首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As to functional consequences of Ca2+ uptake in isolated rat liver mitochondria, we simultaneously measured 3H2O and [14C]sucrose spaces, monovalent cation distribution, membrane potential and delta pH across the inner membrane, and [32P]phosphate and 45Ca2+ content in parallel incubations of different ionic composition. Without added Ca2+ and phosphate, mitochondrial matrix volume, membrane potential, and delta pH depended on the concentration and permeability of monovalent cations. Despite large differences in membrane potential, maximal Ca2+ uptake was identical under all conditions. Ca2+ uptake never provoked a volume change from which an osmotic active state of mitochondrial Ca2+ could be concluded. If matrix volume shrunk this could be totally accounted for by the loss of alkali ions exchanging for calcium ions. Even phosphate taken up in conjunction with Ca2+ was osmotically silent. Volume increases here occurring if K+ was permeabilized, solely resulted from K+ uptake, though this condition may give rise to irreversible mitochondrial damage with Ca2+ and phosphate release. As mitochondrial Ca2+ is bound, an electro-chemical equilibrium across the membrane is impossible for this ion. This has to be considered in any model describing equilibria of Ca2+ with mitochondria, though present models neglect this state of mitochondrial Ca2+.  相似文献   

2.
Ba2+ ions inhibit the release of Ca2+ ions from rat liver mitochondria   总被引:1,自引:0,他引:1  
The release of Ca2+ from respiring rat liver mitochondria following the addition of either ruthenium red or an uncoupler was measured by a Ca2+-selective electrode or by 45Ca2+ technique. Ba2+ ions are asymmetric inhibitors of both Ca2+ release processes. Ba2+ ions in a concentration of 75 microM inhibited the ruthenium red and the uncoupler induced Ca2+ release by 80% and 50%, respectively. For the inhibition, it was necessary that Ba2+ ions entered the matrix space: Ba2+ ions did not cause any inhibition of Ca2+ release if addition of either ruthenium red or the uncoupler preceded that of Ba2+. The time required for the development of the inhibition of the Ca2+ release and the time course of 140Ba2+ uptake ran in parallel. Ba2+ accumulation is mediated through the Ca2+ uniporter as 140Ba2+ uptake was competitively inhibited by extramitochondrial Ca2+ and prevented by ruthenium red. Due to the inhibition of the ruthenium red insensitive Ca2+ release, Ba2+ shifted the steady-state extramitochondrial Ca2+ concentration to a lower value. Ba2+ is potentially a useful tool to study mitochondrial Ca2+ transport.  相似文献   

3.
Simultaneous measurements of oxygen consumption and transmembrane transport of Ca2+, H+, and phosphate show that the efflux of Ca2+ from respiring tightly coupled rat liver mitochondria takes place by an electroneutral Ca2+/2H+ antiport process that is ruthenium red-insensitive and that is regulated by the oxidation-reduction state of the mitochondrial pyridine nucleotides. When mitochondrial pyridine nucleotides are kept in a reduced steady state, the efflux of Ca2+ is inhibited; when they are in an oxidized state, Ca2+ efflux is activated. These processes were demonstrated by allowing phosphate-depleted mitochondria respiring on succinate in the presence of rotenone to take up Ca2+ from the medium. Upon subsequent addition of ruthenium red to block Ca2+ transport via the electrophoretic influx pathway, and acetoacetate, to bring mitochondrial pyridine nucleotides into the oxidized state, Ca2+ efflux and H+ influx ensued. The observed H+ influx/Ca2+ efflux ratio was close to the value 2.0 predicted for the operation of an electrically neutral Ca2+/2H+ antiport process.  相似文献   

