首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
While shallow water red coral populations have been overharvested in the past, nowadays, commercial harvesting shifted its pressure on mesophotic organisms. An understanding of red coral population structure, particularly larval dispersal patterns and connectivity among harvested populations is paramount to the viability of the species. In order to determine patterns of genetic spatial structuring of deep water Corallium rubrum populations, for the first time, colonies found between 58–118 m depth within the Tyrrhenian Sea were collected and analyzed. Ten microsatellite loci and two regions of mitochondrial DNA (mtMSH and mtC) were used to quantify patterns of genetic diversity within populations and to define population structuring at spatial scales from tens of metres to hundreds of kilometres. Microsatellites showed heterozygote deficiencies in all populations. Significant levels of genetic differentiation were observed at all investigated spatial scales, suggesting that populations are likely to be isolated. This differentiation may by the results of biological interactions, occurring within a small spatial scale and/or abiotic factors acting at a larger scale. Mitochondrial markers revealed significant genetic structuring at spatial scales greater then 100 km showing the occurrence of a barrier to gene flow between northern and southern Tyrrhenian populations. These findings provide support for the establishment of marine protected areas in the deep sea and off-shore reefs, in order to effectively maintain genetic diversity of mesophotic red coral populations.  相似文献   

2.
Deep-sea reef-building corals are among the most conspicuous invertebrates inhabiting the hard-bottom habitats worldwide and are particularly susceptible to human threats. The precious red coral (Corallium rubrum, L. 1758) has a wide bathymetric distribution, from shallow up to 800 m depth, and represents a key species in the Mediterranean mesophotic reefs. Several studies have investigated genetic variability in shallow-water red coral populations, while geographic patterns in mesophotic habitats are largely unknown. This study investigated genetic variability of C. rubrum populations dwelling between 55 and 120 m depth, from the Ligurian to the Ionian Sea along about 1500 km of coastline. A total of 18 deep rocky banks were sampled. Colonies were analyzed by means of a set of microsatellite loci and the putative control region of the mitochondrial DNA. Collected data were compared with previous studies. Both types of molecular markers showed high genetic similarity between populations within the northern (Ligurian Sea and Tuscan Archipelago) and the southern (Tyrrhenian and Ionian seas) study areas. Variability in habitat features between the sampling sites did not affect the genetic variability of the populations. Conversely, the patchy distribution of suitable habitats affected populations’ connectivity within and among deep coral banks. Based on these results and due to the emphasis on red coral protection in the Mediterranean Sea by international institutions, red coral could be promoted as a ‘focal species’ to develop management plans for the conservation of deep coralligenous reefs, a reservoir of marine biodiversity.  相似文献   

3.
The Atlantic Ocean-Mediterranean Sea junction has been proposed as an important phylogeographical area on the basis of concordance in genetic patterns observed at allozyme, mtDNA and microsatellite DNA markers in several marine species. This study presents microsatellite DNA data for a mobile invertebrate species in this area, the cuttlefish Sepia officinalis, allowing comparison of this relatively new class of DNA marker with previous allozyme results, and examination of the relative effects on gene flow of the Strait of Gibraltar and the Almería-Oran oceanographic front. Genetic variation at seven microsatellite loci screened in six samples from NE Atlantic and Mediterranean coasts of the Iberian Peninsula was high (mean Na = 9.6, mean H(e) = 0.725). Microsatellites detected highly significant subpopulation structuring (F(ST)= 0.061; R(ST) = 0.104), consistent with an isolation-by-distance model of low levels of gene flow. Distinct and significant clinal changes in allele frequencies between Atlantic and Mediterranean samples found at five out of seven loci, however indicate these results might be also consistent with an alternative model of secondary contact and introgression between previously isolated and divergent populations, as previously proposed for other marine species from the Atlantic-Mediterranean area. A pronounced 'step' change between SW Mediterranean samples associated with the Almería-Oran front suggests this oceanographic feature may represent a contemporary barrier to gene flow.  相似文献   

