共查询到20条相似文献,搜索用时 0 毫秒
1.
Effect of cellulose fine structure on kinetics of its digestion by mixed ruminal microorganisms in vitro. 总被引:1,自引:2,他引:1
下载免费PDF全文

The digestion kinetics of a variety of pure celluloses were examined by using an in vitro assay employing mixed ruminal microflora and a modified detergent extraction procedure to recover residual cellulose. Digestion of all of the celluloses was described by a discontinuous first-order rate equation to yield digestion rate constants and discrete lag times. These kinetic parameters were compared with the relative crystallinity indices and estimated accessible surface areas of the celluloses. For type I celluloses having similar crystallinities and simple nonaggregating particle morphologies, the fermentation rate constants displayed a strong positive correlation (r2 = 0.978) with gross specific surface area; lag time exhibited a weaker, negative correlation (r2 = 0.930) with gross specific surface area. Crystallinity was shown to have a relatively minor effect on the digestion rate and lag time. Swelling of microcrystalline cellulose with 72 to 77% phosphoric acid yielded substrates which were fermented slightly more rapidly than the original material. However, treatment with higher concentrations of phosphoric acid resulted in a more slowly fermented substrate, despite a decrease in crystallinity and an increase in pore volume. This reduced fermentation rate was apparently due to the partial conversion of the cellulose from the type I to the type II allomorph, since mercerized (type II) cellulose was also fermented more slowly, and only after a much longer lag period. The results are consistent with earlier evidence for the cell-associated nature of cellulolytic enzymes of ruminal bacteria and suggest that ruminal microflora do not rapidly adapt to utilization of celluloses with altered unit cell structures. 相似文献
2.
3.
Consecutive batch culture, a technique which involves sequential transfer of cultures to fresh medium at regular intervals, was used to establish mixed ruminal-microbial populations in an anaerobic medium containing highly digestible hay. Once volatile fatty acid production was stable, perturbations were imposed in consecutive cultures by the addition of one of each of the following pentoses or analogous pentitols: l-arabinose, d-lyxose, d-ribose, d-xylose, l-arabitol, d-arabitol (lyxitol), ribitol, and xylitol. With the exception of d-lyxose, the addition of pentoses caused marked increases in propionate and valerate production, and except for d-arabitol, pentitol addition caused increases in butyrate and valerate production. On transfer to and continued incubation in the control medium, volatile fatty acid production reverted to preperturbed levels. The presence of pentitols and pentoses significantly reduced the endpoint pH of cultures and the proportion of hay that was fermented. With all added substrates, the response to the perturbation was at its maximum within one incubation (i.e., within 48 h). Similarly, the variables being monitored all returned to control levels within one incubation. On the basis of these results, it is suggested that changes were related to the need to maintain a redox balance within anaerobic cultures rather than any significant changes in the microbial population that was present. 相似文献
4.
Summary By enrichment technique, nine anaerobic mixed bacterial cultures were isolated, five of which showed stable cellulolysis. All cultures fermented cellulose and produced different fermentative products. Mixed culture BOC 25 yielded major levels of acetate and ethanol (39.6 and 12.0 mmol/l, respectively) and minor levels of propionate (2.5 mmol/l) and digested filter paper cellulose to the extent of 32.5% w/v. BOC 25 digested cellulosic and lignocellulosic substrates and produced filter paper cellulase, carboxymethyl cellulase, Avicelase and -glucosidase. Strain DC 25, a cellulolyticClostridium was purified from one of the mixed cultures. The fermentation products of DC 25 from cellulose, cellobiose or glucose were ethanol, acetate, formate, H2 and CO2. 相似文献
5.
