首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of 18 small overlapping restriction fragments has been cloned, covering the complete mitochondrial genome of Schizosaccharomyces pombe. By hybridizing mitochondrial gene probes from Saccharomyces cerevisiae and Neurospora crassa with restriction fragments of Schizosaccharomyces pombe mitochondrial DNA, the following homologous genes were localized on the mitochondrial genome of S. pombe: cob, cox1, cox2 and cox3, ATPase subunit 6 and 9 genes, the large rRNA gene and both types of open reading frames occurring in mitochondrial introns of various ascomycetes. The region of the genome, hybridizing with cob exon probes is separated by an intervening sequence of about 2500 bp, which is homologous with the first two introns of the cox1 gene in Saccharomyces cerevisiae (class II introns according to Michel et al. 1982). Similarly, in the cox1 homologous region, which covers about 4000 bp, two regions were detected hybridizing with class I intron probes, suggesting the existence of two cox1 introns in Schizosaccharomyces pombe. Hybridization with several specific exon probes with a determined order has revealed that cob, cox1, cox3 and the large rRNA gene are all transcribed from the same DNA strand. The low intensities of hybridization signals suggest a large evolutionary distance between Schizosaccharomyces pombe and Saccharomyces cerevisiae or Neurospora crassa mitochondrial genes. Considering the length of the mitochondrial DNA of Schizosaccharomyces pombe (about 19.4 kbp) and the expected length of the localized genes and intron sequences there is enough space left for encoding the expected set of tRNAs and the small rRNA gene. The existence of leader-, trailer-, ori- and spacer sequences or further unassigned reading frames is then restricted to a total length of about 3000 bp only.  相似文献   

2.
The DNA sequence of the cob region of the Schizosaccharomyces pombe mitochondrial DNA has been determined. The cytochrome b structural gene is interrupted by an intron of 2526 base-pairs, which has an open reading frame of 2421 base-pairs in phase with the upstream exon. The position of the intron differs from those found in the cob genes of Saccharomyces cerevisiae, Aspergillus nidulans or Neurospora crassa. The Sch. pombe cob intron has the potential of assuming an RNA secondary structure almost identical to that proposed for the first two cox1 introns (group II) in S. cerevisiae and the p1-cox1 intron in Podospora anserina. It has most of the consensus nucleotides in the central core structure described for this group of introns and its comparison with other group II introns allows the identification of an additional conserved nucleotide stretch. A comparison of the predicted protein sequences of group II intronic coding regions reveals three highly conserved blocks showing pairwise amino acid identities of 34 to 53%. These regions comprise over 50% of the coding length of the intron but do not include the 5' region, which has strong secondary structural features. In addition to the potential intron folding, long helical structures involving repetitive sequences can be formed in the flanking cob exon regions. A comparison of the Sch. pombe cytochrome b sequence with those available from other organisms indicates that Sch. pombe is evolutionarily distant from both budding yeasts and filamentous fungi. As was seen for the Sch. pombe cox1 gene (Lang, 1984), the cob exons are translated using the universal genetic code and this distinguishes Sch. pombe mitochondria from all other fungal and animal mitochondrial systems.  相似文献   

