首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a convenient method for determining "free" or non-protein-bound iron in biological fluids. The new method is based on the bathophenantroline method for determination of total serum iron, and comprises binding of iron by a chromogenic chelator (bathophenantroline-disulphonate, BPS), which is specific for ferrous iron. The ferrous complex of BPS absorbs strongly at 535 nm, and the detection limit is less than 1 &#119 M in a sample size of 50 &#119 l. The chelator does not liberate iron from either haemoglobin or transferrin. Interference from copper or zinc in concentrations up to 50 &#119 M does not significantly disturb measurements. The main problem when measuring in blood plasma, the high and fluctuating background in the region around 535 nm, has been overcome through filtering techniques. Data from measurements of ferrous iron in microdialysate, cerebrospinal fluid, and blood plasma in different animal models and clinical conditions are presented as illustrative examples of the usefulness of the method. The method allows the determination of ferric, as well as ferrous, iron in the same sample.  相似文献   

2.
Free radical generation and catalytic iron have been implicated in the pathogenesis of alcohol-induced liver injury but the source of free radicals is a subject of controversy. The mechanism of ethanol-induced liver injury was investigated in isolated hepatocytes from a rodent model of iron loading in which free radical generation was measured by the determination of alkane production (ethane and pentane). Iron loading (125mg/kg i.p.) increased hepatic non-heme iron 3-fold, increased the prooxidant activity of cytosolic ultrafiltrates 2-fold and doubled ethanol-induced alkane production. The addition of desferrioxamine (20μM), a tight chelator of iron, completely abolished alkane production indicating the importance of catalytic iron. The role of cellular oxidases as a source of ethanol induced free radicals was studied through the use of selective inhibitors. In both the presence and absence of iron loading, selective inhibition of xanthine oxidase with oxipurinol(20μM) diminished ethanol-induced alkane production 0–40%, inhibition of aldehyde oxidase with menadione (20μM) diminished alkane production 36–75%, while the inhibition of aldehyde and xanthine oxidase by feeding tungstate (100mg/kg/day) virtually abolished alkane production. Addition of acetaldehyde(50μM) to hepatocytes generated alkanes at rates comparable to those achieved with ethanol indicating the importance of acetaldehyde metabolism in free radical generation. The cellular oxidases (aldehyde and xanthine oxidase) along with catalytic iron play a fundamental role in the pathogenesis of free radical injury due to ethanol.  相似文献   

3.
Thi report describes the determination of thiacetazone in human and rat plasma by direct-injection high-performance liquid chromatography (HPLC). Plasma filtrate (50 μl) was injected directly into the internal surface reversed-phase (ISRP) mixed-functional phenyl column (Capcell Pak, 50×4.6 mm, 5 μm) and eluted with an aqueous mobile phase containing 7.5% acetonitrile at a flow-rate of 1 ml/min. With UV detection at 322 nm, thiacetazone eluted at 11.0 min whereas endogenous interferences eluted before 5 min. The lower detection limit for a 50-μl sample at a signal-to-noise ratio of 5 was 63 ng/ml, which was several hundred fold lower than its cytotoxic concentrations determined from in vitro cell line studies. At a concentration range of 0.17 to 2.7 μg/ml, the recovery of thiacetazone was 98.0±4.4% (mean±S.D.). The intra- and inter-day coefficients of variation were 3.0±1.4% and 4.2±2.1%, respectively. This method was successfully applied to study the pharmacokinetics of thiacetazone in rats. The direct injection method is simple, requires small sample volume and does not require sample extraction, internal standard, or gradient elution.  相似文献   

