首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The epithelia are the avascular layers of cells that cover the environment-exposed surfaces of the body. It appears that T cells localize to selected sites in or adjacent to epithelia via the selective expression of adhesion molecules and chemokine receptors on T cells. These bind to counter-receptors and to chemokines expressed by epithelial cells. Recently, there has been an advance in our understanding of the interaction of the alpha(Ebeta7) integrin with its epithelial cell ligand, E-cadherin. In addition, a new adhesion molecule has been identified on non-intestinal epithelial cells, termed lymphocyte-endothelial-epithelial-cell adhesion molecule (LEEP-CAM). Finally, there have been advances in our understanding of the role of skin- or gut-epithelia-derived chemokines in regulating activated T cell homing to these sites.  相似文献   

2.
The interaction of T lymphocytes with tumor cells, a key step in the antitumor immune response, is suppressed by adenosine, a nucleoside produced at increased levels within the hypoxic tumor environment. We have explored the mechanism by which adenosine interferes with the lymphocyte:tumor cell interaction. The adhesion of anti-CD3-stimulated T cells to syngeneic MCA-38 mouse colon adenocarcinoma cells did not involve LFA-1 (alpha(L)beta(2)) or VLA-5 (alpha(5)beta(1)). However, antibodies against either lymphocyte alpha(4) or beta(7) (but not beta(1)) integrin subunits, or against VCAM-1 on the tumor cells, significantly suppressed adhesion, showing that the recognition of MCA-38 cells by T cells is strongly dependent upon the association of alpha(4)beta(7) on the effector cells with VCAM-1 on the tumor targets. This association is modulated by adenosine: The ability of adenosine to suppress T cell adhesion to MCA-38 cells was lost if alpha(4)beta(7) was functionally blocked with anti-alpha(4) antibodies (i) prior to or (ii) during the adhesion assay or if (iii) alpha(+)(4) cells were depleted from the T lymphocyte population. The binding of T cells to fibronectin through alpha(4)beta(1) was not suppressed by adenosine. We conclude that adenosine partially inhibits the interaction of T lymphocytes with tumor cells by blocking the function of integrin alpha(4)beta(7).  相似文献   

3.
We have investigated the importance of dimerization of E-cadherin in the heterophilic adhesive interaction between E-cadherin and integrin alpha(E)beta(7). Dimerization of cadherin molecules in parallel alignment is known to be essential for homophilic adhesion and has been attributed to Ca(2+)-dependent interactions in the domain 1-2 junction or to cross-intercalation of Trp2 from one molecule to the other. We have disrupted either or both of these proposed mechanisms by point mutations in E-cadherin-Fc and have tested the modified proteins for alpha(E)beta(7)-mediated cell adhesion. Prevention of Trp2 intercalation had no adverse effect on integrin-mediated adhesion, whereas disruption of Ca(2+) binding permitted adhesion but with reduced efficiency. Both modifications in combination abolished recognition by alpha(E)beta(7). In EGTA, alpha(E)beta(7) adhered to wild type E-cadherin but not to the Trp2 deletion mutant. Independent evidence that the mutations prevented either or both mechanisms for dimerization is presented. The data show that dimerization is required for recognition by alpha(E)beta(7) and that it can take place by either of two mechanisms. Implications for the roles of the alpha(E) and beta(7) integrin subunits in ligand binding and for Trp2 and Ca(2+) in the assembly of cadherin complexes are discussed.  相似文献   

4.
The design, synthesis, and biological activity of novel alpha(4)beta(1) and alpha(4)beta(7) integrin antagonists, containing a bridged azabicyclic nucleus, are reported. Conformational analysis of targets containing an azabicyclo[2.2.2]octane carboxylic acid and known integrin antagonists indicated that this azabicycle would be a suitable molecular scaffold. Variation of substituents on the pendant arylsulfonamide and phenylalanine groups resulted in potent alpha(4)beta(1)-selective and dual alpha(4)beta(1)/alpha(4)beta(7) antagonists. Potent compounds 11i, 11h, and 14 were effective in the antigen-sensitized sheep model of asthma.  相似文献   

