首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Single Golgi impregnated visual cells and their axons were treated from the retina to the first synaptic layer (lamina) in serial electron microscopic sections. This analysis of the retina-lamina projection was undertaken in the upper dorso-median eye region which is known to be involved in the perception of polarized light. For identification of individual visual cells and their fibres a numbering system was used which relates the number of each of the nine visual cells within one retinula to the transverse axis of the rhabdom (TRA) (Fig. 1). Because of the twist of the retinula along its course to the basement membrane (Fig. 6), individual visual cells change their position relative to any eye-constant co-ordinate system. Each axon bundle originating from one 9-celled retinula performs a 180 degrees-rotation before entering the lamina (Fig. 2). The direction of rotation (clockwise or counter-clockwise), which may differ even between adjacent bundles, is related to the two mirror-image types of rhabdoms in the corresponding retinulae and is opposite to the direction of rhabdom twist. Thus, even in small groups of the in total 5500 ommatidia in the eye of the bee, two types of retinulae exist which can be characterized by the geometry of the rhabdoms as well as by the direction of rotation of the retinulae and the axon bundles (Fig. 1). Visual cell numbers 1, 2, and 9, the microvilli of which are oriented in the direction of TRA, form three long visual fibres terminating in the second synaptic layer (medulla). In cross sections of laminar pseudocartridges they appear as the smallest fibre profiles arranged in a symmetrical line of the pseudocartridge bundle (=the transverse axis of the pseudocartridge; TPA) (Fig. 4). The remaining six fibres (cell numbers 3-8) only project to the lamina (short visual fibres; svf's). Two of them (cell numbers 5 and 6), which are the largest cells in the proximal retinula and have their microvilli perpendicularly arranged to TRA (Fig. 1), give rise to the two thickest axons of the underlaying pseudocartridge. In cross sections, t he connecting line of these two axons is orthogonally oriented to TPA (Fig. 5). A model was developed, in which all long visual fibres originate from ultraviolet receptors and in which the polarization sensitivity of the basal ninth cell is enhanced by the twist of the rhabdom. Finally, this model is discussed in light of behavioral experiments revealing the ultraviolet receptors as the only cells involved in the detection of polarized light.  相似文献   

2.
Abstract The compound (apposition) eyes of Tanais cavolinii are not well developed: the number of ommatidia is small and there are certain irregularities in structure. The refractive components are formed by the cornea and the cone. The latter is built up by two cone cells. In addition, there are two accessory cone cells confined to the distal part of the cone. The eight pigmented retinular cells extend from the cornea to the basement membrane. Proximal to the cone, they form a fused continuous rhabdom, which in cross section has a rectangular outline. In the middle part of the rhabdom, the microvilli are arranged perpendicular to the long axis of the rhabdom when seen in cross section. The microvilli outside of this area can be arranged either parallel or perpendicular to the microvilli of the middle part. Other irregularities occur in the ommatidium, e.g. the position of the retinular cell nuclei, which are found at different levels. Extensions from the cone cells fuse and form a mesh proximal to the rhabdom. Between the mesh and basal lamina is a basal cell type enveloping the proximal parts of the retinular cells and their axons. These cells also form the basal lamina, which delimits the compound eye from the haemocoel. No special pigment cells are present in the compound eye of Tanais cavolinii.  相似文献   

3.
Summary The superposition eye of the cockchafer, Melolontha melolontha, exhibits the typical features of many nocturnal and crepuscular scarabaeid beetles: the dioptric apparatus of each ommatidium consists of a thick corneal lens with a strong inner convexity attached to a crystalline cone, that is surrounded by two primary and 9–11 secondary pigment cells. The clear zone contains the unpigmented extensions of the secondary pigment cells, which surround the cell bodies of seven retinula (receptor) cells per ommatidium and a retinular tract formed by them. The seven-lobed fused rhabdoms are composed by the rhabdomeres of the receptor cells 1–7. The rhabdoms are optically separated from each other by a tracheal sheath around the retinulae. The orientation of the microvilli diverges in a fan-like fashion within each rhabdomere. The proximally situated retinula cell 8 does not form a rhabdomere. This standard form of ommatidium stands in contrast to another type of ommatidium found in the dorsal rim area of the eye. The dorsal rim ommatidia are characterized by the following anatomical specializations: (1) The corneal lenses are not clear but contain light-scattering, bubble-like inclusions. (2) The rhabdom length is increased approximately by a factor of two. (3) The rhabdoms have unlobed shapes. (4) Within each rhabdomere the microvilli are parallel to each other. The microvilli of receptor 1 are oriented 90° to those of receptors 2–7. (5) The tracheal sheaths around the retinulae are missing. These findings indicate that the photoreceptors of the dorsal rim area are strongly polarization sensitive and have large visual fields. In the dorsal rim ommatidia of other insects, functionally similar anatomical specializations have been found. In these species, the dorsal rim area of the eye was demonstrated to be the eye region that is responsible for the detection of polarized light. We suggest that the dorsal rim area of the cockchafer eye subserves the same function and that the beetles use the polarization pattern of the sky for orientation during their migrations.  相似文献   