4.
This paper critically examines the redox activity of K562 cells (chronic myelogenous leukemia cells) and normal peripheral blood lymphocytes (PBL). Ferricyanide reduction, diferric transferrin reduction, and ferric ion reduction were measured spectrophotometrically by following the time-dependent changes of absorbance difference characteristic for ferricyanide disappearance and for the formation of ferrous ion:chelator complexes. Bathophenanthroline disulfonate (BPS) and ferrozine (FZ) were used to detect the appearance of ferrous ions in the reaction mixtures when diferric transferrin or ferric reduction was studied. Special attention was devoted to the analysis of time-dependent absorbance changes in the presence and absence of cells under different assay conditions. It was observed and concluded that: (i) FZ was far less sensitive and more sluggish than BPS for detecting ferrous ions at concentrations commonly used for BPS; (ii) FZ, at concentrations of at least 10-times the commonly used BPS concentrations, seemed to verify the results obtained with BPS; (iii) ferricyanide reduction, diferric transferrin reduction and ferric ion reduction by both K562 cells and peripheral blood lymphocytes did not differ significantly; and (iv) earlier values published for the redox activities of different cells might be overestimated, partly because of the observation published in 1988 that diferric transferrin might have loosely bound extra iron which is easily reduced. It is suggested that the specific diferric transferrin reduction by cells might be considered as a consequence of (i) changing the steady-state equilibrium in the diferric transferrin-containing solution by addition of ferrous ion chelators which effectively raised the redox potential of the iron bound in holotransferrin, and (ii) changing the steady-state equilibrium by addition of cells which would introduce, via their large and mostly negatively charged plasma membrane surface, a new phase which would favor release and reduction of the iron in diferric transferrin by a ferric ion oxidoreductase. The reduction of ferricyanide is also much slower than activities reported for other cells which may indicate reduced plasma membrane redox activity in these cells.  相似文献   

5.
A column-switching, reversed-phase high-performance liquid chromatographic (HPLC) method for the determination of a new carbapenem antibiotic assay using ultraviolet detection has been developed for a new carbapenem antibiotic L-749,345 in human plasma and urine. A plasma sample is centrifuged and then injected onto an extraction column using 25 mM phosphate buffer, pH 6.5. After 3 min, using a column-switching valve, the analyte is back-flushed with 10.5% methanol–phosphate buffer for 3 min onto a Hypersil 5 μm C18 BDS 100×4.6 mm analytical column and then detected by absorbance at 300 nm. The sample preparation and HPLC conditions for the urine assay are similar, except for a longer analytical column 150×4.6 mm. The plasma assay is specific and linear from 0.125 to 50 μg/ml; the urine assay is linear from 1.25 to 100 μg/ml.  相似文献   

6.
A high-performance liquid chromatographic method was developed for the determination of a chemoprotective agent, 2-(allylthio)pyrazine (I), in human plasma and urine, and in rat blood and tissue homogenate using diazepam as an internal standard. The sample preparation was simple; 2.5 volumes of acetonitrile were added to the biological sample to deproteinize it. A 50–100 μl aliquot of the supernatant was injected onto a C18 reversed-phase column. The mobile phase employed was acetonitrile–water (55:45, v/v), and it was run at a flow-rate of 1.5 ml/min. The column effluent was monitored using an ultraviolet detector at 330 nm. The retention times for I and the internal standard were 4.0 and 5.1 min, respectively. The detection limits of I in human plasma and urine, and in rat tissue homogenate (including blood) were 20, 20 and 50 ng/ml, respectively. The coefficients of variation of the assay (within-day and between-day) were generally low (below 6.1%) in a concentration range from 0.02 to 10 μg/ml for human plasma and urine, and for rat tissue homogenate. No interferences from endogenous substances were found.  相似文献   

7.
F. J. Alcaín  H. Löw  F. L. Crane 《Protoplasma》1995,184(1-4):233-237
Summary Addition of the impermeable iron II chelator bathophenanthroline disulfonate (BPS) to cultured Chinese hamster lung fibroblast (CCL 39 cells) inhibits DNA synthesis but not protein synthesis or cytoplasmic alkalinization, when cell growth is initiated with growth factors such as EGF plus insulin, thrombin, or ceruloplasmin. The BPS inhibition is reversed by addition of stoichiometric ferrous iron at stoichiometric concentration. BPS does not inhibit cell growth stimulated by fetal calf serum. The effect of the BPS differs from the inhibition of growth by hydroxyurea which acts on the ribonucleotide reductase. The BPS treatment leads to release of iron from the cells as determined by BPS iron II complex formation over 90 min. Cells treated with BPS just during starvation period cannot re-initiate DNA synthesis after mitogen stimulation even if BPS is removed from the medium and cells are previously washed. BPS treatment also inhibits transplasma membrane electron which is restored by incubation of cells with 10 M ferric ammonium citrate. Growth factor stimulation of DNA synthesis is restored by addition of 1 M ferrous ammonium sulfate or ferric ammonium citrate, or 0.1 M diferric transferrin. Copper, cobalt, nickel, zinc, gallium, aluminum, or apotransferrin cannot restore the activity. The BPS effect is consistent with removal of iron from a site on the cell surface which controls electron transport and DNA synthesis.Abbreviations BCS bathocuproine disulfonate - BPS bathophenan-throline disulfonate - CUP ceruloplasmin - FCS fetal calf serum - Fe2Tf diferric transferrin - EGF epidermal growth factor - HU hydroxyurea - THR -thrombin  相似文献   

