首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vocal behaviour of birds may be influenced by many factors, including the risk of being detected by a predator. In Doñana Protected Area, the tawny owl co‐exists alongside its intraguild predator, the eagle owl Bubo bubo. We considered four scenarios to study the vocal behaviour of tawny owls at dusk by analysing: A) the calling rate of all males in 29 sites; B) the calling rate at dusk of males living within the home range of the intraguild predator; C) the calling rate of males living within the home range of the intraguild predator between 60 and 90 min after sunset; and D) the duration of male vocal bouts in visits where eagle owls have called. In scenario A we found that only the number of conspecific males affected the calling rate of tawny owls. In scenario B we observed that the presence of an eagle owl calling constrained the calling rate of the intraguild prey. In scenario C we found that this effect seemed mostly associated to a contemporaneous detection of the intraguild predator’s calls. Finally, in scenario D we found no significant effects on bout duration. These results seem to indicate that tawny owls use their intraguild predator’s calls as a cue to assess predation risk, and then adjust their vocal behaviour in order to minimize predation risk by a predator that may locate its prey by its vocalizations.  相似文献   

2.
Predators directly and indirectly affect the density and the behavior of prey. These effects may potentially cascade down to lower trophic levels. In this study, we tested the effects of predator calls (playbacks of bird vocalizations: Tyto alba, Speotyto cunicularia, and Vanellus chilensis), predator visual stimuli (stuffed birds) and interactions of visual and auditory cues, on the behavior of frugivore phyllostomid bats in the field. In addition, we tested if the effects of predation risk cascade down to other trophic levels by measuring rates of seed dispersal of the tree Muntingia calabura. Using video recording, we found that bats significantly decreased the foraging frequency on trees when a visual cue of T. alba was present. However, no stimuli of potential predatory birds, including vocalization of T. alba, affected bat foraging frequency. There was a change in bat behavior during 7 min, but then their frequency of activity gradually increased. Consequently, the presence of T. alba decreased by up to ten times the rate of seed removal. These results indicate that risk sensitivity of frugivorous phyllostomid bats depends on predator identity and presence. Among the predators used in this study, only T. alba is an effective bat predator in the Neotropics. Sound stimuli of T. alba seem not to be a cue of predation risk, possibly because their vocalizations are used only for intraspecific communication. This study emphasizes the importance of evaluating different predator stimuli on the behavior of vertebrates, as well as the effects of these stimuli on trait-mediated trophic cascades.  相似文献   

3.
Rodents usually respond to the presence of owls by reducing overall activity, in particular foraging. In this study, a playback of recorded tawny owl, Strix aluco, calls was sufficient to induce a marked effect in the social (Gunther's) vole, Microtus socialis. Some of the voles exposed to owl calls reduced their activity ('freeze' pattern) unlike control voles exposed to a human voice. Other voles, however, dashed around the cage ('flee' pattern). Owl calls also increased corticosterone levels in the voles, showing that the calls induced stress. We suggest that the behavioural dichotomy to freeze or flee in voles is a result of differences in individual normal behaviour and/or in stimulus interpretation. In the common spiny mouse, Acomys cahirinus, no behavioural changes were detected after exposure to owl calls, despite increased cortisol levels which are indicative of stress. Differences in the habitats of voles and spiny mice may explain the apparent lack of behavioural response in the latter. They are rock-dwelling rodents preferentially foraging between boulders and in rock crevices, where they are relatively protected from aerial predation, whereas voles forage in relatively open spaces. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

4.
The risk of predation can have large effects on ecological communities via changes in prey behaviour, morphology and reproduction. Although prey can use a variety of sensory signals to detect predation risk, relatively little is known regarding the effects of predator acoustic cues on prey foraging behaviour. Here we show that an ecologically important marine crab species can detect sound across a range of frequencies, probably in response to particle acceleration. Further, crabs suppress their resource consumption in the presence of experimental acoustic stimuli from multiple predatory fish species, and the sign and strength of this response is similar to that elicited by water-borne chemical cues. When acoustic and chemical cues were combined, consumption differed from expectations based on independent cue effects, suggesting redundancies among cue types. These results highlight that predator acoustic cues may influence prey behaviour across a range of vertebrate and invertebrate taxa, with the potential for cascading effects on resource abundance.  相似文献   