3.
B F Lang 《The EMBO journal》1984,3(9):2129-2136
The DNA sequence of the second intron in the mitochondrial gene for subunit 1 of cytochrome oxidase (cox1), and the 3'' part of the structural gene have been determined in Schizosaccharomyces pombe. Comparing the presumptive amino acid sequence of the 3'' regions of the cox1 genes in fungi reveals similarly large evolutionary distances between Aspergillus nidulans, Saccharomyces cerevisiae and S. pombe. The comparison of exon sequences also reveals a stretch of only low homology and of general size variation among the fungal and mammalian genes, close to the 3'' ends of the cox1 genes. The second intron in the cox1 gene of S. pombe contains an open reading frame, which is contiguous with the upstream exon and displays all characteristics common to class I introns. Three findings suggest a recent horizontal gene transfer of this intron from an Aspergillus type fungus to S. pombe. (i) The intron is inserted at exactly the same position of the cox1 gene, where an intron is also found in A. nidulans. (ii) Both introns contain the highest amino acid homology between the intronic unassigned reading frames of all fungi identified so far (70% identity over a stretch of 253 amino acids). However, in the most homologous region, a GC-rich sequence is inserted in the A. nidulans intron, flanked by two direct repeats of 5 bp. The 37-bp insert plus 5 bp of direct repeat amounts to an extra 42 bp in the A. nidulans intron. (iii) TGA codons are the preferred tryptophan codons compared with TGG in all mitochondrial protein coding sequences of fungi and mammalia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Mitochondria are descendants of the endosymbiotic α-proteobacterium most likely engulfed by the ancestral eukaryotic cells, and the proto-mitochondrial genome should have been severely streamlined in terms of both genome size and gene repertoire. In addition, mitochondrial (mt) sequence data indicated that frequent intron gain/loss events contributed to shaping the modern mt genome organizations, resulting in the homologous introns being shared between two distantly related mt genomes. Unfortunately, the bulk of mt sequence data currently available are of phylogenetically restricted lineages, i.e., metazoans, fungi, and land plants, and are insufficient to elucidate the entire picture of intron evolution in mt genomes. In this work, we sequenced a 12 kbp-fragment of the mt genome of the katablepharid Leucocryptos marina. Among nine protein-coding genes included in the mt genome fragment, the genes encoding cytochrome b and cytochrome c oxidase subunit I (cob and cox1) were interrupted by group I introns. We further identified that the cob and cox1 introns host open reading frames for homing endonucleases (HEs) belonging to distantly related superfamilies. Phylogenetic analyses recovered an affinity between the HE in the Leucocryptos cob intron and two green algal HEs, and that between the HE in the Leucocryptos cox1 intron and a fungal HE, suggesting that the Leucocryptos cob and cox1 introns possess distinct evolutionary origins. Although the current intron (and intronic HE) data are insufficient to infer how the homologous introns were distributed to distantly related mt genomes, the results presented here successfully expanded the evolutionary dynamism of group I introns in mt genomes.  相似文献   

5.
The cDNAs and genes encoding the intron lariat-debranching enzyme were isolated from the nematode Caenorhabditis elegans and the fission yeast Schizosaccharomyces pombe based on their homology with the Saccharomyces cerevisiae gene. The cDNAs were shown to be functional in an interspecific complementation experiment; they can complement an S. cerevisiae dbr1 null mutant. About 2.5% of budding yeast S. cerevisiae genes have introns, and the accumulation of excised introns in a dbr1 null mutant has little effect on cell growth. In contrast, many S. pombe genes contain introns, and often multiple introns per gene, so that S. pombe is estimated to contain approximately 40 times as many introns as S. cerevisiae. The S. pombe dbr1 gene was disrupted and shown to be nonessential. Like the S. cerevisiae mutant, the S. pombe null mutant accumulated introns to high levels, indicating that intron lariat debranching represents a rate-limiting step in intron degradation in both species. Unlike the S. cerevisiae mutant, the S. pombe dbr1::leu1+ mutant had a severe growth defect and exhibited an aberrant elongated cell shape in addition to an intron accumulation phenotype. The growth defect of the S. pombe dbr1::leu1+ strain suggests that debranching activity is critical for efficient intron RNA degradation and that blocking this pathway interferes with cell growth.  相似文献   

6.
The complete nucleotide sequence of the mitochondrial DNA (mtDNA) from a liverwort, Marchantia polymorpha, contains thirty-two introns. Twenty-five of these introns possess the characteristic secondary structures and consensus sequences of group II introns. The remaining seven are group I introns, six of which happen to interrupt the gene coding for subunit 1 of cytochrome oxidase (cox1). Interestingly, the insertion sites of one group II and four group I introns in the cox1 gene coincide with those of the respective fungal mitochondrial interns. Moreover, comparison of the four group I introns with their fungal counterparts shows that group I introns inserted at identical genomic sites in different organisms are indeed related to one another, in terms of the peptide sequences generated from the complete or fragmental ORFs encoded by these introns. At the same time, the liverwort introns turned out to be more divergent from their fungal cognates than the latter are from one another. We therefore conclude that vertical transmission from a common ancestor organism is the simplest explanation for the presence of cognate introns in liverwort and fungal mitochondrial genomes.  相似文献   