8.
Redox reactions were studied in more than 90% pure tonoplast and plasma membranes isolated by free-flow electrophoresis from soybean (Glycine max) hypocotyls. Both types of membrane contained a b-type cytochrome (max = 561 nm) and a noncovalently bound flavin, two possible components of a transmembrane electron-transport chain. Isolated tonoplast and plasma membranes reduced ferricyanide, indophenol and various iron complexes with NADH or NADPH as electron donors. The redox activity was inhibited in tonoplast membranes by about 60% by 10 μM p-chloromercuribenzene sulfonate, 8% by 500 μM lanthanum nitrate and 10% by 100 μM nitrophenyl acetate. In contrast, the redox activity of isolated plasma membranes was inhibited by about 60% by 500 μM lanthanum nitrate or 100 μM nitrophenyl acetate, but only 25% by 10 μM p-chloromercuribenzene sulfonate. The results show that both tonoplast and plasma membranes of soybean contain active electron-transport systems, but that the two systems respond differently to inhibitors.  相似文献   

9.
A high-performance liquid chromatographic (HPLC) method was developed for the determination of disodium mercaptoundecahydrododecaborate (BSH) in biological fluids. Monobromobimane was used as a precolumn derivatizing agent. A stable derivative was obtained. The derivative was separated on a C18 column using reversed-phase ion-pairing chromatography and detected by a spectrophotometric detector at 373 nm. The detection limit was 200 ng/ml (0.1 ppm boron). Calibration curves were prepared for rat urine and plasma samples. The calibration curves were linear in the range of 1 μg/ml to 100 μg/ml for urine samples and 0.2 μg/ml to 50 μg/ml for plasma samples.  相似文献   

10.
A new series of metal ligands containing the 1,3-dimethyl-6-amino-5-nitrosouracil moiety has been synthesized and they have been studied as potential inhibitors of iron-dependent lipid peroxidation. For this purpose, these new derivatives have been tested in the Fenton induced deoxyribose degradation assay, which allows a quantitative measurement of their inhibitory effect towards hydroxyl radical generation. When iron(II) is complexed by these ligands, a strong inhibition of deoxyribose degradation is observed, especially in the case of tris-[2-(1,3-dimethyl-5-nitrosouracil-6-yl)aminoethyl] amine (5). This inhibitory effect is clearly related to a specific complexation of iron(II) and is not due to the direct scavenging of hydroxyl radical by the ligand. Inhibition of the iron mediated Fenton reaction presumably results from inactivation of the reactivity of the metal center towards hydrogen peroxide. These derivatives, as well as long alkyl chain substituted nitrosouracils were evaluated in the protection of biological membranes against lipid peroxidation (induced by iron(II)/ dihydroxyfumaric acid and determined with the 2-thiobarbituric acid test). Ligand 5 inhibited lipid peroxidation at a rate similar to Desferal (desferrioxamine B) and slightly higher than bathophenanthroline sulphonate (BPS), which are respectively good iron(III) and iron(II) chelators. When covalently bound with a long alkyl chain, the increase of lipophilic character of the ligand allows its location near the mitochondrial membrane, where lipid peroxidation occurs. Lower concentrations (IC50 = 4 μM) are then necessary to inhibit lipid peroxidation. This IC50 concentration should be compared to those obtained for Trolox (IC50 = 3 μM) or the 21-aminosteroid U74500A (IC50 = 1 μM) described previously.  相似文献   