5.
The integrin alpha(4)beta(7) is the cell adhesion receptor for the mucosal vascular addressin MAdCAM-1, and this interaction is dominant in lymphocyte homing to Peyer's patch high endothelial venules, and plays key roles in lymphocyte recruitment at sites of inflammation. To identify alpha(4) subunit amino acids important for alpha(4)beta(7)/MAdCAM-1 interaction, we expressed mutant alpha(4) and wild type beta(7) chains in K562 cells and analyzed the effect of the mutations on cell adhesion to a soluble MAdCAM-1 (sMAdCAM-1-Ig). Transfectants expressing mutated alpha(4) at Tyr(187) displayed a substantial decrease in adhesion to this ligand, which was associated with a reduced alpha(4)beta(7)/sMAdCAM-1-Ig interaction, as determined by soluble binding assays. Addition of Mn(2+) to the adhesion assays did not restore the impaired adhesion. Mutations at alpha(4) Gln(152)Asp(153) also affected transfectant adhesion to sMAdCAM-1-Ig, but did not involve an alteration of alpha(4)beta(7)/MAdCAM-1 binding, and adhesion was restored by Mn(2+). Instead, mutations at alpha(4) Asn(123)Glu(124) did not affect this adhesion. Mutation of alpha(4) Tyr(187) abolished alpha(4)beta(7)-mediated cell adhesion to CS-1/fibronectin, an additional ligand for alpha(4)beta(7), while alpha(4) Gln(152)Asp(153) transfectant mutants showed a reduced adhesion. These results identify alpha(4) Tyr(187) as a key residue during receptor alpha(4)beta(7)/ligand interactions, indicating that it plays important roles in alpha(4)beta(7)-mediated leukocyte adhesion, and provide a potential target for therapeutic intervention in several inflammatory pathologies.  相似文献   

6.
A new member of the integrin superfamily of adhesion receptors was isolated from human epithelial cells. Analogously to other integrins, this molecule is a heterodimer comprised of structurally unrelated subunits, both glycosylated. Unequivocal amino-acid sequence homologies were observed between these subunits and integrin alpha and beta chain sequences, indicating that this epithelial heterodimer is a novel integrin. No obvious serologic cross-reactivities were detected with other integrins. The beta chain of the epithelial integrin displayed a mol. wt significantly higher than other integrin beta chains, possibly due to a large sialic acid content. Integrin heterodimers are grouped into three families, based on which of three beta chains (beta 1, beta 2 and beta 3) they contain. Therefore, the epithelial integrin may represent the prototype of a fourth integrin family, because it contains a structurally distinct beta chain. The designation alpha E beta 4 is proposed for this novel human integrin.  相似文献   

7.
The alpha(4)beta(1) and alpha(4)beta(7) integrins are implicated in several inflammatory disease states. Systematic SAR studies of an alpha(4)beta(1)-specific arylsulfonyl-Pro-Tyr lead led to the identification of a new alpha(4)beta(7) binding site, best captured by O-carbamates of Tyr for this structural class. Several compounds showed a 200- to 400-fold improvement in alpha(4)beta(7) binding affinity while maintaining subnanomolar alpha(4)beta(1) activity, for example 2l, VCAM-Ig alpha(4)beta(1) IC(50)=0.13 nM, VCAM-Ig alpha(4)beta(7) IC(50)=1.92 nM.  相似文献   

8.
Gangliosides GT1b and GD3, components of keratinocyte membranes, inhibit keratinocyte adhesion to fibronectin. Although ganglioside sialylation is known to be important, the mechanism of inhibition is unknown. Using purified insect recombinant alpha(5) and beta(1) proteins and alpha(5)beta(1) integrin from lysed keratinocyte-derived SCC12 cells, we have shown that GT1b and GD3 inhibit the binding of alpha(5)beta(1) to fibronectin. Co-immunoprecipitation of GT1b and alpha(5)beta(1) from SCC12 cells and direct binding of GT1b and GD3 to affinity-purified alpha(5)beta(1) from SCC12 cells and insect recombinant alpha(5)beta(1), particularly the alpha(5) subunit, further suggest interaction between ganglioside and alpha(5)beta(1). The carbohydrate moieties of integrin appear to be critical since gangliosides are unable to bind deglycosylated forms of alpha(5)beta(1) from SCC12 and insect cells or poorly glycosylated recombinant alpha(5)beta(1) from Escherichia coli cells. The GT1b-alpha(5)beta(1) interaction is inhibited by concanavalin A, suggesting that GT1b binds to mannose structures in alpha(5)beta(1). The preferential binding of GT1b to high mannose rather than reduced mannose ovalbumin further implicates the binding of GT1b to mannose structures. These data provide evidence that highly sialylated gangliosides regulate alpha(5)beta(1)-mediated adhesion of epithelial cells to fibronectin through carbohydrate-carbohydrate interactions between GT1b and the alpha(5) subunit of alpha(5)beta(1) integrin.  相似文献   