Paul SS Kamra DN Sastry VR Sahu NP Agarwal N 《Reproduction, nutrition, development》2004,44(4):313-319
Five strains of anaerobic fungi isolated from the faeces of wild (hog deer, Cervus porcinus; blackbuck, Antelope cervicapra; spotted deer, Axis axis; nilgai, Baselophus tragocamelus) and rumen liquor of domestic (sheep, Ovies aries) ruminants showing high fibrolytic enzyme producing ability were added to mixed rumen microflora of buffalo to study their effect on the digestibility of lignocellulosic feed (wheat straw and wheat bran in the ratio of 80:20), enzyme production and fermentation end products in in vitro conditions. Among the 5 isolates studied, FNG5 (isolated from nilgai) showed the highest stimulating effect on apparent digestibility (35.31 +/- 1.61% vs. 28.61 +/- 1.55%; P < 0.05), true digestibility (43.64 +/- 1.73% vs. 35.37 +/- 1.65%; P < 0.01), neutral detergent fiber digestibility (29.30 +/- 2.58% vs. 18.47 +/- 2.12; P < 0.01) of feed 24 h after inoculation compared to the control group. The production of carboxymethyl cellulase, xylanase, acetyl esterase and beta-glucosidase was significantly (P < 0.05) higher in the FNG5 inoculated incubation medium. There was no improvement in the digestibility and enzyme production on the addition of the other 4 isolates. Total volatile fatty acid levels as well as the concentration of acetate, propionate, isobutyrate and valerate were significantly higher in the FNG5 added group as compared to the control group. The fungal isolate FNG5 from nilgai, a wild ruminant, was found to be superior to the other isolates tested and appears to have a potential to be used as a feed additive for improving fiber degradation in domestic ruminants. 相似文献
6.
Anaerobic digestion of cellulose fraction of domestic refuse by means of rumen microorganisms 总被引:1,自引:0,他引:1
The anaerobic digestion of a cellulose-enriched fraction of domestic refuse by means of rumen microorganisms in an "artificial rumen" digester was studied. Various combinations of solid and liquid retention times and loading rates were applied to establish optimum conditions for the acidogenic phase digestion of the refuse fraction. An optimal substrate conversion of about 72% was obtained at a loading rate of 23.4 g volatile solids (VS)/L d and a solids retention time of 90 h. Variation of dilution rate between 1.04 and 3.14 fermentor volume turnovers per day had no effect on degradation efficiency. At a loading rate of 23.4 g VS/L d a differential removal rate of solids and liquids appeared to be necessary to obtain an effective degradation of the refuse fraction. 相似文献
7.
Effects of alkaline hydrogen peroxide treatment on in vitro degradation of cellulosic substrates by mixed ruminal microorganisms and Bacteroides succinogenes S85.
下载免费PDF全文

S M Lewis L Montgomery K A Garleb L L Berger G C Fahey Jr 《Applied microbiology》1988,54(5):1163-1169
The effects of sodium hydroxide (NaOH) and alkaline hydrogen peroxide (AHP) treatments on wheat straw (WS) and various cellulosic substrates were determined by measuring susceptibility to degradation by mixed ruminal organisms or Bacteroides succinogenes S85. In vitro incubations were used to measure differences in fermentation resulting from each successive step in the AHP treatment process. In vitro incubations through 48 or 108 h were conducted to measure these differences. The AHP treatment of WS increased (P less than 0.05) dry matter, neutral detergent fiber, and acid detergent fiber degradation over control WS when these substrates were incubated with mixed ruminal microorganisms or B. succinogenes S85. Fermentations containing AHP-treated WS had greater (P less than 0.05) microbial purine (RNA) and volatile fatty acid concentrations by 12 h compared with those containing untreated or NaOH-treated WS. Xylose in AHP-treated WS was utilized more extensively (P less than 0.05) by 12 h compared with the xylose of untreated or NaOH-treated WS. Treatment with AHP removed 23% of the alkali-labile phenolic compounds from WS. When substrates with high levels of crystalline cellulose (raw cotton fiber, Solka floc, and Sigmacell-50) were treated with NaOH or AHP and incubated for 108 h with B. succinogenes S85, extent of acid detergent fiber degradation of cotton fiber and Sigmacell-50 was similar to that of their respective controls. Sodium hydroxide and AHP treatments were effective in increasing acid detergent fiber degradation of the Solka floc which contained, on average, 3.3 and 4.8 percentage units more acid detergent lignin and hemicellulose, respectively, than cotton fiber and Sigmacell-50.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
8.
Analysis of peptide metabolism by ruminal microorganisms 总被引:2,自引:0,他引:2
Methods were developed for the determination of oligoalanine and other short-chain peptides and peptide analogs in ruminal fluid by using reverse-phase high-pressure liquid chromatography. Chromatographic analysis of the breakdown of (Ala)3 and (Ala)4 in ruminal fluid in vitro revealed that the predominant mechanism of hydrolysis was a dipeptidyl peptidase-like activity. Hydrolysis proceeded from the N terminal of the peptide chain; N-acetyl-(Ala)3 was broken down at 11% of the rate of breakdown of (Ala)3 or (Ala)3-p-nitroanilide. (Ala)2-p-nitroanilide was hydrolyzed most rapidly of the arylamide substrates tested, but fluorogenic 4-methoxy-2-naphthylamide (MNA) compounds were more convenient and potentially more versatile substrates than p-nitroanilides. Gly-Arg-MNA was the most rapidly hydrolyzed dipeptidyl peptidase substrate, suggesting that ruminal peptidase activity was predominantly of a type I specificity. 相似文献
9.
