823(from 9.3±2.5 to 60.0±2.8) groups,whereas there was no difference between MKN28 groups (from 35.2±3.8 to 38.5±2.7).In vitro experiments showed that TGF-β1 increased the adhesion capacity of SGC7901and BGC823 cells to immobilized reconstituted basement membrane/fibronectin matrices and promoted theirpenetration through reconstituted basement membrane barriers.Zymography demonstrated that enhancedinvasive potential was partly due to the increased type Ⅳ collagenolytic (gelatinolytic) activity,but there wasno difference in type Ⅳ collagenolytic activity and other biological behaviors between MKN28 groups.Theseresults suggested that TGF-β1 might modulate the metastatic potential of gastric cancer cells by promotingtheir ability to break down and penetrate basement membrane barriers and their adhesive and motile activities.We speculated that TGF-β1 might act as a progression-enhancing factor in gastric cancer.Therefore blockageof TGF-β or TGF-β signaling might prevent gastric cancer cells from invading and metastasizing.  相似文献   

11.
This article focuses on recent findings that the type V TGF-beta receptor (TbetaR-V), which co-expresses with other TGF-beta receptors (TbetaR-I, TbetaR-II, and TbetaR-III) in all normal cell types studied, is involved in growth inhibition by IGFBP-3 and TGF-beta and that TGF-beta activity is regulated by two distinct endocytic pathways (clathrin- and caveolar/lipid-raft-mediated). TGF-beta is a potent growth inhibitor for most cell types, including epithelial and endothelial cells. The signaling by which TGF-beta controls cell proliferation is not well understood. Many lines of evidence indicate that other signaling pathways, in addition to the prominent TbetaR-I/TbetaR-II/Smad2/3/4 signaling cascade, are required for mediating TGF-beta-induced growth inhibition. Recent studies revealed that TbetaR-V, which is identical to LRP-1, mediates IGF-independent growth inhibition by IGFBP-3 and mediates TGF-beta-induced growth inhibition in concert with TbetaR-I and TbetaR-II. In addition, IRS proteins and a Ser/Thr-specific protein phosphatase(s) are involved in the TbetaR-V-mediated growth inhibitory signaling cascade. The TbetaR-V signaling cascade appears to cross-talk with the TbetaR-I/TbetaR-II, insulin receptor (IR), IGF-I receptor (IGF-IR), integrin and c-Met signaling cascades. Attenuation or loss of the TbetaR-V signaling cascade may enable carcinoma cells to escape from TGF-beta growth control and may contribute to the aggressiveness and invasiveness of these cells via promoting epithelial-to-mesenchymal transdifferentiation (EMT). Finally, the ratio of TGF-beta binding to TbetaR-II and TbetaR-I is a signal controlling TGF-beta partitioning between two distinct endocytosis pathways and resultant TGF-beta responsiveness. These recent studies have provided new insights into the molecular mechanisms underlying TGF-beta-induced cellular growth inhibition, cross-talk between the TbetaR-V and other signaling cascades, the signal that controls TGF-beta responsiveness and the role of TbetaR-V in tumorigenesis.  相似文献   

12.
13.
Transforming growth factor beta 1 (TGF-beta 1) is a potent autocrine growth inhibitor of lymphocytes. In this study, the expression of TGF-beta 1 binding proteins was characterized on murine splenic T cells. With an affinity cross-linking method and by neutralizing antibodies to TGF-beta 1, [125I] TGF-beta 1 was found to bind to three cell surface-binding proteins (280-200 kD, 95-85 kD, 65 kD) that were differentially expressed on resting and mitogen-stimulated T cells. Freshly prepared (resting) T cells were found to constitutively express the 95-85-kD form of these binding proteins, whereas mitogenic stimulation by either concanavalin-A (Con-A), interleukin-1 (IL-1), interleukin-2 (IL-2), or 12-tetradecanoyl-phorbol-13-acetate (TPA) for 12-72 h induced the appearance of all forms of the TGF-beta 1 binding proteins (280-200 kD, 95-85 kD, and 65 kD). Furthermore, antibodies that neutralized the biologic action of TGF-beta 1 also blocked the binding of [125I] TGF-beta 1 to all three binding proteins, suggesting that these binding proteins are involved with signal transduction. These results suggest that the expression of the TGF-beta 1 receptor on T cells is regulated by T cell mitogenic signals and that a regulatory relationship may exist between T cell growth-promoting cytokines (IL-1 and IL-2) and the T cell growth inhibitor, TGF-beta 1.  相似文献   