4.
The marine environment seems, at first sight, to be a homogeneous medium lacking barriers to species dispersal. Nevertheless, populations of marine species show varying levels of gene flow and population differentiation, so barriers to gene flow can often be detected.We aim to elucidate the role of oceanographical factors in generating connectivity among populations shaping the phylogeographical patterns in the marine realm, which is not only a topic of considerable interest for understanding the evolution of marine biodiversity but also for management and conservation of marine life. For this proposal, we investigate the genetic structure and connectivity between continental and insular populations of white seabream in North East Atlantic (NEA) and Mediterranean Sea (MS) as well as the influence of historical and contemporary factors in this scenario using mitochondrial (cytochrome b) and nuclear (a set of 9 microsatellite) molecular markers.Azores population appeared genetically differentiated in a single cluster using Structure analysis. This result was corroborated by Principal Component Analysis (PCA) and Monmonier algorithm which suggested a boundary to gene flow, isolating this locality. Azorean population also shows the highest significant values of FST and genetic distances for both molecular markers (microsatellites and mtDNA). We suggest that the breakdown of effective genetic exchange between Azores and the others' samples could be explained simultaneously by hydrographic (deep water) and hydrodynamic (isolating current regimes) factors acting as barriers to the free dispersal of white seabream (adults and larvae) and by historical factors which could be favoured for the survival of Azorean white seabream population at the last glaciation.Mediterranean islands show similar genetic diversity to the neighbouring continental samples and non-significant genetic differences. Proximity to continental coasts and the current system could promote an optimal larval dispersion among Mediterranean islands (Mallorca and Castellamare) and coasts with high gene flow.  相似文献   

5.
Defining the scale of connectivity among marine populations and identifying the barriers to gene flow are tasks of fundamental importance for understanding the genetic structure of populations and for the design of marine reserves. Here, we investigated the population genetic structure at three spatial scales of the red gorgonian Paramuricea clavata (Cnidaria, Octocorallia), a key species dwelling in the coralligenous assemblages of the Mediterranean Sea. Colonies of P. clavata were collected from 39 locations across the Mediterranean Sea from Morocco to Turkey and analysed using microsatellite loci. Within three regions (Medes, Marseille and North Corsica), sampling was obtained from multiple locations and at different depths. Three different approaches (measures of genetic differentiation, Bayesian clustering and spatially explicit maximum‐difference algorithm) were used to determine the pattern of genetic structure. We identified genetic breaks in the spatial distribution of genetic diversity, which were concordant with oceanographic conditions in the Mediterranean Sea. We revealed a high level of genetic differentiation among populations and a pattern of isolation by distance across the studied area and within the three regions, underlining short effective larval dispersal in this species. We observed genetic differentiation among populations in the same locality dwelling at different depths, which may be explained by local oceanographic conditions and which may allow a process of local adaptation of the populations to their environment. We discuss the implications of our results for the conservation of the species, which is exposed to various threats.  相似文献   

6.
Patterns of genetic variation within a species may be used to infer past events in the evolutionary history of marine species. In the present study we aimed to compare the genetic diversity of the red gorgonian Paramuricea clavata in the Atlantic Ocean and the Mediterranean Sea. For genetic markers we used microsatellites and a mitochondrial gene fragment. Our results revealed a distinct genetic composition and diversity between the Mediterranean and the Atlantic. The Mediterranean samples had higher microsatellite heterozygosity, allelic richness and private allelic richness. The hypotheses that can explain these patterns are the isolation of Atlantic populations and/or a founder effect. Additionally, a clear difference was obtained from the mitochondrial locus, since sequences from Atlantic and Mediterranean samples diverged by 1%, which is high for soft corals.  相似文献   

7.
This study examines the possible effect of depth on the connectivity and genetic variability in red coral (Corallium rubrum; Octocorallia: Alcyonacea) populations. Patterns of genetic structuring along a depth gradient (from 20 to 70 m) were investigated in two locations of the western Mediterranean coast (northern Catalan and eastern Ligurian Seas) using 10 microsatellite loci. Strong patterns of genetic structuring among the samples were found both within and between the two study sites. In both locations, consistent patterns of reduction in genetic variability along the depth gradient were also observed, suggesting that depth has an important role in determining the patterns of genetic structure in Corallium rubrum. Moreover, a threshold in connectivity was observed among the samples collected across 40–50 m depth, supporting the hypothesis that discrete shallow- and deep-water red coral populations occur. This finding has major implications for management strategies and the conservation of commercially exploited deep red coral populations.  相似文献   