9.
Angiostatin, the N-terminal four kringles (K1-4) of plasminogen, blocks tumor-mediated angiogenesis and has great therapeutic potential. However, angiostatin's mechanism of anti-angiogenic action is unclear. We found that bovine arterial endothelial (BAE) cells adhere to angiostatin in an integrin-dependent manner and that integrins alpha(v)beta(3), alpha(9)beta(1), and to a lesser extent alpha(4)beta(1), specifically bind to angiostatin. alpha(v)beta(3) is a predominant receptor for angiostatin on BAE cells, since a function-blocking antibody to alpha(v)beta(3) effectively blocks adhesion of BAE cells to angiostatin, but an antibody to alpha(9)beta(1) does not. epsilon-Aminocaproic acid, a Lys analogue, effectively blocks angiostatin binding to BAE cells, indicating that an unoccupied Lys-binding site of the kringles may be required for integrin binding. It is known that other plasminogen fragments containing three or five kringles (K1-3 or K1-5) have an anti-angiogenic effect, but plasminogen itself does not. We found that K1-3 and K1-5 bind to alpha(v)beta(3), but plasminogen does not. These results suggest that the anti-angiogenic action of angiostatin may be mediated via interaction with alpha(v)beta(3). Angiostatin binding to alpha(v)beta(3) does not strongly induce stress-fiber formation, suggesting that angiostatin may prevent angiogenesis by perturbing the alpha(v)beta(3)-mediated signal transduction that may be necessary for angiogenesis.  相似文献   

10.
alpha(4)beta(1) and alpha(4)beta(7) integrins are key regulators of physiologic and pathologic responses in inflammation and autoimmune disease. The effectiveness of anti-integrin antibodies to attenuate a number of inflammatory/immune conditions provides a strong rationale to target integrins for drug development. Important advances have been made in identifying potent and selective candidates, peptides and peptidomimetics, for further development. Herein, we report the discovery of a series of novel N-benzoyl-L-biphenylalanine derivatives that are potent inhibitors of alpha4 integrins. The potency of the initial lead compound (1: IC(50) alpha(4)beta(7)/alpha(4)beta(1)=5/33 microM) was optimized via sequential manipulation of substituents to generate low nM, orally bioavailable dual alpha(4)beta(1)/alpha(4)beta(7) antagonists. The SAR also led to the identification of several subnanomolar antagonists (134, 142, and 143). Compound 81 (TR-14035; IC(50) alpha(4)beta(7)/alpha(4)beta(1)=7/87 nM) has completed Phase I studies in Europe. The synthesis, SAR and biological evaluation of these compounds are described.  相似文献   

11.
Integrins are composed of noncovalently bound dimers of an alpha- and a beta-subunit. They play an important role in cell-matrix adhesion and signal transduction through the cell membrane. Signal transduction can be initiated by the binding of intracellular proteins to the integrin. Binding leads to a major conformational change. The change is passed on to the extracellular domain through the membrane. The affinity of the extracellular domain to certain ligands increases; thus at least two states exist, a low-affinity and a high-affinity state. The conformations and conformational changes of the transmembrane (TM) domain are the focus of our interest. We show by a global search of helix-helix interactions that the TM section of the family of integrins are capable of adopting a structure similar to the structure of the homodimeric TM protein Glycophorin A. For the alpha(IIb)beta(3) integrin, this structural motif represents the high-affinity state. A second conformation of the TM domain of alpha(IIb)beta(3) is identified as the low-affinity state by known mutational and nuclear magnetic resonance (NMR) studies. A transition between these two states was determined by molecular dynamics (MD) calculations. On the basis of these calculations, we propose a three-state mechanism.  相似文献   