7.
We have recently cloned an oligopeptide transport gene from Candida albicans denoted OPT1 . This gene showed significant sequence similarity to three open reading frames (ORFs) with no previously established function: isp4 from Schizosaccharomyces pombe and Saccharomyces cerevisiae YJL212C and YPR194C , identified during the genome project. The S . pombe gene isp4 was originally identified by Sato et al . as a gene that was upregulated through nitrogen starvation induction of meiosis. However, an isp4Δ strain exhibited a wild-type phenotype with respect to sexual differentiation. We have found that the same isp4Δ strain is deficient in tetrapeptide transport activity as measured by its resistance to toxic tetrapeptides, by its inability to accumulate a radiolabelled tetrapeptide and by the inability to use tetrapeptides as a sole source of an amino acid to satisfy an auxotrophic requirement. Similarly, we found that the ORF YPR194C from S . cerevisiae encodes an oligopeptide transporter. Sequence analyses as well as physiological evidence has led us to propose that the proteins encoded by isp4 and the genes identified from S . cerevisiae and C . albicans comprise a new group of transporters specific for small oligopeptides, which we have named the OPT family.  相似文献   

8.
The sequence of the apocytochrome b (cob) gene of Neurospora crassa has been determined. The structural gene is interrupted by two intervening sequences of approximately 1260 bp each. The polypeptide encoded by the exons shows extensive homology with the cob proteins of Aspergillus nidulans and Saccharomyces cerevisiae (79% and 60%, respectively). The two introns are, however, located at sites different from those of introns in the cob genes of A. nidulans and S. cerevisiae (which contain highly homologous introns at the same site within the gene). The introns share several short regions of sequence homology (10-12 bp long) with each other and with other fungal mitochondrial introns. Moreover, the second intron contains a 50 nucleotide long sequence that is highly homologous with sequences within every ribosomal intron of fungal mitochondria sequenced to date. The conserved sequences may allow the formation of a core secondary structure, which is nearly identical in many mitochondrial introns. The conserved secondary structure may be required for intron splicing. The second intron contains an open reading frame, continuous with the preceding exon, of approximately 290 codons. Two stretches of 10 amino acid residues, conserved in many introns, are present in the open reading frame.  相似文献   

9.
Aono N  Shimizu T  Inoue T  Shiraishi H 《FEBS letters》2002,521(1-3):95-99
Group I introns were found in the cob and cox I genes of Volvox carteri. These introns contain tandem arrays of short palindromic sequences that are related to each other. Inspection of other regions in the mtDNA revealed that similar palindromic repetitive sequences are dispersed in the non-protein coding regions of the mitochondrial genome. Analysis of the group I intron in the cob gene of another member of Volvocaceae, Volvox aureus, has shown that its sequence is highly homologous to its counterpart in V. carteri with the exception of a cluster of palindromic sequences not found in V. carteri. This indicates that the palindromic clusters were inserted into the introns after divergence of the two species, presumably due to frequent insertions of the palindromic elements during evolution of the Volvocaceae. Possible involvement of the palindromic repetitive elements in the molecular evolution of functional RNAs is discussed.  相似文献   

10.
The Agrocybe chaxingu and Agrocybe aegerita mitochondrial apocytochrome b coding sequences are highly similar (97% of nt identity), but have highly different sizes (2312 and 4867nt, respectively), due to the presence of three large group IB introns: two (iAae1 and iAae2) in A. aegerita, one (iAch1) in A. chaxingu. All these introns encode a homing endonuclease (HE) similar to those described in introns of mitochondrial genes (cob, cox1, and nad5) from various organisms. Phylogenetic trees were built with these HE sequences. From these trees, the Agrocybe coding introns argue for recent lateral transfers, i.e., occurring after the separation of the two Agrocybe species, involving phylogenetically distant fungi such as members of the Ascomycota phylum (for iAch1 and iAae2) and, for the first time to our knowledge, a member of the Chytridiomycota phylum (for iAae1). The grouping of the HE gene (HEG) sequences according to the mitochondrial gene (cob, cox1, and nad5) where they are inserted, suggests modifications of the interactions between the HE and the recognized sequences, leading to new target genes. The largest distribution of the iAch1 HE, shared by several cob and cox1 mitochondrial genes from Ascomycota, Basidiomycota, and Chytridiomycota phyla, suggests a higher target flexibility of this HE, perhaps related to the presence of two different LAGLIDADG motifs in the catalytic site of the enzyme.  相似文献   