8.
Posidonia oceanica is an endemic seagrass species in the Mediterranean Sea. In order to assess levels of genetic structure in this species, the microsatellite polymorphism was analysed from meadows collected in several localities, along the coasts of the Tyrrhenian Sea (Mediterranean Sea). The existence of single population units and the recruitment of seedlings collected in some localities were investigated. Moreover, genetic structure at different spatial scales and biogeographic relationships among populations were also assessed. Our analysis showed the existence of clear patterns of genetic structure in P. oceanica in the area considered in the analysis. P. oceanica, in fact, is present in separate meadows that represent discrete populations, characterized by low genetic diversity. Comparable levels of genetic variability between mature meadows and seedlings were found. Patterns of genetic relatedness among populations seem to be in accord with direction of dominant current flux in the whole area, separating South Tyrrhenian from North Tyrrhenian populations. Moderate levels of gene flow between populations and genetic substructure within populations, together with the finding of the limited role of sexual reproduction in increasing genetic variability, should be a cause for concern for the persistence of this essential resource in the Mediterranean basin.  相似文献   

9.
Little is known about the spatial and temporal scales at which planktonic organisms are genetically structured. A previous study of mitochondrial DNA (mtDNA) in the holoplanktonic chaetognath Sagitta setosa revealed strong phylogeographic structuring suggesting that Northeast (NE) Atlantic, Mediterranean and Black Sea populations are genetically disjunct. The present study used a higher sampling intensity and a combination of mitochondrial and four microsatellite markers to reveal population structuring between and within basins. Between basins, both marker sets indicated significant differentiation confirming earlier results that gene flow is probably absent between the respective S. setosa populations. At the within-basin scale, we found no evidence of spatial or temporal structuring within the NE Atlantic. In the Mediterranean basin, both marker sets indicated significant structuring, but only the mtDNA data indicated a sharp genetic division between Adriatic and all other Mediterranean populations. Data were inconclusive about population structuring in the Black Sea. The levels of differentiation indicated by the two marker sets differed substantially, with far less pronounced structure detected by microsatellite than mtDNA data. This study also uncovered the presence of highly divergent mitochondrial lineages that were discordant with morphology, geography and nuclear DNA. We thus propose the hypothesis that highly divergent mitochondrial lineages may be present within interbreeding S. setosa populations.  相似文献   

10.
Population structuring in species inhabiting marine environments such as the Northeast Atlantic Ocean (NEA) and Mediterranean Sea (MS) has usually been explained based on past and present physical barriers to gene flow and isolation by distance (IBD). Here, we examined the relative importance of these factors on population structuring of the common cuttlefish Sepia officinalis by using methods of phylogenetic inference and hypothesis testing coupled with coalescent and classical population genetic parameter estimation. Individuals from 10 Atlantic and 15 Mediterranean sites were sequenced for 659 bp of the mitochondrial COI gene (259 sequences). IBD seems to be the main factor driving present and past genetic structuring of Sepia populations across the NEA-MS, both at large and small geographical scales. Such an evolutionary process agrees well with some of the biological features characterizing this cuttlefish species (short migrations, nektobenthic habit, benthic eggs hatching directly to benthic juveniles). Despite the many barriers to migration/gene flow suggested in the NEA-MS region, genetic population fragmentation due to past isolation of water masses (Pleistocene; 0.56 million years ago) and/or present-day oceanographic currents was only detected between the Aegean-Ionian and western Mediterranean Seas. Restricted gene flow associated with the Almería-Oran hydrographic front was also suggested between southern and eastern Spanish populations. Distinct population boundaries could not be clearly determined, except for the Aegean-Ionian stock. Two Atlantic and five Mediterranean samples showed evidence of current decline in genetic diversity, which may indicate over-exploitation of Sepia in both marine regions.  相似文献   

11.
The population genetic structure of marine species lacking free-swimming larvae is expected to be strongly affected by random genetic drift among populations, resulting in genetic isolation by geographical distance. At the same time, ecological separation over microhabitats followed by direct selection on those parts of the genome that affect adaptation might also be strong. Here, we address the question of how the relative importance of stochastic vs. selective structuring forces varies at different geographical scales. We use microsatellite DNA and allozyme data from samples of the marine rocky shore snail Littorina saxatilis over distance scales ranging from metres to 1000 km, and we show that genetic drift is the most important structuring evolutionary force at distances > 1 km. On smaller geographical scales (< 1 km), divergent selection between contrasting habitats affects population genetic structure by impeding gene flow over microhabitat borders (microsatellite structure), or by directly favouring specific alleles of selected loci (allozyme structure). The results suggest that evolutionary drivers of population genetic structure cannot a priori be assumed to be equally important at different geographical scales. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 31–40.  相似文献   