4.
Abstract The ommatidia of the compound eyes of Artemia salina L. are normally composed of four crystalline cone cells containing glycogen. The cells are enveloped by two so-called “cellules épidermiques juxta-cristallines”. There are also six pigmented retinula cells, all contributing to the rhabdom. A peculiar feature of the Artemia crystalline cone cells is that their elongated parts, the so-called cone cell roots, widen and flatten proximally, forming interdigitating “endfeet”. The basement membrane thus consists of a cellular portion combined with the basal lamina. The main mass of the rhabdom of the Artemia eye is built up by five retinula cells, two contributing a smaller part. The microvilli are oriented in four directions, two being orthogonal. The sixth cell contributes on two small portions to the rhabdom in the distalmost and a more proximal position. The rest of it runs axon-like outside the omnatidium. Where the sixth cell wedges in, the direction of the microvilli is changed and has no orthogonal pattern. Two rhabdom types of compound eyes are distinguished: the decapod or banded or layered rhabdom: and the anostracan rhabdom with continuous rhabdomeres.  相似文献   

5.
The ommatidia in the ventral two-thirds of the compound eye of male Pieris rapae crucivora are not uniform. Each ommatidium contains nine photoreceptor cells. Four cells (R1-4) form the distal two-thirds of the rhabdom, four cells (R5-8) approximately occupy the proximal one-third of the rhabdom, and the ninth cell (R9) takes up a minor basal part of the rhabdom. The R5-8 photoreceptor cells contain clusters of reddish pigment adjacent to the rhabdom. From the position of the pigment clusters, three types of ommatidia can be identified: the trapezoidal (type I), square (type II), and rectangular type (type III). Microspectrophotometry with an epi-illumination microscope has revealed that the reflectance spectra of type I and type III ommatidia peak at 635 nm and those of type II ommatidia peak at 675 nm. The bandwith of the reflectance spectra is 40-50 nm. Type II ommatidia strongly fluoresce under ultra-violet and violet epi-illumination. The three types of ommatidia are randomly distributed. The ommatidial heterogeneity is presumably crucial for color discrimination.  相似文献   

6.
棉铃虫蛾复眼的微细结构及其区域性差异   总被引:6,自引:2,他引:4  
郭炳群 《昆虫学报》1988,(2):165-170
用电子显微镜观察棉铃虫蛾复眼的微细结构及其区域性差异。此复眼具有小网膜细胞柱的透明带。每个小眼包括一个外凸内平的角膜,一个晶锥,四个形成晶锥、晶束的晶锥细胞和两个围绕着晶锥的主虹膜细胞,六至八个小网膜细胞和一个基细胞。晶锥末端有一短小固定的晶束。小网膜细胞柱远侧中央有似微绒毛结构的视杆束。每个小眼被六个附色素细胞围绕。 微细结构的区域性差异:1.背方小眼视杆中段横切面近似矩形,主要由六个微绒毛平行排列的三角形视小杯组成,整个视杆包含两个互相垂直的微绒毛轴;腹方、前方、后方和侧方区域的小眼视杆中段横切面为风扇形,“V”字形视小杆内微绒毛排列不平行;2.前方区域小眼视杆中段的横切面要比后方大;3.前方、腹方区域内,有的相邻小眼的小网膜细胞柱互相连结,背方、后方区域未观察到这一现象。  相似文献   