4.
S Uribe  P Rangel  J P Pardo 《Cell calcium》1992,13(4):211-217
The interactions of Ca2+ with mitochondria from Saccharomyces cerevisiae were explored. Mitochondria were loaded with the metallochromic dye Fluo-3 to measure the concentration of free calcium in the matrix. Addition of EGTA or Ca2+ led to fluctuations in mitochondrial free calcium between 120 and 400 nM. Ca2+ variations were slower at 4 degrees C than at 25 degrees C or in the presence of phosphate instead of acetate. The net uptake of 45Ca2+ was higher with phosphate than with acetate. The optimum pH for Ca2+ uptake was 6.8. Ruthenium red did not affect the uptake of Ca2+. Addition of antimycin-A or uncouplers led to a small and transient release of Ca2+. Addition of EGTA or the monovalent cations Na+ or K+ resulted in higher release of Ca2+. Site I but not site II dependent O2 consumption was partially inhibited by EGTA. The effect of Ca2+ on NADH oxidation is similar to results reported with enzymes from mammalian sources which use NADH, such as the pyruvate, isocitrate and oxoglutarate dehydrogenases.  相似文献   

5.
Rat parotid gland homogenates were fractionated into mitochondrial, heavy microsomal and light microsomal fractions by differential centrifugation. ATP-dependent 45Ca2+ uptake by the subcellular fractions paralleled the distribution of NADPH-cytochrome c reductase, an enzyme associated with the endoplasmic reticulum. The highest rate of Ca2+ uptake was found in the heavy microsomal fraction. Ca2+ uptake by this fraction was dependent on the presence of ATP and was sustained at a linear rate by 5 mM-oxalate. Inhibitors of mitochondrial Ca2+ transport had no effect on the rate of Ca2+ uptake. Na+ and K+ stimulated Ca2+ uptake. At optimal concentrations. Na+ stimulated Ca2+ uptake by 120% and K+ stimulated Ca2+ uptake by 260%. Decreasing the pH from 7.4 to 6.8 had little effect on Ca2+ uptake. The Km for Ca2+ uptake was 3.7 microM free Ca2+ and 0.19 mM-ATP. Vanadate inhibited Ca2+ uptake; 60 microM-vanadate inhibited the rate of Ca2+ accumulation by 50%. It is concluded that the ATP-dependent Ca2+ transport system is located on the endoplasmic reticulum and may play a role in maintaining intracellular levels of free Ca2+ within a narrow range of concentration.  相似文献   

6.
The mitochondrial role opening (MPT) induced by Ca2+ has been studied in isolated rat heart mitochondria. MPT was characterized as cyclosporine A-inhibited swelling accompanied by the loss of membrane potential (deltapsim) and Ca2+ efflux after the Ca2+ -loading which was followed spectrophotometrically after the Ca2+ -arsenaso-III complex formation. It has been shown that in suspension of isolated mitochondria MPT was activated by low (with maximum at about 20 microM Ca2+) and high concentrations of Ca2+ (the concentration curve shows a saturation at about 1.0-1.5 mM). In all the cases an access of Ca2+ ions to the matrix space of the mitochondria was necessary for MPT induction. MPT activated by low concentrations of Ca2+ was accompanied by slow decrease of deltapsim and slow release of Ca2+, enhanced by ruthenium red (RR), and was independent of the substrate used (glutamate or succinate). It had not been observed if the respiratory chain was inhibited, even if the Ca2+ access to the inner mitochondrial membrane was provided by Ca2+ -ionophore A23187. At high Ca2+ concentrations rapid Ca2+ -uptake and release via Ca2+ -uniporter (inhibited by ruthenium red) followed by extensive swelling (pore formation) have been observed. It had been supposed that rapid MPT at high concentrations of Ca2+ was the result of Ca2+ entrance to the mitochondrial matrix and depolarisation of the mitochondrial membrane. The data obtained show two different mechanisms of Ca2+ -induced MPT. The one is sensitive to the redox-state of the electron transport chain and is abolished if the respiration is inhibited. The other is independent of mitochondrial respiration and needs only Ca2+ access to the inner mitochondrial membrane and Ca2+ binding to some specific sites leading to MPT opening.  相似文献   