12.
Parrotfishes are considered to have a major influence on coral reef ecosystems through grazing the benthic biota and are also primary fishery targets in the Indo‐Pacific. Consequently, the impact of human exploitation on parrotfish communities is of prime interest. As anthropogenic and environmental factors interact across spatial scales, sampling programs designed to disentangle these are required by both ecologists and resource managers. We present a multi‐scale examination of patterns in parrotfish assemblage structure, size distribution and diversity across eight oceanic islands of Micronesia. Results indicate that correlates of assemblage structure are scale‐dependent; biogeographic distributions of species and island geomorphology hierarchically influenced community patterns across islands whereas biophysical features and anthropogenic pressure influenced community assemblage structure at the within‐island scale. Species richness and phylogenetic diversity increased with greater broad‐scale habitat diversity associated with different island geomorphologies. However, within‐island patterns of abundance and biomass varied in response to biophysical factors and levels of human influence unique to particular islands. While the effect of fishing activities on community composition and phylogenetic diversity was obscured across island types, fishing pressure was the primary correlate of mean parrotfish length at all spatial scales. Despite widespread fishery‐induced pressure on Pacific coral reefs, the structuring of parrotfish communities at broad spatial scales remains a story largely dependent on habitat. Thus, we propose better incorporation of scale‐dependent habitat effects in future assessments of overexploitation on reef fish assemblages. However, strong community‐level responses within islands necessitate an improved understanding of the phylogenetic and functional consequences of altering community structure.  相似文献   

13.
Global climate change is altering community composition across many ecosystems due to nonrandom species turnover, typically characterized by the loss of specialist species and increasing similarity of biological communities across spatial scales. As anthropogenic disturbances continue to alter species composition globally, there is a growing need to identify how species responses influence the establishment of distinct assemblages, such that management actions may be appropriately assigned. Here, we use trait‐based analyses to compare temporal changes in five complementary indices of reef fish assemblage structure among six taxonomically distinct coral reef habitats exposed to a system‐wide thermal stress event. Our results revealed increased taxonomic and functional similarity of previously distinct reef fish assemblages following mass coral bleaching, with changes characterized by subtle, but significant, shifts toward predominance of small‐bodied, algal‐farming habitat generalists. Furthermore, while the taxonomic or functional richness of fish assemblages did not change across all habitats, an increase in functional originality indicated an overall loss of functional redundancy. We also found that prebleaching coral composition better predicted changes in fish assemblage structure than the magnitude of coral loss. These results emphasize how measures of alpha diversity can mask important changes in the structure and functioning of ecosystems as assemblages reorganize. Our findings also highlight the role of coral species composition in structuring communities and influencing the diversity of responses of reef fishes to disturbance. As new coral species configurations emerge, their desirability will hinge upon the composition of associated species and their capacity to maintain key ecological processes in spite of ongoing disturbances.  相似文献   

14.
The red coral Corallium rubrum (Cnidaria, Octocorallia) is an exploited, long-lived sessile species from the Mediterranean Sea and the adjacent coastline in the Atlantic Ocean. Surveys of genetic variation using microsatellites have shown that populations of C. rubrum are characterized by strong differentiation at the local scale but a study of the phylogeography of this species was still lacking. Here, we used seven polymorphic microsatellite loci, together with sequence data from an intron of the elongation factor 1 (EF1) gene, to investigate the genetic structure of C. rubrum across its geographical range in the western Mediterranean Sea and in the Adriatic Sea. The EF1 sequences were also used to analyse the consequences of demographic fluctuations linked with past environmental change. Clustering analysis with microsatellite loci highlighted three to seven genetic groups with the distinction of North African and Adriatic populations; this distinction appeared significant with AMOVA and differentiation tests. Microsatellite and EF1 data extended the isolation by distance pattern previously observed for this species at the western Mediterranean scale. EF1 sequences confirmed the genetic differentiation observed between most samples with microsatellites. A statistical parsimony network of EF1 haplotypes provided no evidence of high sequence divergence among regions, suggesting no long-term isolation. Selective neutrality tests on microsatellites and EF1 were not significant but should be interpreted with caution in the case of EF1 because of the low sample sizes for this locus. Our results suggest that recent Quaternary environmental fluctuations had a limited impact on the genetic structure of C. rubrum.  相似文献   