10.
11.
Summary.
In vitro studies were conducted to examine the metabolism of methionine (Met) and threonine (Thr) using mixed ruminal bacteria (B),
mixed ruminal protozoa (P), and a combination of these two (BP). Rumen microorganisms were collected from fistulated goats
fed with lucerne cubes (Medicago sativa) and a concentrate mixture twice a day. Microbial suspensions were anaerobically incubated with or without 1 mM each of the
substrates at 39°C for 12 h. Met, Thr and their related amino compounds in both the supernatants and microbial hydrolyzates
of the incubation were analyzed by HPLC. Met was degraded by 58.7, 22.1, and 67.3% as a whole in B, P, and BP suspensions,
respectively, during 12 h incubation. In the case of Thr, these values were 67.3, 33.4, and 76.2% in B, P, and BP, respectively.
Met was catabolized by all of the three microbial suspensions to methionine sulfoxide and 2-aminobutyric acid. Catabolism
of Thr by B and BP resulted in the production of glycine and 2-aminobutyric acid, while P produced only 2-aminobutyric acid.
From these results, the existence of diverse catabolic routes of Met and Thr in rumen microorganisms was indicated.
Received August 2, 2000 Accepted February 27, 2001 相似文献
12.
Methods were developed for the determination of oligoalanine and other short-chain peptides and peptide analogs in ruminal fluid by using reverse-phase high-pressure liquid chromatography. Chromatographic analysis of the breakdown of (Ala)3 and (Ala)4 in ruminal fluid in vitro revealed that the predominant mechanism of hydrolysis was a dipeptidyl peptidase-like activity. Hydrolysis proceeded from the N terminal of the peptide chain; N-acetyl-(Ala)3 was broken down at 11% of the rate of breakdown of (Ala)3 or (Ala)3-p-nitroanilide. (Ala)2-p-nitroanilide was hydrolyzed most rapidly of the arylamide substrates tested, but fluorogenic 4-methoxy-2-naphthylamide (MNA) compounds were more convenient and potentially more versatile substrates than p-nitroanilides. Gly-Arg-MNA was the most rapidly hydrolyzed dipeptidyl peptidase substrate, suggesting that ruminal peptidase activity was predominantly of a type I specificity. 相似文献
13.
Physiological systems models for ruminant animals are used to predict the extent of ruminal carbohydrate digestion, based on rates of intake, digestion, and passage to the lower tract. Digestion of feed carbohydrates is described in these models by a first-order rate constant. Recently, an in vitro gas production technique has been developed to determine the digestion kinetics in batch fermentation, and nonlinear mathematical models have been fitted to the cumulative gas production data from these experiments. In this paper, we present an analysis that converts these gas production models to an effective first-order rate constant that can be used directly in rumen systems models. The analysis considers the digestion of an incremental mass of substrate entering the rumen. The occurrence of passage is represented probabilistically, and integration through time gives the total mass of substrate and total rate of digestion in the rumen. To demonstrate the analysis, several gas production models are fitted to a sample data set for corn silage, and the effective first-order rate constants are calculated. The rate constants for digestion depend on ruminal passage rate, an interaction that arises from the nonlinearity of the gas production models. 相似文献
14.
Janaína R. Lima réa de O. Barros Ribon James B. Russell & Hilário C. Mantovani 《FEMS microbiology letters》2009,292(1):78-84
Streptococcus bovis HC5 produces a broad spectrum lantibiotic (bovicin HC5) that inhibits pure cultures of hyper ammonia-producing bacteria (HAB). Experiments were preformed to see if: (1) S. bovis HC5 cells could inhibit the deamination of amino acids by mixed ruminal bacteria taken directly from a cow, (2) semi-purified bovicin was as effective as S. bovis HC5 cells, and 3) semi-purified and the feed additive monensin were affecting the same types of ammonia-producing ruminal bacteria. Because purified and semi-purified bovicin HC5 was as effective as S. bovis HC5 cells, it appeared that bovicin HC5 was penetrating the cell membranes of HAB before it could be degraded by peptidases and proteinases. Mixed ruminal bacteria that were successively transferred and enriched nine times with trypticase did not become significantly more resistant to either bovicin HC5 (50 AU mL−1 ) or monensin (5 μM), and amplified rDNA restriction analysis indicated that bovicin HC5 and monensin appeared to be selecting against the same types of bacteria. 相似文献
15.