12.
Thrombospondin-1 (TSP-1) is an extracellular glycoprotein that is involved in a variety of physiological processes such as tumor cell adhesion, invasion, and metastasis. It has been hypothesized that TSP-1 provides an adhesive matrix for osteosarcoma cells. Here we present data showing that TSP-1 can promote cell substrate adhesion to U2OS and SAOS cells through the alpha 4 beta 1 integrin. The dose-dependent adhesion to TSP-1 was inhibited by anti-integrin antibodies directed against the alpha 4 or beta 1 subunit, but not by control antibodies against other integrins. To localize the potential alpha 4 beta 1-binding site within the TSP-1 molecule, the protein was subjected to limited proteolysis with chymotrypsin in the absence of calcium. The stable 70-kDa core fragment produced under these conditions promoted alpha 4 beta 1-dependent osteosarcoma cell adhesion in a manner similar to that of the intact protein. Moreover adhesion experiments with neutralizing antibodies revealed that the adhesion was totally dependent on the alpha 4 beta 1 interaction. Further blocking experiments with potential inhibitory peptides revealed that the alpha 4 beta 1-mediated adhesion was not influenced by peptides containing the RGD sequence. Attachment to the 70-kDa fragment was strongly inhibited by the CS-1 peptide, which represents the most active recognition domain for alpha 4 beta 1 integrin in fibronectin. The present data provide evidence that TSP-1 contains an alpha 4 beta 1 integrin-binding site within the 70-kDa core region.  相似文献   

13.
During cell migration, the physical link between the extracellular substrate and the actin cytoskeleton mediated by receptors of the integrin family is constantly modified. We analyzed the mechanisms that regulate the clustering and incorporation of activated alphavbeta3 integrins into focal adhesions. Manganese (Mn2+) or mutational activation of integrins induced the formation of de novo F-actin-independent integrin clusters. These clusters recruited talin, but not other focal adhesion adapters, and overexpression of the integrin-binding head domain of talin increased clustering. Integrin clustering required immobilized ligand and was prevented by the sequestration of phosphoinositole-4,5-bisphosphate (PI(4,5)P2). Fluorescence recovery after photobleaching analysis of Mn(2+)-induced integrin clusters revealed increased integrin turnover compared with mature focal contacts, whereas stabilization of the open conformation of the integrin ectodomain by mutagenesis reduced integrin turnover in focal contacts. Thus, integrin clustering requires the formation of the ternary complex consisting of activated integrins, immobilized ligands, talin, and PI(4,5)P2. The dynamic remodeling of this ternary complex controls cell motility.  相似文献   

14.
Yokoyama K  Zhang XP  Medved L  Takada Y 《Biochemistry》1999,38(18):5872-5877
Integrin alpha v beta 3, a widely distributed fibrinogen receptor, recognizes the RGD572-574 motif in the alpha chain of human fibrinogen. However, this motif is not conserved in other species, nor is it required for alpha v beta 3-mediated fibrin clot retraction, suggesting that fibrinogen may have other alpha v beta 3 binding sites. Fibrinogen has conserved C-terminal domains in its alpha (E variant), beta, and gamma chains (designated alpha EC, beta C, and gamma C, respectively), but their function in cell adhesion is not known, except that alpha IIb beta 3, a platelet fibrinogen receptor, binds to the gamma C HHLGGAKQAGDV400-411 sequence. Here we used mammalian cells expressing recombinant alpha v beta 3 to show that recombinant alpha EC and gamma C domains expressed in bacteria specifically bind to alpha v beta 3. Interaction between alpha v beta 3 and gamma C or alpha EC is blocked by LM609, a function-blocking anti-alpha v beta 3 mAb, and by RGD peptides. alpha v beta 3 does not require the HHLGGAKQAGDV400-411 sequence of gamma C for binding, and alpha EC does not have such a sequence, indicating that the alpha v beta 3 binding sites are distinct from those of alpha IIb beta 3. A small fragment of gamma C (residues 148-226) supports alpha v beta 3 adhesion, suggesting that an alpha v beta 3 binding site is located within the gamma chain 148-226 region. We have reported that the CYDMKTTC sequence of beta 3 is responsible for the ligand specificity of alpha v beta 3. gamma C and alpha EC do not bind to wild-type alpha v beta 1, but do bind to the alpha v beta 1 mutant (alpha v beta 1-3-1), in which the CYDMKTTC sequence of beta 3 is substituted for the corresponding beta 1 sequence CTSEQNC. This suggests that gamma C and alpha EC contain determinants for fibrinogen's specificity to alpha v beta 3. These results suggest that fibrinogen has potentially significant novel alpha v beta 3 binding sites in gamma C and alpha EC.  相似文献   