7.
Summary The structure of the rhinophore, digital tentacles, post-ocular tentacles and the eye of Nautilus macromphalus are described. The rhinophore is composed of mucous cells, ciliated cells, and flask-shaped ciliated cells. The latter are probably olfactory receptors. The digital tentacles are composed of mucous cells and pigmented cells. Motor-end-plates found in the muscle layer below the epithelium of the digital tentacles are similar to those described in other cephalopods. The post-ocular tentacle contains receptor cells that bear macrocilia. These may be mechanoreceptors. The retina is composed of retinula cells and supporting cells. A complex rhabdom is formed at the distal ends of the retinula cells. The supporting cells send processes up between these rhabdoms. Both types of cells contain pigment granules but the retinula cell has a complex membranous structure in its perikaryon. No synapses were found at the bases of the retinula cells. At the side of the retina are mucous cells that are presumed to produce the jelly-like substance that fills the inside of the eye in life. The likely function of the eye is discussed and it is suggested that it is capable of simple discriminations. It is suggested that the sense organs are probably comparatively unchanged from those of fossil nautiloids. Acknowledgements. This paper is dedicated to the late Dr. Yves Merlet who collected the nautiluses used in this study.We would like to thank Prof. J. Z. Young for all his support and encouragement. The Royal Society, The Percy Sladen Memorial Fund, and University College, London, provided the financial support that enabled one of us (V.C.B.) to collect nautiluses. The Science Research Council, U.K., provided the electron microscope used in the major part of the study and a grant to one of us (V.C.B.). We would also like to thank Prof. J. B. Gilpin-Brown who provided Fig. 1, Dr. R. Catala, for aquarium facilities, Mr. M. P. Legand and the Institut Français d'Oceanie, Noumea, New Caledonia, for laboratory facilities, Dr. J.-M. Bassot and Dr. Anna Bidder for advice on catching and preserving nautiluses, Mrs. Judy Parkes and Mr. M. Barker for photographic assistance, and Miss J. Date for secretarial assistance.  相似文献   

8.
Summary The fine structure of an ommatidium of a skipper butterfly, Parnara guttata, has been studied using the electron microscope. Each ommatidium has nine retinula cells, which were classified into three groups: two distal, six medial and one basal retinula cells. The rhabdomeres of the distal retinula cells are localized in the distal part of the rhabdom, while those of the six medial retinula cells appear throughout most of the rhabdom. The rhabdomere of the basal retinula cell occupies only the basal part of the rhabdom. The rhabdomeres of four medial cells are constructed of parallel microvilli, while fan-like microvilli form the rhabdomeres of other two medial retinula cells. The distal and basal retinula cells have rhabdomeres consisting of both parallel and fan-like microvilli. This is the first time the construction of the rhabdomeres of the distal and basal retinula cells has been described in such fine detail for a skipper butterfly. Nine retinula cell axons of each ommatidium extend to the first neuropile of the optic lobe, the lamina ganglionaris. No difference was found in the number of retinula cells of an ommatidium or the shape of the rhabdom between the dorsal and ventral regions of the compound eye.  相似文献   

9.
粘虫蛾复眼背、腹区视杆结构的差异   总被引:3,自引:1,他引:2  
郭炳群 《昆虫学报》1984,(2):147-151
根据光学和电子显微镜的观察,粘虫蛾复眼背、腹区域的视杆结构具有以下主要差异:1)背方小眼视杆的长度短于腹方小眼视杆的长度。2)在横切面上,背方小眼视杆的中段近似方形。该段间细胞的视小杆为三角形,每个具有平行排列的微绒毛。整个视杆包含两个互相垂直的微绒毛轴。腹方小眼视杆的中段为风扇形。间细胞的视小杆为“V”字形,微绒毛排列不平行。3)背方小眼基细胞的视小杆几乎位于气管反光层远侧,而腹方小眼甚至延伸到气管反光层内。 在背方和腹方小眼视杆的内段,每个间细胞的微绒毛均平行,且排列在基细胞的大形视小杆周围。更深层,在其它细胞的轴突均已相继出现的水平上,基细胞的大形视小杆仍然可见。 最后,对形态上的特点,在功能上可能具有的一些意义也进行了初步讨论。  相似文献   