5.
Page RA  Ryan MJ 《Current biology : CB》2006,16(12):1201-1205
The fringe-lipped bat, Trachops cirrhosus, uses prey-emitted acoustic cues (frog calls) to assess prey palatability . Previous experiments show that wild T. cirrhosus brought into the laboratory are flexible in their ability to reverse the associations they form between prey cues and prey quality . Here we asked how this flexibility can be achieved in nature. We quantified the rate at which bats learned to associate the calls of a poisonous toad species with palatable prey by placing bats in three groups: (a) social learning, in which a bat inexperienced with the novel association was allowed to observe an experienced bat; (b) social facilitation, in which two inexperienced bats were presented with the experimental task together; and (c) trial-and-error, in which a single inexperienced bat was presented with the experimental task alone. In the social-learning group, bats rapidly acquired the novel association in an average of 5.3 trials. In the social-facilitation and trial-and-error groups, most bats did not approach the call of the poisonous species after 100 trials. Thus, once acquired, novel associations between prey cue and prey quality could spread rapidly through the bat population by cultural transmission. This is the first case to document predator social learning of an acoustic prey cue.  相似文献   

6.
Bats and moths: what is there left to learn?   总被引:3,自引:0,他引:3  
Abstract.  Over 14 families of moths have ears that are adapted to detect the ultrasonic echolocation calls of bats. On hearing a bat, these moths respond with an escape response that reduces their chances of being caught. As an evolutionary response, bats may then have evolved behavioural strategies or changes in call design to overcome the moth's hearing. The nature of this interaction is reviewed. In particular, the role of the echolocation calls of bats in the shaping of the structure, neurophysiology and behavioural responses of moths is discussed. Unresolved issues, such as the structural complexity of the moth's auditory system, the nature of temporal integration and the role of the non-auditory B cell, are described. Issues in which the interactions between bats and moths may be of more general interest to biologists, such as noise filtering within the central nervous system, protean behaviours and coevolution between predator and prey, are also discussed. The interaction between bats and moths has much to interest general biologists, and may provide a useful model in understanding the neurophysiological basis of behaviour, including protean escape behaviours. The validity of the term coevolution as applied to this system is discussed, as there is no doubt that the auditory system of moths is a response to the echolocation calls of bats, although the evolutionary response of bats to moths is more ambiguous.  相似文献   

7.
Acoustic detectors have become increasingly used by bat workers to investigate bat ecology and assess the impacts of anthropogenic pressures. Within these studies, the metric used, ‘bat activity’, is based on the number of bat passes, without considering the bat pass duration (i.e. each event of a bat detected within the range of an ultrasonic detector). We expected that bat pass duration may contain information about site quality in terms of foraging potential. Because bats are expected to have a more sinuous trajectory and slower velocity when they exhibit foraging behaviour, as opposed to commuting behaviour, we hypothesize a longer bat pass duration in favourable habitats; during seasons with important energetic demands; or during night peak activity. We used datasets from a large-scale acoustic bat survey (n = 2890 sites), with a total of 24,597 bat pass measures from 6 taxa, and performed GLMM modelling. We detected a significant effect of habitat type on bat pass duration for five taxa. Shorter bat pass durations were detected at the beginning of the night. We detected longer pass durations during the lactation period or just before hibernating, while weather conditions or ageing and wear of the detector rarely influenced bat pass duration. Bat pass duration appears to be a simple and easy measure for position calls on a gradient between commuting vs. foraging behaviour. We suggest that the traditional measure of bat activity may be weighted by bat pass duration by giving more weight to events with potentially stronger links to foraging behaviour.  相似文献   