11.
In the present in vitro and in vivo study we investigated the pro-oxidant effects of hemoglobin, as well as the antioxidant effects of its metabolites, in the brain. Incubation of rat brain homogenates with hemoglobin (0-10 μM) but not hemin induced lipid peroxidation up to 24 h (EC50 = 1.2 μM). Hemoglobin's effects were similar to ferrous ion (EC50 = 1.7 μM) and were blocked by the chelating agent deferoxamine (IC50 = 0.5 μM) and a nitric oxide-releasing compound S-nitrosoglutathione (IC50 = 40 μM). However, metabolites of hemoglobin — biliverdin and bilirubin — inhibited brain lipid peroxidation induced by cell disruption and hemoglobin (biliverdin IC50 = 12-30 and bilirubin IC50 = 75-170 μM). Biliverdin's antioxidative effects in spontaneous and iron-evoked lipid peroxidation were further augmented by maganese (2 μM) since manganese is an antioxidative transition metal and conjugates with bile pigments. Intrastriatal infusion of hemoglobin (0-24 nmol) produced slight, but significant 20-22% decreases in striatal dopamine levels. Whereas, intrastriatal infusion of ferrous citrate (0-24 nmol) dose-dependently induced a greater 66% depletion of striatal dopamine which was preceded by an acute increase of lipid peroxidation. In conclusion, contrary to the in vitro results hemoglobin is far less neurotoxic than ferrous ions in the brain. It is speculated that hemoglobin may be partially detoxified by heme oxygenase and biliverdin reductase to its antioxidative metabolites in the brain. However, in head trauma and stroke, massive bleeding could significantly produce iron-mediated oxidative stress and neurodegeneration which could be minimized by endogenous antioxidants such as biliverdin, bilirubin, manganese and S-nitrosoglutathione.  相似文献   

12.
Novel prodrugs for the intracellular delivery of zidovudine monophosphate (AZTMP) have recently been designed. To investigate the bioconversion and pharmacokinetic profiles of these compounds, an analytical method for the simultaneous determination of zidovudine (AZT) and AZTMP in mouse plasma and peripheral red blood cells was developed. Mouse whole blood samples were treated with TBAHS, EDTA and NaH2PO4, and separated into plasma and red blood cell portions. Samples were processed by solid-phase extraction using Bond Elut C18 cartridges. Chromatography was performed using an Hypersil ODS column and a mobile phase of 2.9% (v/v) acetonitrile and 97.1% (v/v) phosphate buffer, pH 7.50, with UV detection at 267 nm. The average extraction recoveries of AZTMP and AZT in plasma were approximately 85% and 97% over their linear ranges of 0.05–5 μg/ml and 0.125–25 μg/ml, respectively. Extraction recoveries of AZTMP and AZT from peripheral red blood cells averaged 56 and 69% over their linear ranges of 0.125–5 μg/ml and 0.125–25 μg/ml, respectively. The accuracy of the assay was 90–100%. The intra- and inter-day variations of the assay were less than 14%. The analytical method was found to be applicable, reliable and suitable for pharmacokinetic studies.  相似文献   

13.
A sensitive stereoselective HPLC method was developed for determination of mefloquine (MFQ) enantiomers in plasma, urine and whole blood. The assay involved liquid-liquid extraction of MFQ from biological fluids with a mixture of hexane and isopropanol in the presence of sodium hydroxide and derivatization of the residue by (+)-(S)-naphthylethylisocyanate (NEIC) as chiral derivatizing reagent. Separation of the resulting diastereomers was performed on a silica normal-phase column using chloroform-hexane-methanol (25:74:1) as the mobile phase with a flow-rate of 1 ml/min. Using 200 μl of plasma or whole blood, the limit of determination was 0.2 μg/ml with UV detection for both enantiomers. The limit of determination in 500 μl of urine was 0.08 μg/ml with UV detection.  相似文献   