10.
The fine structure of the compound eyes of the adult diving beetle Agabus japonicus is described with light, scanning, and transmission electron microscopy. The eye of A. japonicus is mango‐shaped and consists of about 985 ommatidia. Each ommatidium is composed of a corneal facet lens, an eucone type of crystalline cone, a fused layered rhabdom with a basal rhabdomere, seven retinula cells (including six distal cells and one basal cell), two primary pigment cells and an undetermined number of secondary pigment cells that are restricted to the distalmost region of the eye. A clear‐zone, separating dioptric apparatus from photoreceptive structures, is not developed and the eye thus resembles an apposition eye. The cross‐sectional areas of the rhabdoms are relatively large indicative of enhanced light‐sensitivity. The distal and central region of the rhabdom is layered with interdigitating microvilli suggesting polarization sensitivity. According to the features mentioned above, we suggest that 1) the eye, seemingly of the apposition type, occurs in a taxon for which the clear‐zone (superposition) eye is characteristic; 2) the eye possesses adaptations to function in a dim‐light environment; 3) the eye may be sensitive to underwater polarized light or linearly water‐reflected polarized light. J. Morphol. 275:1273–1283, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
Ommatidia of the eucon compound eye of Adoxophyes reticulana (Lepidoptera : Tortricidae) were investigated elect ronmicroscopically. The dorsofrontal part and the dorsal rim region were examined in serial sections. Seven radially arranged retinula cells RC1−7 form the rhabdom from distal to proximal region (Fig. 1). The 8th retinula cell RC8 joins the first 7 at their bases; this cell enlarges proximally (Fig. 1C, D). In the dorsofrontal region, 2 types of rhabdoms are distinguished; Type II (Figs. 1B2;3b) outnumbers Type I (Figs. 1B1;3a by a ratio of 4 : l. In the dorsal rim area, the first 2 rows are occupied exclusively by Type 11-rhabdoms; beyond this, the rhabdom of the dorsal rim area is characterized by the fact that its middle and proximal parts are considerably larger in diameter than in the dorsofrontal part; in this region, the microvilli of the horizontally oriented rhabdomeres are also parallel to the ;,-axis of the eye (Figs. 1B3;3d). Thus, this small eye region meets the structural requirements for the detection of polarized light. The eye is interpreted as an intermediate between apposition and superposition eyes, because the rhabdom begins at the tip of the crystalline tract and the retinula cells are pigmented like those of an apposition eye. On the other hand, the structure of the dioptric apparatus and the tracheal system corresponds to those of superposition eyes. Parallels with the Ephestia eye in basic structural features are discussed in regard to the possible function of this eye and to the systematic position of A. reticulana.  相似文献   

12.
Summary The retina of the phalangid, Opilio ravennae, consists of retinula cells with distal rhabdomeres, arhabdomeric cells, and sheath cells. The receptive segment of retinula cells shows a clear separation into a Proximal rhabdom, organized into distinct rhabdom units formed by three or four retinula cells, and a Distal rhabdom, consisting of an uniterrupted layer of contiguous rhabdomeres. One of the cells comprising a retinula unit, the so-called distal retinula cell (DRC), has two or three branches that pass laterally alongside the rhabdom, thereby separating the two or three principal retinula cells of a unit. The two morphologically distinct layers of the receptive segment differ with respect to the cellular origin of rhabdomeral microvilli: DRC-branches contribute very few microvilli to the proximal rhabdom and develop extremely large rhabdomeres in the distal rhabdom only, causing the rhabdom units to fuse. Principal retinula cells, on the other hand, comprise the majority of microvilli of the proximal rhabdom, but their rhabdomeres diminish in the distal rhabdom. It is argued that proximal and distal rhabdoms serve different functions in relation to the intensity of incident light.In animals fixed 4 h after sunset, pigment granules retreat from the distal two thirds of the receptive segment. A comparison of retinae of day- and night-adapted animals shows that there is a slight (approximately 15%) increase in the cross-sectional area of rhabdomeral microvilli in dark-adapted animals, which in volume corresponds to the loss of pigment granules from the receptive segment. The length of the receptive segment as well as the pattern and shape of rhabdom units, however, remain unchanged.Each retinula unit is associated with one arhabdomeric cell. Their cell bodies are located close to those of retinula cells, but are much smaller and do not contain pigment granules. The most remarkable feature is a long, slender distal dendrite that extends up to the base of the fused rhabdom where it increases in diameter and develops a number of lateral processes interdigitating with microvilli of the rhabdom. The most distal dendrite portion extends through the center of the fused rhabdom and has again a smooth outline. All dendrites end in the distal third of the proximal rhabdom and are never present in the layer of the contiguous distal rhabdom. Arhabdomeric cells are of essentially the same morphology in day- and night-adapted animals. They are interpreted as photoinsensitive secondary neurons involved in visual information-processing that channel current collected from retinula cells of the proximal rhabdom along the optic nerve. A comparison is made with morphological equivalents of these cells in other chelicerate species.  相似文献   