15.
Cellular adhesions to other cells and to the extracellular matrix play crucial roles in the malignant progression of cancer. In this study, we investigated the role of protein kinase C (PKC) in the regulation of cell-substratum adhesion by the breast adenocarcinoma cell line MCF-7. A PKC activator, 12-O-tetradecanoylphorbol-l, 3-acetate (TPA), stimulated cell adhesion to laminin and collagen I in a dose-dependent manner over a 1- to 4-h interval. This enhanced adhesion was mediated by alpha2beta1 integrin, since both anti-alpha2 and anti-beta1 blocking antibodies each completely abrogated the TPA-induced adhesion. FACS analysis determined that TPA treatment does not change the cell surface expression of alpha2beta1 integrin over a 4-h time interval. However, alpha2beta1 levels were increased after 24 h of TPA treatment. Thus, the enhanced avidity of alpha2beta1-dependent cellular adhesion preceded the induction of alpha2beta1 cell surface expression. Northern blot analysis revealed that mRNA levels of both alpha2 and beta1 subunits were increased after exposure to TPA for 4 h, indicating that the induction of alpha2beta1 mRNA preceded that of its cell surface expression. This further suggested that the TPA-induced avidity of alpha2beta1 was independent of increased expression of alpha2beta1. Pretreatment of cells with the PKC inhibitor calphostin C partially antagonized the TPA-induced increase in expression of alpha2beta1 integrin expression and of alpha2beta1-mediated cellular adhesion. To identify a possible mechanism by which TPA could be acting to promote the rapid induction of alpha2beta1 adhesion, we treated the cells with the Rho-GTPase inhibitor Clostridium botulinumexotoxin C3. C3 inhibited TPA-induced adhesion to laminin and collagen I in a dose-dependant manner, suggesting a likely role for Rho in TPA-induced adhesion. Together, these results suggest that PKC can modulate the alpha2beta1-dependent adhesion of MCF-7 cells by two distinct mechanisms: altering the gene expression of integrins alpha2 and beta1 and altering the avidity of the alpha2beta1 integrin by a Rho-dependant mechanism.  相似文献   

16.
Caveolin-1 plays a checkpoint function in the regulation of processes often altered in cancer. Although increased expression of caveolin-1 seems to be the norm in the glioma family of malignancies, populations of caveolin-1 positive and negative cells coexist among glioblastoma specimens. As no data are available to date on the contribution of such cells to the phenotype of glioblastoma, we manipulated caveolin-1 in the glioblastoma cell line U87MG. We showed that caveolin-1 plays a critical role in the aggressiveness of glioblastoma. We identified integrins as the main set of genes affected by caveolin-1. We reported here that the phenotypic changes observed after caveolin-1 modulation were mediated by alpha(5)beta(1) integrins. As a consequence of the regulation of alpha(5)beta(1) levels by caveolin-1, the sensitivity of cells to the specific alpha(5)beta(1) integrin antagonist, SJ749, was affected. Mediator of caveolin-1 effects, alpha(5)beta(1) integrin, is also a marker for glioma aggressiveness and an efficient target for the treatment of glioma especially the ones exerting the highest aggressive phenotype.  相似文献   