15.
Habitat fragmentation and climate change are two major threats on biodiversity. Fragmentation limits the number of patches and their decreased connectivity cannot always maintain populations at dynamic equilibrium. The natural extreme fragmentation of marine cave habitats represents an opportunity to understand how these processes interact. The hypothesis of a low gene flow among populations due to a high level of fragmentation was tested by analysing sequence variation in a fragment of the mitochondrial gene of the cytochrome oxidase subunit I in 170 individuals (23 localities across the NW Mediterranean) of two marine cave-dwelling mysids of the genus Hemimysis. The species Hemimysis margalefi recently replaced its congener Hemimysis speluncola, a species shift that could be related to the warming of the Mediterranean Sea and to differences in their thermal tolerances. There were too few H. speluncola samples to further discuss their genetic structuring, but for H. margalefi, the present study revealed high levels of genetic diversity and genetic structuring, as shown by the eight genetically distinct groups identified. The Croatian group might constitute a sibling species due to a strong divergence (15%). Nevertheless, these groups present reduced but orientated gene flow according to the general circulation in the Mediterranean, and fit a stepping-stone model. At local scale (Marseille area, France), gene flow among caves is dependent on unexpected local hydrodynamic barriers, that determine metapopulation sizes. Through the example of mysid species inhabiting marine caves, the present work confirms the strong influence of habitat disjunction (natural fragmentation) on population structure, and stresses the importance of coastal geomorphological features in inducing complex interactions between the circulation of water masses and the circulation of genes.  相似文献   

16.
Aim A large body of knowledge exists on individual anthropogenic threats that have an impact on marine biodiversity in the Mediterranean Sea, although we know little about how these threats accumulate and interact to affect marine species and ecosystems. In this context, we aimed to identify the main areas where the interaction between marine biodiversity and threats is more pronounced and to assess their spatial overlap with current marine protected areas in the Mediterranean. Location Mediterranean Sea. Methods We first identified areas of high biodiversity of marine mammals, marine turtles, seabirds, fishes and commercial or well‐documented invertebrates. We mapped potential areas of high threat where multiple threats are occurring simultaneously. Finally we quantified the areas of conservation concern for biodiversity by looking at the spatial overlap between high biodiversity and high cumulative threats, and we assessed the overlap with protected areas. Results Our results show that areas with high marine biodiversity in the Mediterranean Sea are mainly located along the central and north shores, with lower values in the south‐eastern regions. Areas of potential high cumulative threats are widespread in both the western and eastern basins, with fewer areas located in the south‐eastern region. The interaction between areas of high biodiversity and threats for invertebrates, fishes and large animals in general (including large fishes, marine mammals, marine turtles and seabirds) is concentrated in the coastal areas of Spain, Gulf of Lions, north‐eastern Ligurian Sea, Adriatic Sea, Aegean Sea, south‐eastern Turkey and regions surrounding the Nile Delta and north‐west African coasts. Areas of concern are larger for marine mammal and seabird species. Main conclusions These areas may represent good candidates for further research, management and protection activities, since there is only a maximum 2% overlap between existing marine protected areas (which cover 5% of the Mediterranean Sea) and our predicted areas of conservation concern for biodiversity.  相似文献   

17.
In the semienclosed Adriatic Sea, the shared stocks of the cephalopods Loligo vulgaris and Sepia officinalis represent important marine fisheries resources exploited by all coastal countries. The improving of knowledge on the demographic features of these shared stocks is internationally relevant for adopting responsible management and conservation of these marine resources. Analyses of microsatellite variation in geographical samples collected from all parts of the Adriatic Sea were performed using arrays of species-specific di-nucleotide and tri-nucleotide loci. In L. vulgaris the level of genetic variability was consistent with that observed in other loliginid species, whereas the S. officinalis stock showed a microsatellite variation markedly lower than that estimated for the Atlantic and Mediterranean populations collected around the Iberian peninsula. The weak spatial genetic differentiation, the discordant results of the genetic divergence estimators and the lack of any geographical cline in the spatial genetic differences suggest the occurrence of single genetically homogeneous populations within the Adriatic stocks of both species, recommending a coordinated management of the squid and cuttlefish by the Adriatic fishing countries. On the contrary, significant differences detected in temporal replicates of S. officinalis might suggest that allelic frequency can change relating to reproductive behaviour.  相似文献   