13.
The lateral ocelli of Scolopendra cingulata and Scolopendra oraniensis were examined by electron microscopy. A pigmented ocellar field with four eyes arranged in a rhomboid configuration is present frontolaterally on both sides of the head. Each lateral ocellus is cup-shaped and consists of a deeply set biconvex corneal lens, which is formed by 230–2,240 cornea-secreting epithelial cells. A crystalline cone is not developed. Two kinds of photoreceptive cells are present in the retinula. 561–1,026 cylindrical retinula cells with circumapically developed microvilli form a large distal rhabdom. Arranged in 13–18 horizontal rings, the distal retinula cells display a multilayered appearance. Each cell layer forms an axial ring of maximally 75 rhabdomeres. In addition, 71–127 club-shaped proximal retinula cells make up uni- or bidirectional rhabdomeres, whose microvilli interdigitate. 150–250 sheath cells are located at the periphery of the eye. Radial sheath cell processes encompass the soma of all retinula cells. Outside the eye cup there are several thin layers of external pigment cells, which not only ensheath the ocelli but also underlie the entire ocellar field, causing its darkly pigmented. The cornea-secreting epithelial cells, sheath cells and external pigment cells form a part of the basal matrix extending around the entire eye cup. Scolopendromorph lateral ocelli differ remarkably with respect to the eyes of other chilopods. The dual type retinula in scolopendromorph eyes supports the hypothesis of its homology with scutigeromorph ommatidia. Other features (e.g. cup-shaped profile of the eye, horizontally multilayered distal retinula cells, interdigitating proximal rhabdomeres, lack of a crystalline cone, presence of external pigment and sheath cells enveloping the entire retinula) do not have any equivalents in scutigeromorph ommatidia and would, therefore, not directly support homology. In fact, most of them (except the external pigment cells) might be interpreted as autapomorphies defining the Pleurostigmophora. Certain structures (e.g. sheath cells, interdigitating proximal rhabdomeres, discontinuous layer of cornea-secreting epithelial cells) are similar to those found in some lithobiid ocelli (e.g. Lithobius). The external pigment cells in Scolopendra species, however, must presently be regarded as an autapomorphy of the Scolopendromorpha.  相似文献   

14.
Among ants, Cataglyphis bicolor shows the best performance in optical orientation. Its eye is of the apposition type with a fused rhabdom. Morphological studies on the general struture of the eye as well as the effect of light have been carried out with transmission and scanning electron microscopy. An ommatidium is composed of a dioptric apparatus, consisting of a cornea, corneal process and a crystalline cone, the sensory retinula, which is made up of eight retinula cells in the distal half and of an additional ninth one in the proximal half. The ommatidia are separated from each other by two primary pigment cells, which surround the crystalline cone and an average of 12 secondary pigment cells, which reach from cornea to the basement membrane. The eye of Cataglyphis bicolor possesses a light intensity dependent adaptation mechanism, which causes a radial and distal movement of the pigment granules within the retinula cells and a dilatation of cisternae of the ER along the rhabdom. Until now, no overall order in arrangement of retinula cells or direction of microvilli has been found from ommatidium to ommatidium. Such an order, however, must exist, either on the retina or the lamina level, since we have proven the ant's capacity for polarized light analysis.  相似文献   