7.
Interactions between spermine and Mg2+ on mitochondrial Ca2+ transport   总被引:2,自引:0,他引:2  
The effects of the polyamine spermine on the regulation of Ca2+ transport by subcellular organelles from rat liver, heart, and brain were investigated using ion-sensitive minielectrodes and a 45Ca2+ tracer method. Spermine stimulated Ca2+ uptake by mitochondria but not by microsomes. In the presence of spermine, isolated mitochondria could maintain a free extramitochondrial Ca2+ concentration of 0.3-0.2 microM. Stimulation of the initial rates of Ca2+ uptake and 45Ca2+ cycling of mitochondria by spermine shows that this was accomplished through a decrease of the apparent Km for Ca2+ uptake by the Ca2+ uniporter. The half maximally effective concentration of spermine (50 microM) was in the range of physiological concentrations of this polyamine in the cell. Spermidine was five times less effective. Putrescine was ineffective. The stimulation of mitochondrial Ca2+ uptake by spermine was inhibited by Mg2+ in a concentration-dependent manner. However, the diminished contribution of the mitochondria to the regulation of the free extraorganellar Ca2+ concentration could mostly be compensated for by microsomal Ca2+ uptake. Spermine also reversed ruthenium red-induced Ca2+ efflux from mitochondria. It is concluded that spermine is an activator of the mitochondrial Ca2+ uniporter and Mg2+ an antagonist. By this mechanism, the polyamines can confer to the mitochondria an important role in the regulation of the free cytoplasmic Ca2+ concentration in the cell and of the free Ca2+ concentration in the mitochondrial matrix.  相似文献   

8.
Mitochondria have been found to sequester and release Ca2+ during cell stimulation with inositol 1,4,5-triphosphate-generating agonists, thereby generating subplasmalemmal microdomains of low Ca2+ that sustain activity of capacitative Ca2+ entry (CCE). Procedures that prevent mitochondrial Ca2+ uptake inhibit local Ca2+ buffering and CCE, but it is not clear whether Ca2+ has to transit through or remains trapped in the mitochondria. Thus, we analyzed the contribution of mitochondrial Ca2+ efflux on the ability of mitochondria to buffer subplasmalemmal Ca2+, to maintain CCE, and to facilitate endoplasmic reticulum (ER) refilling in endothelial cells. Upon the addition of histamine, the initial mitochondrial Ca2+ transient, monitored with ratio-metric-pericam-mitochondria, was largely independent of extracellular Ca2+. However, subsequent removal of extracellular Ca2+ produced a reversible decrease in [Ca2+]mito, indicating that Ca2+ was continuously taken up and released by mitochondria, although [Ca2+]mito had returned to basal levels. Accordingly, inhibition of the mitochondrial Na+/Ca2+ exchanger with CGP 37157 increased [Ca2+]mito and abolished the ability of mitochondria to buffer subplasmalemmal Ca2+, resulting in an increased activity of BKCa channels and a decrease in CCE. Hence, CGP 37157 also reversibly inhibited ER refilling during cell stimulation. These effects of CGP 37157 were mimicked if mitochondrial Ca2+ uptake was prevented with oligomycin/antimycin A. Thus, during cell stimulation a continuous Ca2+ flux through mitochondria underlies the ability of mitochondria to generate subplasmalemmal microdomains of low Ca2+, to facilitate CCE, and to relay Ca2+ from the plasma membrane to the ER.  相似文献   