8.
Many aspects of animal behaviour are affected by real‐time changes in the risk of predation. This conclusion holds for virtually all taxa and ecological systems studied, but does it hold for bats? Bats are poorly represented in the literature on anti‐predator behaviour, which may reflect a lack of nocturnal predators specialized on bats. If bats actually experience a world with minimal anti‐predator concerns, then they will provide a unique contrast within the realm of vertebrate ecology. Alternatively, such predator‐driven behaviour in bats may not yet be fully understood, given the difficulties in working with these highly mobile and nocturnal animals. We provide a wide‐ranging exploration of these issues in bat behaviour. We first cover the basic predator‐prey information available on bats, both on potential predators and the ways in which bats might perceive predators and respond to attacks. We then cover work relevant to key aspects of bat behaviour, such as choice of daytime roosts, the nature of sleep and torpor, evening roost departures, moonlight avoidance, landscape‐related movement patterns, and habitat selection. Overall, the evidence in favour of a strong influence of predators on bat behaviour is equivocal, with the picture clouded by contradictory results and a lack of information on potential predators and the perception of risk by bats. It seems clear that day‐active bats run a considerable risk of being killed by diurnal raptors, which are able to capture bats with relative ease. Thus, bats taking advantage of a pulse of insects just prior to sunset are likely taking risks to gain much‐needed energy. Further, the choice of daytime roosts by bats is probably strongly influenced by roost safety. Few studies, however, have directly addressed either of these topics. As a group, insectivorous temperate‐zone bats show no clear tendency to avoid apparently risky situations, such as activity on moonlit nights. However, some observations are consistent with the idea that predation risk affects choice of movement paths and feeding areas by temperate‐zone bats, as well as the timing of roost departures. The behaviour of tropical bats, on the other hand, seems more generally influenced by predators; this is especially true for tropical nectarivores and frugivores, but also for insectivorous bats. Presumably there are more serious predators on bats in the tropics (e.g. specialized raptors or carnivorous bats), but the identity of these predators is unclear. More information is needed to assess fully the influence of predators on bat behaviour. There is much need for work on the ways in which bats perceive predators via auditory, visual, and olfactory cues, and whether bats have some knowledge of the risks posed by different predators. Also needed is information on how predators attack bats and how bats react to attacking predators. Difficult to obtain, but of critical value, will be information on the nature of the predation risk experienced by bats while away from roosts and during the full darkness of night.  相似文献   

9.
Predation plays an important role in ecological communities by affecting prey behavior such as foraging and by physical removal of individual prey. In regard to foraging, animals such as desert rodents often balance conflicting demands for food and safety. This has been studied in the field by indirectly manipulating predatory risk through the alteration of cues associated with increased risk such as cover or illumination. It has also been studied by directly manipulating the presence of predators in aviaries. Here, we report on experiments in which we directly manipulated actual predatory risk to desert rodents in the field. We conducted a series of experiments in the field using a trained barn owl (Tyto alba) to investigate how two species of coexisting gerbils (Gerbillus allenbyi and G. pyramidum) respond to various cues of predatory risk in their natural environment. The gerbils responded to risk of predation, in the form of owl flights and owl hunger calls, by reducing their activity in the risky plot relative to the control plot. The strongest response was to owl flights and the weakest to recorded hunger calls of owls. Furthermore, when risk of predation was relatively high, as in the case with barn owl flights, both gerbil species mostly limited their activity to the safer bush microhabitat. The response of the gerbils to risk of predation disappeared very quickly following removal of the treatment, and the gerbils returned to normal levels of activity within the same night. The gerbils did not respond to experimental cues (alarm clock), the presence of the investigators, the presence of a quiet owl, and recorded white noise. Using trained barn owls, we were able to effectively manipulate actual risk of predation to gerbils in natural habitats and to quantify how gerbils alter their behavior in order to balance conflicting demands of food and safety. The method allows assessment of aspects of behavior, population interactions, and community characteristics involving predation in natural habitats.  相似文献   

10.
Animals can use different sources of information when making decisions. Foraging animals often have access to both self-acquired and socially acquired information about prey. The fringe-lipped bat, Trachops cirrhosus, hunts frogs by approaching the calls that frogs produce to attract mates. We examined how the reliability of self-acquired prey cues affects social learning of novel prey cues. We trained bats to associate an artificial acoustic cue (mobile phone ringtone) with food rewards. Bats were assigned to treatments in which the trained cue was either an unreliable indicator of reward (rewarded 50% of the presentations) or a reliable indicator (rewarded 100% of the presentations), and they were exposed to a conspecific tutor foraging on a reliable (rewarded 100%) novel cue or to the novel cue with no tutor. Bats whose trained cue was unreliable and who had a tutor were significantly more likely to preferentially approach the novel cue when compared with bats whose trained cue was reliable, and to bats that had no tutor. Reliability of self-acquired prey cues therefore affects social learning of novel prey cues by frog-eating bats. Examining when animals use social information to learn about novel prey is key to understanding the social transmission of foraging innovations.  相似文献   