Effect of soluble carbohydrates on digestion of cellulose by pure cultures of rumen bacteria 总被引:3,自引:0,他引:3
The rate of cellulose digestion in the presence of either glucose or cellobiose was studied for the three predominant species of cellulolytic rumen bacteria: Ruminococcus albus, Ruminococcus flavefaciens, and Bacteroides succinogenes. When a soluble carbohydrate was added to cellulose broth, the lag phase of cellulose digestion was shortened. Presumably, this was due to greater numbers of bacteria, because increasing the size of the inoculum had a similar effect. Cellulose digestion occurred simultaneously with utilization of the soluble carbohydrate. The rate of cellulose digestion slowed markedly for B. succinogenes and R. flavefaciens and slowed less for R. albus after the cellobiose or glucose had been utilized, and was accompanied by a decrease in pH. Both the rate and the extent of cellulose digestion were partially inhibited when the initial pH of the medium was 6.3 or below. R. albus appeared to be less affected by a low-pH medium than were B. succinogenes and R. flavefaciens. When a soluble carbohydrate was added to the fermentation during the maximum-rate phase of cellulose digestion, the rate of cellulose digestion was not affected until after the soluble carbohydrate had been depleted and the pH had decreased markedly. Prolonged exposure of the bacteria to a low pH had little if any effect on their subsequent ability to digest cellulose. Cellulase activity of intact bacterial cells appeared to be constitutive in nature for these three species of rumen bacteria. 相似文献
16.
G Chen H J Strobel J B Russell C J Sniffen 《Applied and environmental microbiology》1987,53(9):2021-2025
When mixed ruminal bacteria were incubated with a pancreatic casein hydrolysate and free amino acids of a similar composition, rates of ammonia production were much greater for peptides than for amino acids. The pancreatic digest of casein was then fractionated with 90% isopropyl alcohol. Hydrophobic peptides which dissolved in alcohol contained an abundance of phenolic and aliphatic amino acids, while the hydrophilic peptides which were precipitated by alcohol contained a large proportion of the highly charged amino acids. The Km values of the mixed ruminal bacteria for each fraction were similar (0.88 versus 0.98 g/liter), but the Vmax of the hydrophilic peptides was more than twice that of the hydrophobic peptides (18 versus 39 mg of NH3 per g of bacterial protein per h). Pure cultures of ruminal bacteria had a similar preference for hydrophilic peptides and likewise utilized peptides at a faster rate than free amino acids. Since peptide degradation rates differed greatly, hydrophobicity is likely to influence the composition of amino acids passing unfermented to the lower gut of ruminant animals. 相似文献
17.
C J Newbold R J Wallace N D Watt A J Richardson 《Applied and environmental microbiology》1988,54(2):544-547
The antimicrobial activity of the novel ionophore tetronasin (formerly ICI 139603) was compared with that of monensin for the growth of ruminal bacteria, protozoa, and an anaerobic fungus. The potency of tetronasin toward most bacteria and the fungus was an order of magnitude or more greater than that of monensin. Lactobacillus casei was 55 times more sensitive to tetronasin than to monensin, indicating a potential role for tetronasin in reversing lactic acidosis. Bacteria with a gram-positive ultrastructure were generally sensitive to the ionophores and unable to adapt to grow in their presence. The exception was the cellulolytic Ruminococcus flavefaciens, which adapted during successive cultivation on media with increasing ionophore concentrations to grow at 100-fold higher concentrations of tetronasin than were initially lethal to the organism. Gram-negative bacteria were more resistant and generally able to adapt to grow in the presence of both ionophores. An in vivo trial with cattle and in vitro growth experiments indicated that the effect of tetronasin on ciliate protozoa was minor. In vitro experiments measuring hydrogen production by Neocallimastix frontalis suggested that this fungus would be unable to survive in ruminants receiving tetronasin. 相似文献
18.