9.
Ca2+-release pathways from Ca2+-preloaded mitochondria of the yeast Endomyces magnusii were studied. In the presence of phosphate as a permeant anion, Ca2+ was released from respiring mitochondria only after massive cation loading at the onset of anaerobiosis. Intensive aeration of the mitochondrial suspension rapidly inhibited the efflux of Ca2+ and induced its reuptake. The Ca2+ release was not affected by cyclosporin A, an inhibitor of the nonselective permeability transition of mammalian mitochondria. With acetate as the permeant anion, a spontaneous net Ca2+ efflux began after uptake of about 75% of the added cation. The rate of this efflux was insensitive to cyclosporin A, aeration, and Na+ and was proportional to the Ca2+ load. The Ca2+ release was inhibited by La3+, Mn2+, Mg2+, TPP+, and nigericin (in the presence of KCl) and activated by spermine and hypotonicity. We conclude that Ca2+ efflux from preloaded E. magnusii mitochondria is very similar to the Na+-independent specific pathway for Ca2+ release operative in mitochondria from nonexcitable mammalian tissues.  相似文献   

10.
The sensitivity of rat epididymal-adipose-tissue pyruvate dehydrogenase phosphate phosphatase, NAD+-isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase to Ca2+ ions was studied both in mitochondrial extracts and within intact coupled mitochondria. It is concluded that all three enzymes may be activated by increases in the intramitochondrial concentration of Ca2+ and that the distribution of Ca2+ across the mitochondrial inner membrane is determined, as in rat heart mitochondria, by the relative activities of a uniporter (which transports Ca2+ into mitochondria and is inhibited by Mg2+ and Ruthenium Red) and an antiporter (which allows Ca2+ to leave mitochondria in exchange for Na+ and is inhibited by diltiazem). Previous studies with incubated fat-cell mitochondria have indicated that the increases in the amount of active non-phosphorylated pyruvate dehydrogenase in rat epididymal tissue exposed to insulin are the result of activation of pyruvate dehydrogenase phosphate phosphatase. In the present studies, no changes in the activity of the phosphatase were found in extracts of mitochondria, and thus it seemed likely that insulin altered the intramitochondrial concentration of some effector of the phosphatase. Incubation of rat epididymal adipose tissue with medium containing a high concentration of CaCl2 (5mM) was found to increase the active form of pyruvate dehydrogenase to much the same extent as insulin. However, the increases caused by high [Ca2+] in the medium were blocked by Ruthenium Red, whereas those caused by insulin were not. Moreover, whereas the increases resulting from both treatments persisted during the preparation of mitochondria and their subsequent incubation in the absence of Na+, only the increases caused by treatment of the tissue with insulin persisted when the mitochondria were incubated in the presence of Na+ under conditions where the mitochondria are largely depleted of Ca2+. It is concluded that insulin does not act by increasing the intramitochondrial concentration of Ca2+. This conclusion was supported by finding no increases in the activities of the other two Ca2+-responsive intramitochondrial enzymes (NAD+-isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase) in mitochondria prepared from insulin-treated tissue compared with controls.  相似文献   

11.
Calcium uptake by rat liver mitochondria driven by an artificial pH gradient is ruthenium red insensitive, electrically neutral, and inhibited by the local anesthetic, nupercaine. This pH-driven Ca2+ transport is also inhibited by NH3, Pi, and acetate. Direct measurements of Pi indicate it is not translocated with Ca2+ during pH-driven Ca2+ uptake. Calcium is therefore not transported by a Ca2+-Pi symport mechanism. Ruthenium red-insensitive Ca2+ efflux is similar in its inhibition by nupercaine and its kinetics, and is also electroneutral. This suggests that the Ca2+ uptake described here occurs via reversal of the principal pathway of mitochondrial Ca2+ release. From the available data, pH-driven Ca2+ uptake (and presumably Ca2+ efflux) is hypothesized to occur by Ca2+ symport with unidentified anions. Protons may move counter to Ca2+ or reversibly dissociate from cotransported anions, which therefore couples Ca2+ transport to the pH gradient.  相似文献   