11.
Owl predation on snowshoe hares: consequences of antipredator behaviour   总被引:4,自引:0,他引:4  
We show evidence of differential predation on snowshoe hares (Lepus americanus) by great horned owls (Bubo virginianus) and ask whether predation mortality is related to antipredator behaviour in prey. We predicted higher predation on (1) young and inexperienced hares, (2) hares in open habitats lacking cover to protect from owl predation, and (3) hares in above average condition assuming that rich food patches are under highest risk of predation. Information on killed hares was obtained at nest sites of owls and by monitoring hares using radio-telemetry. The availability of age classes within the hare population was established from live-trapping and field data on reproduction and survival. Great horned owls preferred juvenile over adult hares. Juveniles were more vulnerable to owl predation before rather than after dispersal, suggesting that displacement or increased mobility were not causes for this increased mortality. Owls killed ratio-collared hares more often in open than in closed forest types, and they avoided or had less hunting success in habitats with dense shrub cover. Also, owls took hares in above average condition, although it is unclear whether samples from early spring are representative for other seasons. In conclusion, these results are consistent with the hypothesis that variation in antipredator behaviours of snowshoe hares leads to differential predation by great horned owls.  相似文献   

12.
Animal foraging and reproductive behaviour is influenced by other simultaneous demands such as predator avoidance. The trade-offs between these demands may depend on sex or mating experience. This study demonstrates that the olfactory-mediated foraging and mate-seeking behaviours in the silver Y moths, Autographa gamma , are affected by auditory cues mimicking their bat predators. Both males and females changed their foraging behaviour under simulated predation risk. Fewer moths reached the odour source following sound stimulation and the time to find the odour source increased by up to 250%. However, there were no significant differences between male and female ability to reach the plant odour source or the duration of the flight towards the source when stimulated with ultrasound. Hence females are not more cautious than males when observed in the same behavioural context. Risk-taking in males was independent of whether they were flying toward a flower odour or sex pheromones having equal attractive value. This indicates that the trade-off between olfactory and acoustic cues is independent the type of odour. Mated females were not as strongly affected by sound as non-mated, indicating that flower odours have a higher adaptive value for mated females, suggesting that some processes following mating experience influence the trade-off between flower odours and simulated bat sounds.  相似文献   

13.
We investigated potential defense behaviors of adult western spruce budworm (Choristoneura occidentalis), a non-auditive lepidopteran, against bat predation. Although western spruce budworm moths started to fly before sunset, earlier than many species of moths, temporal isolation of flying moths from foraging bats was incomplete as moths were most active after sunset once bats were foraging. Flying C. occidentalis were most active close to their host trees, and thus were isolated from some bat activity because vegetation limits foraging by some bats. Moths mostly flew near the tops of trees, an area that may have a high predation pressure from bats. Resting western spruce budworm spent little time fluttering their wings or crawling, behaviors that are used as cues by gleaning bats. The outbreak nature of this species, in which large numbers of moths are active at one time, may allow dilution effects to reduce predation risk.  相似文献   

14.
The California spotted owl (Strix occidentalis occidentalis) is an older-forest associated species that resides at the center of forest management planning in the Sierra Nevada and Southern California, USA, which are experiencing increasingly large and severe wildfires and drought-related tree mortality. We leveraged advances in passive acoustic survey technologies to develop an acoustically assisted survey design that could increase the efficiency and effectiveness of project-level surveys for spotted owls, allowing surveys to be completed in a single year instead of in multiple years. We deployed an array of autonomous recording units (ARUs) across a landscape and identified spotted owl vocalizations in the resulting audio using BirdNET. We then evaluated spatio-temporal patterns in spotted owl vocalizations near occupied territories and the ability of a crew naïve to the location of occupied territories to locate spotted owls based on patterns of acoustic detections. After only 3 weeks of acoustic surveys, ≥1 ARU within 750 m of all 17 occupied territories obtained spotted owl detections across ≥2 nights. When active surveys using broadcast calling were conducted near ARUs with spotted owl detections by surveyors naïve to territory occupancy status and locations, surveyors located owls in 93% to 100% of occupied territories with ≤3 surveys. To further improve the efficiency of spotted owl surveys, we developed a statistical model to identify and prioritize areas across the Sierra Nevada for different survey methods (active only, acoustically assisted, no surveys) based on the expected probability of occupancy predicted from remotely sensed measurements of tree height and historical occupancy. Depending on managers' tolerance for false negatives, this model could help identify large areas that might not benefit from surveys based on low expected occupancy probabilities and areas where acoustically assisted surveys might enhance survey effectiveness and efficiency. Collectively, these findings can help managers streamline the survey process and thus increase the pace of forest restoration while minimizing potential near-term adverse effects on California spotted owls.  相似文献   