11.
Two introns of the mitochondrial genome 777-3A of S. cerevisiae, bl4 in cob and al4 in coxl genes, contain ORFs that can be translated into two homologous proteins. We changed the UGA, AUA, and CUN codons of these ORFs to the universal genetic code, in order to study the functions of their translated products in E. coli and in yeast, by retargeting the nuclear encoded protein into mitochondria. The p27bl4 protein has been shown to be required for the splicing of both introns bl4 and al4. The homologous p28al4 protein is highly toxic to E. coli. It can specifically cleave double-stranded DNA at a sequence representing the junction of the two fused flanking exons. We present evidence that this system is a good model for studying the role of mitochondrial intron-encoded proteins in the rearrangement of genetic information at both the RNA (RNA splicing-bl4 maturase) and DNA levels (intron transposition-al4 transposase).  相似文献   

12.
We cloned the structural gene topl+ for Schizosaccharomyces pombe DNA topoisomerase I (topo I) by hybridization. An eight-fold increase of topo I relaxing activity was obtained in S. pombe cells transformed with multicopy plasmid with topl+ insert. Nucleotide sequence determination showed a hypothetical coding frame interrupted by two short introns, encoding a 812 residue polypeptide (M.W. 94,000), 43 residues longer than and 47% homologous to Saccharomyces cerevisiae topo I. We show that the topl (null) strain made by gene disruption is viable, although its generation time is 20% longer than that of wild type. The topl locus is mapped in the long arm of chromosome II, using the Leu+ marker integrated with the cloned topl+ sequence. We constructed a double mutant topl (null) top2 (ts) and found its defective phenotype similar to that of previously obtained topl (heat sensitive) top2 (ts). The other double mutant topl (null) top2 (cs), however, was lethal. Our results suggest that topl+ gene of S. pombe is dispensable only if topo II activity is abundant.  相似文献   

13.
14.
We have screened numerous different yeast species for the presence of sequences homologous to the intron of the mitochondrial 21S rRNA gene of Saccharomyces cerevisiae (intron r1) and found them in all Kluyveromyces species, some of the Saccharomyces species and none of the other yeasts tested. We have determined the nucleotide sequence of the r1-intron in K. thermotolerans and compared it with that of S. cerevisiae. The two introns are inserted at the same position within the 21S rRNA gene. They contain homologous internal open reading frames (ORFs) initiated at the same AUG codon which can be aligned over their entire length. Several silent multi-substitutions indicate that these intronic ORFs represent selectively conserved functional genes. Other intron segments, on the contrary, reveal short blocks of extensive homology separated by non-homologous stretches and/or additions-deletions. Comparison of our two yeast r1-introns with equivalent introns of N. crassa and A. nidulans mitochondria reveals that introns with very similar RNA secondary structures can accommodate different types of ORFs.  相似文献   

15.
Summary In this paper we report the inability of four group I introns in the gene encoding subunit I of cytochrome c oxidase (cox1) and the group II intron in the apocytochrome b gene (cob) to splice autocatalytically. Furthermore we present the characterization of the first cox1 intron in the mutator strain ana r -14 and the construction and characterization of strains with intronless mitochondrial genomes. We provide evidence that removal of introns at the DNA level (termed DNA splicing) is dependent on an active RNA maturase. Finally we demonstrate that the absence of introns does not abolish homologous mitochondrial recombination.Abbreviations cox1, cox2, cox3 genes encoding subunits 1, 2 and 3 of cytochrome - c oxidase - cob gene encoding apocytochrome b - cox1I1, cox1I2a, cox1I2b, cox1I3 introns in cox1 - cox1Ix +/– indicates the presence or absence of the intron either in the native gene or after intron DNA excision - cox1Ix is a deletion in the intron leading to respiratory deficiency  相似文献   