14.
A simple, accurate and precise isocratic reversed-phase high-performance liquid chromatographic method was developed and validated for the determination of p-chloronitrobenzene (p-CNB) in rat plasma. A plasma sample was deproteinized with methanol containing the internal standard (p-bromonitrobenzene). The resulting methanol eluate obtained after centrifugation was filtered and injected into a high-performance liquid chromatograph (50 μl each). A column packed with 5 μm octadecylsilane (ODS) spherical particles was used with isocratic elution of methanol—water (45:55, v/v) at a flow-rate of 1.0 ml/min. The compounds were detected by ultraviolet absorbance at 280 nm. The retention times of p-CNB and the internal standard were 12.5 and 15.5 min, respectively, at a column oven temperature of 30°C. The results were linear from 0.05 to 100 μg/ml (r = 0.999), and the detection limit was 0.01 μg/ml. The relative error and the coefficient of variation on replicate assays were less than 7 and 10%, respectively, for all concentrations studied. The overall recoveries of p-CNB were between 97 and 105%. Plasma samples could be stored for up to one month at −20°C.  相似文献   

15.
CGS 20267 is a new non-steroidal compound which potently inhibits aromatase in vitro (IC50 of 11.5 nM) and in vivo (ED50 of 1–3 μg/kg p.o.). CGS 20267 maximally inhibits estradiol production in vitro in LH-stimulated hamster ovarian tissue at 0.1 μM with an IC50 of 0.02 μM and does not significantly affect progesterone production up to 350 μM. In ACTH-stimulated rat adrenal tissue in vitro, aldosterone production was inhibited with an IC50 of 210 μM (10,000 times higher than the IC50 for estradiol production); no significant effect on corticosterone production was seen at 350 μM. In vivo, in ACTH-treated rats, CGS 20267 does not affect plasma levels of corticosterone or aldosterone at a dose of 4 mg/kg p.o. (1000 times higher than the ED50 for aromatase inhibition in vivo). In adult female rats, a 14-day treatment with 1 mg/kg p.o. daily, completely interrupts ovarian cyclicity and suppresses uterine weight to that seen 14 days after ovariectomy. In adult female rats bearing estrogen-dependent DMBA-induced mammary tumors, 0.1 mg/kg p.o. given daily for 42 days caused almost complete regression of tumors present at the start of treatment. Thus compared to each other, CGS 16949A and CGS 20267 are both highly potent in inhibiting estrogen biosynthesis in vitro and in vivo. The striking difference between them is that unlike CGS 16949A, CGS 20267 does not affect adrenal steroidogenesis in vitro or in vivo, at concentrations and doses several orders of magnitude higher than those required to inhibit estrogen biosynthesis.  相似文献   

16.
Reversed-phase HPLC procedures were developed for the determination of tolcapone (Ro 40-7592) and its metabolites Ro 40-7591, Ro 61-1448, and Ro 47-1669 in plasma and in urine samples. One of the procedures for plasma involved the determination of tolcapone and its metabolite Ro 40-7591 and the other, the determination of the two other metabolites. The urine assay enabled the simultaneous determination of tolcapone and all metabolites in one run. Sample preparation in plasma involved protein precipitation with acetonitrile. Urine was simply diluted. The compounds of interest were monitored in the UV at 270 nm. The limits of quantification were 0.05 μg/ml for each compound (plasma assay) and 0.2 μg/ml for the urine assay. The mean inter-assay precisions (C.V.) were ≤6% (plasma assay) and ≤8% (urine assay). The procedures were successfully applied to the sample analysis of animal pharmacokinetic (rat, dog, mouse, rabbit and cynomolgus monkey) and clinical pharmacology studies.  相似文献   