14.
We have previously reported that transforming growth factor beta (TGF-beta) produced by rat hepatoma cell line KDH-8 cells suppressed the interleukin-2 (IL-2) production of T cells and the tumoricidal activity of macrophages in KDH-8 tumor-bearing rats and that the inhibition of TGF-beta production by low-dose bleomycin restored these activities significantly. In this study, we established three transfectant clones with stable expression of soluble TGF-beta receptor type II (sTRII), namely KT1, KT2 and KT3, and one with an empty vector used as control vector (KV), and then investigated the effects of sTRII on the tumorigenicity of KDH-8 cells and immune responses in syngeneic Wistar King Aptekman/Hok (WKAH) rats. We found that sTRII expressed in sTRII transfectants could abolish growth inhibition of Mv1Lu cells by TGF-beta1 produced by the cells themselves, and that tumor growth of KT2 and KT3 clones in vivo was suppressed significantly compared with that of parent, KV and KT1 clones. Furthermore, we demonstrated that IL-2 production of splenocytes and IL12p40 mRNA expression in tumor tissues were restored in rats inoculated with KT2 and KT3 clones, whereas such restoration was not observed in rats inoculated with parent, KV and KT1 clones. Combined with a low expression of sTRII in KT1 tumor tissues, these results suggest that sTRII may to some extent be able to abolish the tumor-promoting activity of TGF-beta, and imply that sTRII might have a therapeutic effect on TGF-beta-producing tumors.  相似文献   

15.
Transforming growth factor-beta (TGF-beta) is a potent mitogen that effects a wide variety of cells by blocking cell growth. TGF-beta acts by interacting with components of cell cycle machinery to cause G1 arrest and in mink lung epithelial cells (Mv1Lu) it does so by inhibiting Cdk4 synthesis. Overexpression of Cdk4 in these cells (B7) renders them resistant to the effects of TGF-beta. Here we report that two novel Cdk inhibitors (pyridopyrimidines) that not only inhibit Cdk4 and Cdk2 in an in vitro kinase assay but also, in the absence of TGF-beta, block growth of Mv1Lu cells in G1 more efficiently than their B7 (overexpressing Cdk4) counterparts. Interestingly, these inhibitors restored sensitivity of B7 cells towards TGF-beta. This may have implications for the treatment of tumors that have lost TGF-beta responsiveness due to deregulated cellular growth in vivo. These Cdk inhibitors could therefore be used in conjunction with TGF-beta to understand the mechanism of growth arrest in normal versus tumour cells.  相似文献   

16.
The present study was undertaken to analyze the regulatory T cells generated in response to class I derived self-I-A beta(g7) (54-76) peptide. It was observed T cells from young unprimed type 1 diabetes (T1D) prone NOD mice did not respond to self-I-A beta(g7) (54-76) peptide although T cells from primed young NOD mice showed a strong response. T cells from young unprimed BALB/c mice responded to self-I-A beta(d) (62-78) peptide. However, a breakdown of tolerance to these peptides was observed with age in both the strains. Culture supernatant from I-A beta(g7) (54-76) peptide-primed cells secreted large amounts of TGF-beta and inhibited T cell responses in allogeneic-MLR. Further, I-A beta(g7) (54-76) peptide specific T cell lines from young (I-A.Y) and diabetic (I-A.D) NOD mice were established. I-A.Y secreted IL-4, TGF-beta and IL-10 while I-A.D T cell line secreted IL-10 and IFN-gamma. We found that I-A.D T cell line induced diabetes when transferred in NOD/SCID mice but I-A.Y T cell line did not induce disease. These results show that immunization of NOD mice with I-A beta(g7) (54-76) peptide at a younger age induces a regulatory T cell response suggesting that correcting the defects in immunoregulatory mechanisms using self-MHC peptides may be one of the approaches to prevent autoimmune diseases like T1D.  相似文献   