17.
18.
The regulated ability of integrin alphaIIbbeta3 to bind fibrinogen plays a crucial role in platelet aggregation and hemostasis. We have developed a model system based on laser tweezers, enabling us to measure specific rupture forces needed to separate single receptor-ligand complexes. First of all, we performed a thorough and statistically representative analysis of nonspecific protein-protein binding versus specific alphaIIbbeta3-fibrinogen interactions in combination with experimental evidence for single-molecule measurements. The rupture force distribution of purified alphaIIbbeta3 and fibrinogen, covalently attached to underlying surfaces, ranged from approximately 20 to 150 pN. This distribution could be fit with a sum of an exponential curve for weak to moderate (20-60 pN) forces, and a Gaussian curve for strong (>60 pN) rupture forces that peaked at 80-90 pN. The interactions corresponding to these rupture force regimes differed in their susceptibility to alphaIIbbeta3 antagonists or Mn2+, an alphaIIbbeta3 activator. Varying the surface density of fibrinogen changed the total binding probability linearly >3.5-fold but did not affect the shape of the rupture force distribution, indicating that the measurements represent single-molecule binding. The yield strength of alphaIIbbeta3-fibrinogen interactions was independent of the loading rate (160-16,000 pN/s), whereas their binding probability markedly correlated with the duration of contact. The aggregate of data provides evidence for complex multi-step binding/unbinding pathways of alphaIIbbeta3 and fibrinogen revealed at the single-molecule level.  相似文献   

19.
Angiogenesis is associated with several pathological disorders as well as with normal physiological maintenance. Components of vascular basement membrane are speculated to regulate angiogenesis in both positive and negative manner. Recently, we reported that tumstatin (the NC1 domain of alpha 3 chain of type IV collagen) and its deletion mutant tum-5 possess anti-angiogenic activity. In the present study, we confirm that the anti-angiogenic activity of tumstatin and tum-5 is independent of disulfide bond requirement. This property of tum-5 allowed us to use overlapping synthetic peptide strategy to identify peptide sequence(s) which possess anti-angiogenic activity. Among these peptides, only the T3 peptide (69-88 amino acids) and T7 peptide (74-98 amino acids) inhibited proliferation and induced apoptosis specifically in endothelial cells. The peptides, similar to tumstatin and the tum-5 domain, bind and function via alpha(v)beta(3) in an RGD-independent manner. Restoration of a disulfide bond between two cysteines within the peptide did not alter the anti-angiogenic activity. Additionally, these studies show that tumstatin peptides can inhibit proliferation of endothelial cells in the presence of vitronectin, fibronectin, and collagen I. Anti-angiogenic effect of the peptides was further confirmed in vivo using a Matrigel plug assay in C57BL/6 mice. Collectively, these experiments suggest that the anti-angiogenic activity of tumstatin is localized to a 25-amino acid region of tumstatin and it is independent of disulfide bond linkage. Structural features and potency of the tumstatin peptide make it highly feasible as a potential anti-cancer drug.  相似文献   

20.
The alpha(L) I (inserted or interactive) domain of integrin alpha(L)beta(2) undergoes conformational changes upon activation. Recent studies show that the isolated, activated alpha(L) I domain is sufficient for strong ligand binding, suggesting the beta(2) subunit to be only indirectly involved. It has been unclear whether the activity of the alpha(L) I domain is regulated by the beta(2) subunit. In this study, we demonstrate that swapping the disulfide-linked CPNKEKEC sequence (residues 169-176) in the beta(2) I domain with a corresponding beta(3) sequence, or mutating Lys(174) to Thr, constitutively activates alpha(L)beta(2) binding to ICAM-1. These mutants do not require Mn(2+) for ICAM-1 binding and are insensitive to the inhibitory effect of Ca(2+). We have also localized a component of the mAb 24 epitope (a reporter of beta(2) integrin activation) in the CPNKEKEC sequence. Glu(173) and Glu(175) of the beta(2) I domain are identified as critical for mAb 24 binding. Because the epitope is highly expressed upon beta(2) integrin activation, it is likely that the CPNKEKEC sequence is exposed or undergoes conformational changes upon activation. Deletion of the alpha(L) I domain did not eliminate the mAb 24 epitope. This confirms that the alpha(L) I domain is not critical for mAb 24 binding, and indicates that mAb 24 detects a change expressed in part in the beta(2) subunit I domain. These results suggest that the CPNKEKEC sequence of the beta(2) I domain is involved in regulating the alpha(L) I domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号