12.
Parallel efflux of Ca2+ and Pi in energized rat liver mitochondria.   总被引:2,自引:2,他引:0       下载免费PDF全文
Addition of Ruthenium Red to energized rat liver mitochondria that have previously accumulated Ca2+ and phosphate from the external medium induces a parallel efflux of both these ions. Mersalyl or dithioerythritol, which decrease Ruthenium Red-insensitive Ca2+ efflux, also decrease phosphate efflux to the same extent. Conversely diazenedicarboxylic acid bis(NN-dimethylamide) (DDBA), which increases the Ruthenium Red-induced Ca2+ efflux concurrently increases phosphate release. Dithioerythritol and DDBA, reducing and oxidizing agents of thiol groups respectively, modify Ca2+ and Pi efflux without penetrating the mitochondrial inner membrane. Under all the adopted conditions the membrane potential is preserved. The release of resting respiration and the parallel efflux of Mg2+ and adenine nucleotides, events closely correlated to Ca2+ cycling, are equally prevented either by mersalyl, which inhibits phosphate transport, or dithioerythritol; DDBA has the opposite effect. These findings and the observation that suggest that Ca2+ and phosphate transport in energized liver mitochondria are closely related and dependent on the redox state of membrane-bound thiol groups.  相似文献   

13.
Properties of different Ca2+ pools in permeabilized rat thymocytes   总被引:1,自引:0,他引:1  
The regulation of free Ca2+ concentration by intracellular pools and their participation in the mitogen-induced changes of the cytosolic free Ca2+ concentration, [Ca2+]i, was studied in digitonin-permeabilized and intact rat thymocytes using a Ca2+-selective electrode, chlortetracycline fluorescence and the Ca2+ indicator quin-2. It is shown that in permeabilized thymocytes Ca2+ can be accumulated by two intracellular compartments, mitochondrial and non-mitochondrial. Ca2+ uptake by the non-mitochondrial compartment, presumably the endoplasmic reticulum, is observed only in the presence of MgATP, is increased by oxalate and inhibited by vanadate. The mitochondria do not accumulate calcium at a free Ca2+ concentration below 1 microM. The non-mitochondrial compartment has a greater affinity for calcium and is capable of sequestering Ca2+ at a free Ca2+ concentration less than 1 microM. At free Ca2+ concentration close to the cytoplasmic (0.1 microM) the main calcium pool in permeabilized thymocytes is localized in the non-mitochondrial compartment. Ca2+ accumulated in the non-mitochondrial pool can be released by inositol 1,4,5-triphosphate (IP3) which has been inferred to mediate Ca2+ mobilization in a number of cell types. Under experimental conditions in which ATP-dependent Ca2+ influx is blocked, the addition of IP3 results in a large Ca2+ release from the non-mitochondrial pool; thus IP3 acts by activation of a specific efflux pathway rather than by inhibiting Ca2+ influx. SH reagents do not prevent IP3-induced Ca2+ mobilization. Addition of the mitochondrial uncouplers, FCCP or ClCCP, to intact thymocytes results in no increase in [Ca2+]i measured with quin-2 tetraoxymethyl ester whereas the Ca2+ ionophore A23187 induces a Ca2+ release from the non-mitochondrial store(s). Thus, the data obtained on intact cells agree with those obtained in permeabilized thymocytes. The mitogen concanavalin A increases [Ca2+]i in intact thymocytes suspended in both Ca2+-containing an Ca2+-free medium. This indicates a mitogen-induced mobilization of an intracellular Ca2+ pool, probably via the IP3 pathway.  相似文献   

14.
Energization of mitochondria significantly alters the pattern of Ca2+ wave activity mediated by activation of the inositol (1,4,5) trisphosphate (IP3) receptor (IP3R) in Xenopus oocytes. The number of pulsatile foci is reduced and spiral Ca2+ waves are no longer observed. Rather, target patterns of Ca2+ release predominate, and when fragmented, fail to form spirals. Ca2+ wave velocity, amplitude, decay time, and periodicity are also increased. We have simulated these experimental findings by supplementing an existing mathematical model with a differential equation for mitochondrial Ca2+ uptake and release. Our calculations show that mitochondrial Ca2+ efflux plays a critical role in pattern formation by prolonging the recovery time of IP3Rs from a refractory state. We also show that under conditions of high energization of mitochondria, the Ca2+ dynamics can become bistable with a second stable stationary state of high resting Ca2+ concentration.  相似文献   