17.
18.
Characterization of the three mammalian transforming growth factor-beta (TGF-beta) isoforms, TGF-beta 1, -beta 2, and -beta 3, indicates that TGF-beta 3 is somewhat more potent (ED50 = 0.5 pM versus 2 pM) than TGF-beta 1 and TGF-beta 2 as a growth inhibitor of the Mv1Lu mink lung epithelial cell line. In the fetal bovine heart endothelial (FBHE) cell line, however, TGF-beta 1 and -beta 3 are at least 50-fold more potent than TGF-beta 2 which is a very weak growth inhibitor (ED50 greater than or equal to 0.5 nM). Thus, as growth inhibitors, TGF-beta 1 and -beta 3 resemble each other more than TGF-beta 2. The presence of serum alpha 2-macroglobulin in the FBHE cell assays decreases the biological potency of TGF-beta s, in particular TGF-beta 2. This effect of alpha 2-macroglobulin, however, is not sufficient to explain the low responsiveness of FBHE cells to TGF-beta 2. Evaluation of the role of TGF-beta receptors as determinants of cell-specific responsiveness to TGF-beta isoforms indicates that TGF-beta 1, -beta 2, and -beta 3 have similar affinity for the membrane proteoglycan, betaglycan. They differ, however, in their ability to bind to receptor types I and II which are implicated in TGF-beta signal transduction. TGF-beta 1 is similar, albeit not identical, to TGF-beta 3 and much more potent than TGF-beta 2 as a competitor for binding to the overall population of receptors I and II in all cell lines tested. A subset of receptors I and II has been identified in Mv1Lu cells which has high affinity for TGF-beta 2 (KD approximately 10 pM) and binds this factor at concentrations that are biologically active in Mv1Lu cells. This receptor subset could not be detected in FBHE cells, suggesting that cell-specific differences in the level of high affinity of TGF-beta 2 receptors may lead to cell-specific differences in responsiveness to this isoform. Thus, despite their structural and biological similarities, TGF-beta 1, -beta 2, and -beta 3 diverge in their ability to bind to receptors in a manner that correlates with their potency as growth inhibitors.  相似文献   

19.
Transforming growth factor-beta (TGF-beta) had a profound effect on the in vitro phenotypic development of Ag-activated Th cells and enhanced the in vivo effector function of these cells upon adoptive transfer. Previous studies have shown that there are two types of Th cell populations found in unimmunized animals, naive helper cells, which are short-lived and express low levels of CD44 and high levels of CD45R and Mel-14, and memory helper cells, which have a long life span and express high levels of CD44 and low levels of CD45R and Mel-14. Culturing of Ag-specific murine Th cell lines and clones in the presence of TGF-beta greatly enhanced both the memory phenotype of the cultured cells and the effector function upon adoptive transfer in experimental autoimmune encephalomyelitis. Histologic evaluation of spinal cords from recipients receiving passively transferred murine T cell lines cultured with TGF-beta revealed large demyelinated plaques (multiple sclerosis-like) that were not present in animals receiving cells cultured with Ag alone. TGF-beta also enhanced the capability of myelin basic protein-specific Lewis rat T cell lines to transfer experimental autoimmune encephalomyelitis and potentiated a purified protein derivative-specific rat helper cell line to transfer delayed type hypersensitivity. Thus, the effects of TGF-beta did not appear to be limited by species specificity, Ag specificity, or in vivo T cell function. This is the first study showing that TGF-beta can potentiate the development and maintenance of the Th cell memory phenotype in vitro and enhance their in vivo effector function in an animal disease model.  相似文献   

20.
Two prostatic epithelial lines, one of basal origin and one of luminal origin, were established from the dorsolateral prostates of p53 null mice. The cell lines are nontumorigenic when inoculated subcutaneously under the renal capsule or intraprostatically in syngeneic mice. The luminal cell line (PE-L-1) expresses cytokeratins 8 and 18 and the basal cell line (PE-B-1) expresses cytokeratins 5 and 14. The basal cells require serum for growth, whereas the luminal cells grow only in serum-free medium. Both cell lines require the presence of growth factors for optimal growth in culture, with EGF and FGF-2 having the greatest effect on the growth rate. Both lines express androgen receptor (AR) mRNA and protein. Androgen stimulates growth of the basal cell line, indicating that the ARs are functional, whereas growth of the luminal cells is unaffected by androgens. The luminal line is significantly inhibited by exogenous TGF-beta and produces low levels of endogenous TGF-beta. In contrast, the basal cell line produces significant amounts of TGF-beta and its growth is not influenced by this cytokine. Coculture of luminal cells with prostatic smooth muscle cells results in the generation of increased levels of biologically active TGF-beta, indicating a paracrine mechanism of TGF-beta activation that may be involved in the maintenance of normal prostatic function. To our knowledge this is the first report describing both basal and luminal prostatic cell lines from a single inbred animal species and the first indication that prostatic epithelial and stromal cells interact to generate the biologically active form of TGF-beta. These lines will provide an important model for determining basal/luminal interactions in both in vitro and in vivo assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号