17.
The ferrozine and phenanthroline colorimetric assays are commonly applied for the determination of ferrous and total iron concentrations in geomicrobiological studies. However, accuracy of both methods depends on slight changes in their protocols, on the investigated iron species, and on geochemical variations in sample conditions. Therefore, we tested the performance of both methods using Fe(II)((aq)), Fe(III)((aq)), mixed valence solutions, synthetic goethite, ferrihydrite, and pyrite, as well as microbially-formed magnetite and a mixture of goethite and magnetite. The results were compared to concentrations determined with aqua regia dissolution and inductively coupled plasma atomic emission spectroscopy (ICP-AES). Iron dissolution prior to the photometric assays included dissolution in 1M or 6M HCl, at 21 or 60°C, and oxic or anoxic conditions. Results indicated a good reproducibility of quantitative total iron determinations by the ferrozine and phenanthroline assays for easily soluble iron forms such as Fe(II)((aq)), Fe(III)((aq)), mixed valence solutions, and ferrihydrite. The ferrozine test underestimated total iron contents of some of these samples after dissolution in 1M HCl by 10 to 13%, whereas phenanthroline matched the results determined by ICP-AES with a deviation of 5%. Total iron concentrations after dissolution in 1M HCl of highly crystalline oxides such as magnetite, a mixture of goethite and magnetite, and goethite were underestimated by up to 95% with both methods. When dissolving these minerals in 6M HCl at 60°C, the ferrozine method was more reliable for total iron content with an accuracy of ±5%, related to values determined with ICP-AES. Phenanthroline was more reliable for the determination of total pyritic iron as well as ferrous iron after incubation in 1M HCl at 21°C in the Fe(II)((aq)) sample with a recovery of 98%. Low ferrous iron concentrations of less than 0.5mM were overestimated in a Fe(III) background by up to 150% by both methods. Heating of mineral samples in 6M HCl increased their solubility and susceptibility for both photometric assays which is a need for total iron determination of highly crystalline minerals. However, heating also rendered a subsequent reliable determination of ferrous iron impossible due to fast abiotic oxidation. Due to the low solubility of highly crystalline samples, the determination of total iron is solely possible after dissolution in 6M HCl at 60°C which on the other hand makes determination of ferrous iron impossible. The recommended procedure for ferrous iron determination is therefore incubation at 21°C in 6M HCl, centrifugation, and subsequent measurement of ferrous iron in the supernatant. The different procedures were tested during growth of G. sulfurreducens on synthetic ferrihydrite. Here, the phenanthroline test was more accurate compared to the ferrozine test. However, the latter provided easy handling and seemed preferable for larger amounts of samples.  相似文献   

18.
The “unprotected” Pt nanoclusters (average size 2 nm) mixed with the nanoscale SiO2 particles (average size 13 nm) were used as a glucose oxidase immobilization carrier to fabricate the amperometric glucose biosensor. The bioactivity of glucose oxidase (GOx) immobilized on the composite was maintained and the as-prepared biosensor demonstrated high sensitivity (3.85 μA mM−1) and good stability in glucose solution. The Pt–SiO2 biosensor showed a detection limit of 1.5 μM with a linear range from 0.27 to 4.08 mM. In addition, the biosensor can be operated under wide pH range (pH 4.9–7.5) without great changes in its sensitivity. Cyclic voltammetry measurements showed a mixed controlled electrode reaction.  相似文献   

19.
A homogeneous spectrophotometric EMIT immunoassay kit for the quantitation of theophylline in serum or plasma has been modified to produce a rapid, amperometric immunoassay requiring a 50 μl whole blood sample. The basis of the detection system for the assay is the electrochemical oxidation of NADH produced by G6PDH-labelled theophylline at a potential of + 150 mV vs Ag/AgCl using platinised activated carbon (PACE) electrodes. Comparison of the amperometric whole blood method with the conventional spectrophotometric plasma assay produced a reasonable correlation: Y = 0·90x − 1·01, (r = 0·98, N = 12). The advantage of the new method is that simple and robust instrumentation can rapidly determine theophylline in whole blood with no sample pre-treatment or separation steps.  相似文献   

20.
A reversed-phase ion-pair high-performance liquid chromatography method for the determination of acyclovir and its metabolite 9-carboxymethoxymethylguanine is described. The samples are purified by reversed-phase solid-phase extraction. The components are separated on a C18 column with a mobile phase containing 18% acetonitrile, 5 mM dodecyl sulphate and 30 mM phosphate buffer, pH 2.1, and measured by fluorescence detection using an excitation wavelength of 285 nm and an emission wavelenght of 380 nm. Detection limits are 0.12 μM (plasma)) and 0.60 μM (urine) for acyclovir, and 0.26 μM (plasma) and 1.3 μM (urine) for metabolite. Correlation coefficients that were better than 0.998 were obtained normally. This analytical method, which enables simultaneous measurement of parent compound and metabolite, has been used in kinetics studies and for therapeutic drug monitoring in different patient groups with variable degrees of renal dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号