15.
In the present study, we evaluated proapoptotic protein Bax on mitochondria and Ca2+ homeostasis in primary cultured astrocytes. We found that recombinant Bax (rBax, 10 and 100 ng/ml) induces a loss in mitochondrial membrane potential (Delta Psi m). This effect might be related to the inhibition of respiratory rates and a partial release of cytochrome c, which may change mitochondrial morphology. The loss of Delta Psi m and a selective permeabilization of mitochondrial membranes contribute to the release of Ca2+ from the mitochondria. This was inhibited by cyclosporin A (5 microM) and Ruthenium Red (1 microg/ml), indicating the involvement of mitochondrial Ca2+ transport mechanisms. Bax-induced mitochondrial Ca2+ release evokes Ca2+ waves and wave propagation between cells. Our results show that Bax induces mitochondrial alteration that affects Ca2+ homeostasis and signaling. These changes show that Ca2+ signals might be correlated with the proapoptotic activities of Bax.  相似文献   

16.
The role of intramitochondrial K+ content on the increase in membrane permeability to Ca2+, as induced by carboxyatractyloside was studied. In mitochondria containing a high K+ concentration (83 nmol/mg), carboxyatractyloside induced a fast and extensive mitochondrial Ca2+ release, membrane de-energization, and swelling. Conversely, in K(+)-depleted mitochondria (11 nmol/mg), carboxyatractyloside was ineffective. The addition of 40 mM K+ to K(+)-depleted mitochondria restored the capability of atractyloside to induce an increase in membrane permeability to Ca2+ release. The determination of matrix free Ca2+ concentration showed that, at an external free-Ca2+ concentration of 0.8 microM, control mitochondria contained 3.9 microM of free Ca2+ whereas K(+)-depleted mitochondria contained 0.9 microM free Ca2+. It is proposed that intramitochondrial K+ affects the matrix free Ca2+ concentration required to induce a state of high membrane permeability.  相似文献   

17.
Spermine enhances electrogenic Ca2+ uptake and inhibits Na(+)-independent Ca2+ efflux in rat brain mitochondria. As a result, Ca2+ retention by brain mitochondria increases greatly and the external free Ca2+ level at steady-state can be lowered to physiologically relevant concentrations. The stimulation of Ca2+ uptake by spermine is more pronounced at low concentrations of Ca2+, effectively lowering the apparent Km for Ca2+ uptake from 3 microM to 1.5 microM. However, the apparent Vmax is also increased. At low Ca2+ concentrations, Ca2+ uptake is diffusion-limited. Spermine strongly inhibits Ca2+ binding to anionic phospholipids and it is suggested that this increases the rate of surface diffusion which reduces the apparent Km for uptake. The same effect could inhibit the Na(+)-independent efflux if the rate of efflux is limited by Ca2+ dissociation from the efflux carrier. In brain mitochondria (but not in liver) the spermine effect depends on the presence of ADP. In a medium that contains physiological concentrations of Pi, Mg+, K+, ADP and spermine, brain mitochondria sequester Ca2+ down to 0.1 microM and below, depending on the matrix Ca2+ load. Moreover, brain mitochondria under the same conditions buffer the external medium at 0.4 microM, a concentration at which the set point becomes independent of the matrix Ca2+ content. Thus, mitochondria appear to be capable of modulating calcium oscillations in brain cells.  相似文献   