15.
Acquiring information via observation of others can be an efficient way to respond to changing situations or learn skills, particularly for inexperienced individuals. Many bat species are gregarious, yet few studies have investigated their capacity for learning from conspecifics. We tested whether big brown bats (Eptesicus fuscus) can learn a novel foraging task by interacting with knowledgeable conspecifics. In experimental trials 11 na?ve bats (7 juveniles, 4 adults) interacted freely with trained bats that were capturing tethered mealworms, while in control trials 11 na?ve bats (7 juveniles, 4 adults) flew with untrained bats. Na?ve bats were then assessed for their ability to capture tethered mealworms. While no bat in the control group learned the task, a significant number of experimental bats, including juveniles with little or no experience foraging, showed evidence of learning. Eighty-two per cent of experimental bats and 27% of control bats directed feeding buzzes (echolocation calls associated with prey capture) at the mealworm. Furthermore, seven experimental bats (64%) showed evidence of learning by attacking and/or capturing the mealworm, while no bat in the control group attacked or captured the prey. Analyses of high-speed stereo video recordings revealed increased interaction with demonstrators among bats attacking or capturing the mealworm. At the time they displayed evidence of learning, bats flew closer together during feeding buzzes than during other portions of trials. Our results demonstrate that social interaction with experienced bats, and listening to feeding buzzes in particular, may play an integral role in development of foraging skills in bats.  相似文献   

16.
Gareth  Jones 《Journal of Zoology》1995,237(2):303-312
The noctule Nyctulus noctula (Schreber, 1774) is a relatively large (c. 25 g) insectivorous bat which catches insects on the wing (by aerial hawking). Emergence at a maternity roost was earliest relative to sunset when females were lactating, and bats may then have risked predation by flying at higher light levels during a period of high energy demand. Flight performance was quantified by using stereophotogrammetry. At feeding sites bats flew at 6.0 ± 2.1 m/s. This was faster than predicted minimum power speed (V mp), and either between V mp and maximum range speed (V mr), or close to their predicted V mr, depending on which aerodynamic model of flight power requirements was used. The echolocation behaviour of noctules is flexible. Long duration, low frequency calls (c. 20 kHz) with little frequency modulation were emitted while cruising, but at foraging sites the calls became more frequency-modulated. As the noctule is traditionally thought of as using low frequency echolocation, it was expected to receive weak echoes from small targets and therefore to specialize in eating large insect prey. Although the bats ate mainly beetles, large numbers of small dipterans were also eaten. The noctule is probably able to detect such small items because, when foraging, its calls become broadband and sweep from high frequencies. Higher harmonics are also present, and these may assist in the detection of small prey. In noctules, as in many bats, there appears to be a 1:1 link between wingbeat and call production during the search phase of foraging.  相似文献   

17.
It is commonly assumed that aerial insectivorous bats in the tropics respond to moonlight intensity by decreasing their foraging activity during bright nights due either to an increase in predation risk, or to a reduction in insect availability.The effect of moonlight on bat activity can be measured both between nights and within a single night. However, few studies have simultaneously used both approaches, and most authors generally compare bat activity with lunar phases. Our main aim was to evaluate how moonlight influences aerial insectivorous bat activity at different time scales: between nights and within the same night. Activity of five bat species was measured using autonomous ultrasound recording stations and moonlight intensity percentages retrieved from the Moontool program nightly throughout a 53-day sampling period. Only one species (Myotis riparius) responded negatively to moonlight, while two species (Pteronotus parnellii and Saccopteryx leptura) increased their foraging activity in moonlight. For Cormura brevirostris and S. bilineata, moonlight intensity did not affect activity level. Bat activity was greater for all species at the beginning of the night, independent of the presence of the moon, indicating that foraging just after the sunset is adaptive. Thus, bat response to the effect of moonlight intensity is more apparent between nights than within a single night and may depend on species-specific traits, such as flight speed, flexibility in habitat use and body size.  相似文献   