18.
Current approaches that compare spatial genetic structure of a given species and the dispersal of its mobile phase can detect a mismatch between both patterns mainly due to processes acting at different temporal scales. Genetic structure result from gene flow and other evolutionary and demographic processes over many generations, while dispersal predicted from the mobile phase often represents solely one generation on a single time-step. In this study, we present a spatial graph approach to landscape genetics that extends connectivity networks with a stepping-stone model to represent dispersal between suitable habitat patches over multiple generations. We illustrate the approach with the case of the striped red mullet Mullus surmuletus in the Mediterranean Sea. The genetic connectivity of M. surmuletus was not correlate with the estimated dispersal probability over one generation, but with the stepping-stone estimate of larval dispersal, revealing the temporal scale of connectivity across the Mediterranean Sea. Our results highlight the importance of considering multiple generations and different time scales when relating demographic and genetic connectivity. The spatial graph of genetic distances further untangles intra-population genetic structure revealing the Siculo-Tunisian Strait as an important corridor rather than a barrier for gene flow between the Western- and Eastern Mediterranean basins, and identifying Mediterranean islands as important stepping-stones for gene flow between continental populations. Our approach can be easily extended to other systems and environments.  相似文献   

19.
A number of evolutionary mechanisms have been suggested for generating low but significant genetic structuring among marine fish populations. We used nine microsatellite loci and recently developed methods in landscape genetics and coalescence-based estimation of historical gene flow and effective population sizes to assess temporal and spatial dynamics of the population structure in European flounder (Platichthys flesus L.). We collected 1062 flounders from 13 localities in the northeast Atlantic and Baltic Seas and found temporally stable and highly significant genetic differentiation among samples covering a large part of the species' range (global F(ST) = 0.024, P < 0.0001). In addition to historical processes, a number of contemporary acting evolutionary mechanisms were associated with genetic structuring. Physical forces, such as oceanographic and bathymetric barriers, were most likely related with the extreme isolation of the island population at the Faroe Islands. A sharp genetic break was associated with a change in life history from pelagic to benthic spawners in the Baltic Sea. Partial Mantel tests showed that geographical distance per se was not related with genetic structuring among Atlantic and western Baltic Sea samples. Alternative factors, such as dispersal potential and/or environmental gradients, could be important for generating genetic divergence in this region. The results show that the magnitude and scale of structuring generated by a specific mechanism depend critically on its interplay with other evolutionary mechanisms, highlighting the importance of investigating species with wide geographical and ecological distributions to increase our understanding of evolution in the marine environment.  相似文献   

20.
Dispersal in marine systems is a critical component of the ecology, evolution, and conservation of such systems; however, estimating dispersal is logistically difficult, especially in coral reef fish. Juvenile bicolor damselfish (Stegastes partitus) were sampled at 13 sites along the Mesoamerican Barrier Reef System (MBRS), the barrier reefs on the east coast of Central America extending from the Yucatan, Mexico to Honduras, to evaluate genetic structure among recently settled cohorts. Using genotype data at eight microsatellite loci genetic structure was estimated at large and small spatial scales using exact tests for allele frequency differences and hierarchical analysis of molecular variance (AMOVA). Isolation-by-distance models of divergence were assessed at both spatial scales. Results showed genetic homogeneity of recently settled S. partitus at large geographic scales with subtle, but significant, genetic structure at smaller geographic scales. Genetic temporal stability was tested for using archived juvenile S. partitus collected earlier in the same year (nine sites), and in the previous year (six sites). The temporal analyses indicated that allele frequency differences among sites were not generally conserved over time, nor were pairwise genetic distances correlated through time, indicative of temporal instability. These results indicate that S. partitus larvae undergo high levels of dispersal along the MBRS, and that the structure detected at smaller spatial scales is likely driven by stochastic effects on dispersal coupled with microgeographic effects. Temporal variation in juvenile cohort genetic signature may be a fundamental characteristic of connectivity patterns in coral reef fishes, with various species and populations differing only in the magnitude of that instability. Such a scenario provides a basis for the reconciliation of conflicting views regarding levels of genetic structuring in S. partitus and possibly other coral reef fish species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号