16.
The sequences of cDNA and genomic DNA clones for Neurospora cytochrome oxidase subunit V show that the protein is synthesized as a 171-amino-acid precursor containing a 27-amino-acid N-terminal extension. The subunit V protein sequence is 34% identical to that of Saccharomyces cerevisiae subunit V; these proteins, as well as the corresponding bovine subunit, subunit IV, contain a single hydrophobic domain which most likely spans the inner mitochondrial membrane. The Neurospora crassa subunit V gene (cox5) contains two introns, 398 and 68 nucleotides long, which share the conserved intron boundaries 5'GTRNGT...CAG3' and the internal consensus sequence ACTRACA. Two short sequences, YGCCAG and YCCGTTY, are repeated four times each in the cox5 gene upstream of the mRNA 5' termini. The cox5 mRNA 5' ends are heterogeneous, with the major mRNA 5' end located 144 to 147 nucleotides upstream from the translational start site. The mRNA contains a 3'-untranslated region of 186 to 187 nucleotides. Using restriction-fragment-length polymorphism, we mapped the cox5 gene to linkage group IIR, close to the arg-5 locus. Since one of the mutations causing cytochrome oxidase deficiency in N. crassa, cya-4-23, also maps there, we transformed the cya-4-23 strain with the wild-type cox5 gene. In contrast to cya-4-23 cells, which grow slowly, cox5 transformants grew quickly, contained cytochrome oxidase, and had 8- to 11-fold-higher levels of subunit V in their mitochondria. These data suggest (i) that the cya-4 locus in N. crassa specifies structural information for cytochrome oxidase subunit V and (ii) that, in N. crassa, as in S. cerevisiae, deficiencies in the production of nuclearly encoded cytochrome oxidase subunits result in deficiency in cytochrome oxidase activity. Finally, we show that the lower levels of subunit V in cya-4-23 cells are most likely due to substantially reduced levels of translatable subunit V mRNA.  相似文献   

17.
18.
Analyses of mitochondrial sequences revealed the existence of a group I intron in the cytochrome oxidase subunit 1 (cox1) gene in 13 of 41 genera (20 out of 73 species) of corals conventionally assigned to the suborder Faviina. With one exception, phylogenies of the coral cox1 gene and its intron were concordant, suggesting at most two insertions and many subsequent losses. The coral introns were inferred to encode a putative homing endonuclease with a LAGLI-DADG motif as reported for the cox1 group I intron in the sea anemone Metridium senile. However, the coral and sea anemone cox1 group I introns differed in several aspects, such as the intron insertion site and sequence length. The coral cox1 introns most closely resemble the mitochondrial cox1 group I introns of a sponge species, which also has the same insertion site. The coral introns are also more similar to the introns of several fungal species than to that of the sea anemone (although the insertion site differs in the fungi). This suggests either a horizontal transfer between a sponge and a coral or independent transfers from a similar fungal donor (perhaps one with an identical insertion site that has not yet been discovered). The common occurrence of this intron in corals strengthens the evidence for an elevated abundance of group I introns in the mitochondria of anthozoans. [Reviewing Editor: Dr. Niles Lehman]  相似文献   

19.
20.
GAR1 is a nucleolar protein which is associated with small nucleolar RNAs (snoRNAs) and which is required for pre-ribosomal RNA processing. In Saccharomyces cerevisiae, the GAR1 gene is essential for cell viability. We have cloned and sequenced the GAR1 gene from the distantly related yeast Schizosaccharomyces pombe. The SpGAR1 gene, which contains two small introns, codes for a 194 amino-acid protein of 20 kDa. A protein sequence comparison indicates that SpGAR1 is 65% identical to ScGAR1. Anti-ScGAR1 antibodies recognize SpGAR1, emphasizing the structural conservation of the protein. Immunostaining of S.pombe cells with these antibodies reveals that SpGAR1 is localized in the nucleolus, as is the case in S.cerevisiae. Moreover, SpGAR1 can substitute for GAR1 in S.cerevisiae, indicating that the two proteins are functionally equivalent. These results suggest a parallel evolutionary conservation of proteins and RNAs with which GAR1 interacts in mediating its pre-rRNA processing and viability functions. After fibrillarin, GAR1 is the second protein of the snoRNPs shown to have been conserved throughout evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号