18.
Although homeotherms likely experience costs of both predation risk and thermoregulation while foraging, it is unclear how foragers contend with these costs. We used foraging trays placed in sheltered microsites to determine whether temperature, a direct cue of predator presence (predator urine) and an indirect cue of predation risk (cloudy nights) affect foraging of white-footed mice, Peromyscus leucopus , in winter. Mice were presented with urine from bobcats, Lynx rufus , red foxes, V ulpes vulpes , and coyotes, Canis latrans , an herbivore (whitetailed deer, Odocoileus virginianus ), and a water control. To measure rodent foraging, we used seeds of millet mixed with sand to quantify giving-up densities (the number of seeds left in each foraging tray). Giving-up density was not affected by predator urine. Rather, rodent foraging was affected by an interaction of temperature and weather. On overcast nights, when predation risk was likely lower, mice foraged more when soil temperature was higher, presumably reducing thermoregulatory costs. On clear nights, foraging was low regardless of soil temperature, presumably because foraging was more risky. These results suggest that mice consider thermoregulatory costs and predation risk when making foraging decisions, and that the indirect cue afforded by weather, rather than the direct cue of predator urine, is among the cues used to make foraging decisions. Moreover, these results suggest that sensitivity to a particular cue is likely to be context-dependent.  相似文献   

19.
Food availability and predation risk can have drastic impacts on animal behaviour and populations. The tradeoff between foraging and predator avoidance is crucial for animal survival and will strongly affect individual body mass, since large fat reserves are beneficial to reduce starvation but may increase predation risk. However, two‐factor experiments simultaneously investigating the interactive effects of food and predation risk, are still rare. We studied the effects of food supplementation and natural predation risk imposed by pygmy owls Glaucidium passerinum on the abundance and fat reserves of tit species in boreal forests of north Europe, from January to March in 2012 and in 2013. Food supplementation increased the number of individuals present in a given forest patch, whereas the level of predation risk had no clear impact on the abundance of tit species. The stronger impact of food supply respect to predation risk could be the consequence of the harsh winter conditions in north Europe, with constant below‐zero temperatures and only few (5–7 h) daylight hours available for foraging. Predation risk did not have obvious effects on tit abundance but influenced food consumption and, together with food supplementation, affected the deposition of subcutaneous fat in great tits Parus major. High owl predation risk had detrimental effects on body fat reserves, which may reduce over‐winter survival, but the costs imposed by pygmy owl risk were compensated when food was supplemented. The starvation–predation tradeoff faced by great tits in winter may thus be mediated through variation in body fat reserves. In small species living in harsh environment, this tradeoff appeared thus to be biased towards avoidance of starvation, at the cost of increasing predation risk.  相似文献   

20.
Noise pollution from human traffic networks and industrial activity impacts vast areas of our planet. While anthropogenic noise effects on animal communication are well documented, we have very limited understanding of noise impact on more complex ecosystem processes, such as predator-prey interactions, albeit urgently needed to devise mitigation measures. Here, we show that traffic noise decreases the foraging efficiency of an acoustic predator, the greater mouse-eared bat (Myotis myotis). These bats feed on large, ground-running arthropods that they find by listening to their faint rustling sounds. We measured the bats' foraging performance on a continuous scale of acoustically simulated highway distances in a behavioural experiment, designed to rule out confounding factors such as general noise avoidance. Successful foraging bouts decreased and search time drastically increased with proximity to the highway. At 7.5 m to the road, search time was increased by a factor of five. From this increase, we predict a 25-fold decrease in surveyed ground area and thus in foraging efficiency for a wild bat. As most of the bats' prey are predators themselves, the noise impact on the bats' foraging performance will have complex effects on the food web and ultimately on the ecosystem stability. Similar scenarios apply to other ecologically important and highly protected acoustic predators, e.g. owls. Our study provides the empirical basis for quantitative predictions of anthropogenic noise impacts on ecosystem processes. It highlights that an understanding of the effects of noise emissions and other forms of 'sensory pollution' are crucially important for the assessment of environmental impact of human activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号