Influence of Yucca shidigera extract on ruminal ammonia concentrations and ruminal microorganisms. 总被引:2,自引:0,他引:2
下载免费PDF全文

An extract of the desert plant Yucca shidigera was assessed for its possible benefit in ruminal fermentation. The extract bound ammonia in aqueous solution when concentrations of ammonia were low (up to 0.4 mM) and when the extract was added at a high concentration to the sample (20%, vol/vol). The apparent ammonia-binding capability was retained after autoclaving and was decreased slightly following dialysis. Acid-precipitated extract was inactive. No evidence of substantial ammonia binding was found at higher ammonia concentrations (up to 30 mM). When Y. shidigera extract (1%, vol/vol) was added to strained rumen fluid in vitro, a small (6%) but significant (P < 0.05) decrease in ammonia concentration occurred, apparently because of decreased proteolysis. Inclusion of Y. shidigera extract (1%, vol/vol) in the growth medium of the rumen bacterium Streptococcus bovis ES1 extended its lag phase, while growth of Butyrivibrio fibrisolvens SH13 was abolished. The growth of Prevotella (Bacteroides) ruminicola B(1)4 was stimulated, and that of Selenomonas ruminantium Z108 was unaffected. Protozoal activity, as measured by the breakdown of 14C-leucine-labelled S. ruminantium in rumen fluid incubated in vitro, was abolished by the addition of 1% extract. The antimicrobial activities were unaffected by precipitating tannins with polyvinylpyrrolidone, but a butanol extract, containing the saponin fraction, retained its antibacterial and antiprotozoal effects. Saponins from other sources were less effective against protozoa than Y. shidigera saponins. Y. shidigera extract, therefore, appears unlikely to influence ammonia concentration in the rumen directly, but its saponins have antimicrobial properties, particularly in suppressing ciliate protozoa, which may prove beneficial to ruminal fermentation and may lead indirectly to lower ruminal ammonia concentrations. 相似文献
19.
Effect of carbon monoxide on fermentation of fiber, starch, and amino acids by mixed rumen microorganisms in vitro. 总被引:1,自引:1,他引:1
下载免费PDF全文

When 1 atm (101.3 kPa) of carbon monoxide was added to mixed rumen bacterial incubations containing timothy hay, methane production was inhibited by 88% without an increase in hydrogen. The molar ratio of propionate to acetate increased from 0.83 to 1.53, extracellular ammonia declined from 5.2 to 2.4 mM, and hemicellulose and cellulose digestions were inhibited by 40 and 27%, respectively. Even low levels of carbon monoxide (less than 0.1 atm [10.13 kPa]) significantly changed the products of fermentation. With starch, methane production was once again inhibited, but the magnitude of starch fermentation was unaffected. Decrease in acetate was accompanied by an equal molar increase in lactate. Ammonia production from the amino acid source, Trypticase, declined 20% as carbon monoxide was increased to 1.0 atm, and 93% of this decrease was explained by a selective inhibition of branched-chain amino acid fermentation. 相似文献
20.
Effect of soluble carbohydrates on digestion of cellulose by pure cultures of rumen bacteria. 总被引:1,自引:9,他引:1
下载免费PDF全文

The rate of cellulose digestion in the presence of either glucose or cellobiose was studied for the three predominant species of cellulolytic rumen bacteria: Ruminococcus albus, Ruminococcus flavefaciens, and Bacteroides succinogenes. When a soluble carbohydrate was added to cellulose broth, the lag phase of cellulose digestion was shortened. Presumably, this was due to greater numbers of bacteria, because increasing the size of the inoculum had a similar effect. Cellulose digestion occurred simultaneously with utilization of the soluble carbohydrate. The rate of cellulose digestion slowed markedly for B. succinogenes and R. flavefaciens and slowed less for R. albus after the cellobiose or glucose had been utilized, and was accompanied by a decrease in pH. Both the rate and the extent of cellulose digestion were partially inhibited when the initial pH of the medium was 6.3 or below. R. albus appeared to be less affected by a low-pH medium than were B. succinogenes and R. flavefaciens. When a soluble carbohydrate was added to the fermentation during the maximum-rate phase of cellulose digestion, the rate of cellulose digestion was not affected until after the soluble carbohydrate had been depleted and the pH had decreased markedly. Prolonged exposure of the bacteria to a low pH had little if any effect on their subsequent ability to digest cellulose. Cellulase activity of intact bacterial cells appeared to be constitutive in nature for these three species of rumen bacteria. 相似文献