15.
Summary Onithochiton neglectus a common littoral chiton possesses large numbers of small eyes embedded in the outer layer of the shell, the tegmentum. These are arranged in a definite pattern on each shell valve. Each eye lies in a pocket, and is surrounded by pigment laid down in the shell. There is a lens, cup of retina cells and an optic nerve running in an optic canal through the shell. Glial elements are present. The retina cells give rise centrally to a packed array of microvilli, a rhabdom. Cilia are present at the edge of the rhabdom; they have a 9 + 2 arrangement of ciliary filaments and do not appear to be involved in the formation of microvilli. Cells at the periphery of the eye cup give rise to large whorls of membranes, lamellate bodies. These bodies are derived from the membranes of cilia having a 9 + 2 pattern, and form into an extra-cellular space. Nerve processes from the retina cells pass into the optic canal. On the basis of previous work it is thought that the lamellate bodies are also sensory. These structures are discussed in relation to other microvillar and lamellate structures described from photoreceptors.I thank Professor J. E. Morton for his advice in the early stages of this work, and Dr. S. J. Bullivant for the fixation and embedding of material for electron microscopy. To Professor G. A. Horridge I am grateful for advice and the facilities of his laboratory, and to Professor M. S. Laverack, Patricia Holborow and Charles Coleman for much help and encouragement. I am supported by the Science Research Council, and in New Zealand held a Commonwealth Scholarship.  相似文献   

16.
The structural organization of the compound eye of the largest known isopod, Bathynomus giganteus, is described from four specimens maintained in the laboratory for as long as two months. Living specimens have not previously been available for study. The two triangular compound eyes measure about 18 mm on the dorsal edge and are separated by an interocular distance of 25 mm. They face forward and slightly downward and may have significant overlap in visual fields. Each eye contains about 3,500 ommatidia in animals of body lengths from 22.5 cm to 37.5 cm. The packing of ommatidia is not uniform across the retina, but is nearly hexagonal in the dorsal central region and nearly square in the ventral and lateral periphery. The dioptric elements in each ommatidium consist of a laminar cornea, which is flat externally and convex internally, and a bipartite crystalline cone. Sometimes seven and sometimes eight retinular cells closely appose the proximal tip of the cone and bear the microvilli of the rhabdom. Proximal to the rhabdom the retinular cells form thin pillars near the periphery of the ommatidium, and the central portion along the optic axis at this level is occupied by interstitial cells that contain massive arrays of clear vesicles thought to serve as reflective elements. The arhabdomeral segments of the retinular cells and the interstitial cells rest on a basement membrane. Within each ommatidium the basement membrane has two extensions with cylindrical cores and thin sheets of dense material and collagen-like filaments. These sheets occupy spaces between adjacent interstitial cells up to the level of the rhabdomeral segments of the retinular cells. Arrays of pigment cells with relatively weak light-screening properties separate adjacent ommatidia. Animals were fixed both in light within a week of being brought from depth into daylight, and after 2 months of maintenance in constant darkness following such daylight exposure. In both cases, microvilli of the rhabdom were severely disrupted and the retinular cytoplasm contained numerous multivesicular bodies. Exposure to natural daylight appears to cause irreversible structural damage to the photoreceptors of these animals.  相似文献   

17.
Summary The compound eye of Psychoda cinerea comprises two types of ommatidia, arranged so as to divide the retina into distinct dorsal and ventral regions. The P-type ommatidium, in the ventral part of the eye, differs fundamentally from the other dipteran ommatidia so far described, and is regarded as a primitive ommatidium. The acone dioptric apparatus is the same in both types, with a spherical lens and four Semper cells, the processes of which expand below the rhabdom to form a ring of pigment sacs. Only the distal region of the rhabdom is surrounded by a continuous ring of screening pigment, formed by 2 primary and 12–16 secondary pigment cells. The highly pigmented retinula cells penetrate the basement membrane proximally at about the level of their nuclei; in this region they are separated from the hemolymph by glial elements. The rhabdomeres R1–6 are fused to form a tube. The two types of ommatidia are defined by the arrangement of the retinula cells R7/8: in the T type the central rhabdomeres are one below the other, in the usual tandem position, whereas in the P type only R8 is central, with R7 in the peripheral ring. In the proximal region of the retina, retinula cells with parallel microvilli in neighboring ommatidia are joined in rows by lateral processes from the R8 cells. All the rhabdomeres are short and not twisted, which suggests that the retinula cells are highly sensitive to direction of polarization. The eye can adapt by a number of retinomotor processes. These findings, together with observations of behavior, imply that the psychodids have well-developed visual abilities.  相似文献   