18.
Calcium release pathways in Ca(2+)-preloaded mitochondria from the yeast Endomyces magnusii were studied. In the presence of phosphate as a permeant anion, Ca(2+) was released from respiring mitochondria only after massive cation loading at the onset of anaerobiosis. Ca(2+) release was not affected by cyclosporin A, an inhibitor of the mitochondrial permeability transition. Aeration of the mitochondrial suspension inhibited the efflux of Ca(2+) and induced its re-uptake. With acetate as the permeant anion, a spontaneous net Ca(2+) efflux set in after uptake of approximately 150 nmol of Ca(2+)/mg of protein. The rate of this efflux was proportional to the Ca(2+) load and insensitive to aeration, protonophorous uncouplers, and Na(+) ions. Ca(2+) efflux was inhibited by La(3+), Mn(2+), Mg(2+), tetraphenylphosphonium, inorganic phosphate, and nigericin and stimulated by hypotonicity, spermine, and valinomycin in the presence of 4 mm KCl. Atractyloside and t-butyl hydroperoxide were without effect. Ca(2+) efflux was associated with contraction, but not with mitochondrial swelling. We conclude that the permeability transition pore is not involved in Ca(2+) efflux in preloaded E. magnusii mitochondria. The efflux occurs via an Na(+)-independent pathway, in many ways similar to the one in mammalian mitochondria.  相似文献   

19.
Ca2+ transport by coupled Trypanosoma cruzi mitochondria in situ   总被引:1,自引:0,他引:1  
The use of digitonin to permeabilize Trypanosoma cruzi plasma membrane enabled us to study Ca2+ transport and oxidative phosphorylation in mitochondria in situ. Addition of Ca2+ to these preparations evoked a cycle of respiratory stimulation. Ca2+ uptake was partially inhibited by ruthenium red, almost totally inhibited by antimycin A, and stimulated by inorganic phosphate. Addition of carbonyl cyanide p-trifluoromethoxyphenylhydrazone to digitonin-permeabilized T. cruzi epimastigotes under steady-state conditions was followed by Ca2+ release. Antimycin A- and carbonyl cyanide p-trifluoromethoxyphenylhydrazonein-sensitive Ca2+ uptake was also detected in digitonin-permeabilized epimastigotes. Accordingly, ATP stimulated Ca2+ uptake by preparations de-energized by oligomycin and antimycin A. In conclusion, in contrast to previous reports indicating that a Ca2+ transport system occurs only in mitochondria from vertebrate tissues, T. cruzi epimastigotes also possess a similar system. In addition, these protozoan mitochondria have an extremely high resistance to the deleterious effects of massive Ca2+ loads in comparison with most types of mammalian mitochondria.  相似文献   

20.
1. The alpha-adrenergic activation of glycogenolysis was investigated in isolated rat livers perfused in a non-recirculating system. Net uptake and/or release of Ca2+, K+ and H+ by the liver (measured by ion-selective electrodes) were correlated with the glycogenolytic effects of phenylephrine. Uptake and retention of 45Ca by the mitochondria of perfused livers were studied to obtain information on the role played by exchangeable mitochondrial calcium in alpha-adrenergic activation of glycogenolysis. 2. Between 1 and 5 min after starting the addition of phenylephrine a net release of Ca2+ was observed, this was paralleled by an uptake of K+. Production rates of glucose and lactate from endogenous glycogen started to increase at the same time. During the following minutes K+ was released. 2 mM EGTA and a high concentration of Mg2+ strongly diminished the ionic and metabolic responses to phenylephrine, 0.2 mM EGTA was less effective. 3. High concentrations of K+ prevented the metabolic response to phenylephrine but had no effect on the release of Ca2+ into the extracellular medium. Tetracaine activated glycogenolysis and suppressed all the effects of the alpha-adrenergic agonist. 4. Experiments with 45Ca provided no evidence for an alpha-adrenergic release of Ca2+ from the exchangeable mitochondrial pool. Incorporation of 45Ca into the mitochondria of perfused livers was enhanced by phenylephrine. 5. We propose that the alpha-adrenergic release of Ca2+ from a pool located close to the surface of the cell is capable of triggering the glycogenolytic response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号