18.
Summary By use of a modified fixation technique, the receptor cells of the compound eye of the blowfly Calliphora erythrocephala were found to contain a regular, paracrystalline array of alternating rows of hexagonally shaped microvilli. The receptor cells R1 to R6 have a cell-specific number of microvilli per row in a cross section. Every microvillus has a filament cluster connecting the axial skeleton with the microvillar membrane. This cluster is preferentially right-left oriented relative to the longitudinal axis of the microvillar array. Three adjacent microvilli are interconnected by an electron-dense substance. A mirroring technique indicated that this intermicrovillar structure consists of three subunits, although these subunits could not be conclusively demonstrated by classical densitometry or image subtraction techniques. The electron-dense substance can be seen in all cross sections of the proximal and distal parts of the microvilli. They are cylindrical structures separating the microvilli along their entire length. It is suggested that these cylindrical aggregates contain an enzymatic complex separating the rhodopsin-containing microvillar membrane into six compartments.  相似文献   

19.
Both larval and adult New Zealand cave glowworms exhibit reactions to light; their photoreceptors must, therefore, be regarded as functional. The two principal stemmata of the larva possess large biconvex lenses and voluminous rhabdoms. Approximately 12 retinula cells are present. In light-adapted larvae the diameter of the rhabdom is 8 μm and that of an individual microvillus is 49.5 nm. Dark-adapted eyes have rhabdoms that measure 14 μm in cross section and microvilli with an average diameter of 54 nm. The compound eye of the adult comprises approximately 750 ommatidia, each with a facet diameter of 27–28 μm. A facet is surrounded by 1–6 interommatidial hairs which are up to 30 μm long. The interommatidial angle is 5.5°. Cones, consisting of 4 crystalline cone cells, are of the ‘acone’ type. Pigment granules in the primary pigment cells are twice as large as those of the retinula cells which measure 0.6–0.75 μm in diameter. The rhabdom is basically of the dipteran type, i.e. six open peripheral rhabdomeres surround 2 central rhabdomers arranged in a tandem position. The microvilli of cells 1–6 and cell 8 have diameters ranging from 68 to 73 nm, but those of the distally-located central rhabdomere 7 are 20% larger. This is irrespective of whether the eye is dark or light-adapted. In the latter the cones are long and narrow, the screening pigment granules closely surround the rhabdomeres, and the rhabdom is less voluminous than that of the dark-adapted eye.  相似文献   

20.
The compound eyes of the wingless adults of the Madagascar ‘hissing cockroach’Gromphadorhina portentosa Sachum, 1853 were examined by light and electron microscopy. Each eye contains 2 400‐2 500 mostly hexagonal facets. However, irregularities affecting both shape and size of the ommatidia are relatively common, especially towards the margins of the eye. An individual ommatidium of this eucone type of apposition eye contains eight retinula cells, which give rise to a centrally‐fused, tiered rhabdom. The distal end of the latter is funnel‐shaped and accommodates the proximal end of the cone in its midst. Further below, the rhabdom (then formed by the rhabdomeres of four retinula cells) assumes a squarish profile with microvilli aligned in two directions at right‐angle to each other. Cross sections through the proximal regions of the rhabdom display triangular rhabdom outlines and microvilli (belonging to 3‐4 retinula cells different from those involved in the squarish more distal rhabdom) that run in three directions inclined to one another by 120°. Overall the organization of the eye conforms to the orthopteroid pattern and particularly closely resembles that of the American cockroach Periplaneta americana. However, since G. portentosa possesses fewer ommatidia, this could be a consequence of its inability to fly. On the other hand, the large size of the facets and the voluminous rhabdoms suggest considerable absolute sensitivity and an ability to detect the plane of linearly polarized light. Based on the pattern of microvillus orientations in combination with the crepuscular lifestyle G. portentosa leads and the habitat it occurs in, the prediction is made that this insect uses its green receptors for e‐vector discrimination in the environment of down‐welling light that reaches the forest floor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号