首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The virus-host interactions between Japanese encephalitis (JE) virus and mouse brain neurons were analyzed by electron microscopy. JE virus replicated exclusively in the rough endoplasmic reticulum (RER) of neurons. In the early phase of infection, the perikaryon of infected neurons had relatively normal-looking lamellar RER whose cisternae showed focal dilations containing progeny virions and characteristic endoplasmic reticulum (ER) vesicles. The reticular RER, consisted of rows of ribosomes surrounding irregular-shaped, membrane-unbounded cisternae and resembled that observed in JE-virus-infected PC12 cells, were also seen adjacent to the lamellar RER. The appearance of the reticular RER indicated that RER morphogenesis occurred in infected neurons in association with the viral replication. The fine network of Golgi apparatus was extensively obliterated by fragmentation and dissolution of the Golgi membranes and their replacement by the electron-lucent material. As the infection progressed, the lamellar RER was increasingly replaced by the hypertrophic RER which had diffusely dilated cisternae containing multiple progeny virions and ER vesicles. The Golgi apparatus, at this stage, was seen as coarse, localized Golgi complexes near the hypertrophic RER. In the later phase of infection, RER of infected neurons showed a degenerative change, with the cystically dilated cisternae being filled with ER vesicles and virions. Small, localized Golgi complexes frequently showed vesiculation, vacuolation, and dispersion. The present study, therefore, indicated that during the viral replication the normal lamellar RER which synthesized neuronal secretory and membrane proteins was replaced by the hypertrophic RER which synthesized the viral proteins. The hypertrophic RER eventually degenerated into cystic RER whose cisternae were filled with viral products. The constant degenerative change which occurred in the Golgi apparatus during the viral replication suggested that some of the viral proteins transported from RER to the Golgi apparatus were harmful to the Golgi apparatus and that increasing damage to the Golgi apparatus during the viral replication played the principal role in the pathogenesis of JE-virus-infected neurons in the central nervous system.  相似文献   

2.
During infection of sac- cells by murine coronavirus MHV A59 the intracellular sites at which progeny virions bud correlate with the distribution of the viral glycoprotein E1. Budding is first detectable by electron microscopy at 6 to 7 hours post infection in small, smooth, perinuclear vesicles and tubules in a region transitional between the rough endoplasmic reticulum and the Golgi apparatus. At later times the rough endoplasmic reticulum becomes the major site of budding and accumulation of progeny virus particles. Indirect immunofluorescence microscopy shows that E1 is confined at 6 hours post infection to the perinuclear region while at later times it also accumulates in the endoplasmic reticulum. At 6 hours post infection the second viral glycoprotein, E2, is distributed throughout the endoplasmic reticulum and is not restricted to the site at which budding begins. Core protein, the third protein in virions, can be detected 2 hours before E1 is detectable and budding begins, and at 6 hours post infection it is distributed throughout the cytosol. We conclude that the time and the site at which the maturation of progeny virions occurs is determined by the accumulation of glycoprotein E1 in intracellular membranes. Only rarely do progeny virions bud directly into the cisternae of the Golgi apparatus but at least some already budded virions are transported to the Golgi apparatus where they occur in structures some of which also contain TPPase, a trans Golgi marker.  相似文献   

3.
The intracellular sites of biosynthesis of the structural proteins of murine hepatitis virus A59 have been analyzed using cell fractionation techniques. The nucleocapsid protein N is synthesized on free polysomes, whereas the envelope glycoproteins E1 and E2 are translated on the rough endoplasmic reticulum (RER). Glycoprotein E2 present in the RER contains N-glycosidically linked oligosaccharides of the mannose-rich type, supporting the concept that glycosylation of this protein is initiated at the co-translational level. In contrast, O-glycosylation of E1 occurs after transfer of the protein to smooth intracellular membranes. Monensin does not interfere with virus budding from the membranes of the endoplasmic reticulum, but it inhibits virus release and fusion of infected cells. The oligosaccharide side chains of E2 obtained under these conditions are resistant to endoglycosidase H and lack fucose suggesting that transport of this glycoprotein is inhibited between the trans Golgi cisternae and the cell surface. Glycoprotein E1 synthesized in the presence of monensin is completely carbohydrate-free. This observation suggests that the intracellular transport of this glycoprotein is also blocked by monensin.  相似文献   

4.
Herpesvirus envelopment is assumed to follow an uneconomical pathway including primary envelopment at the inner nuclear membrane, de-envelopment at the outer nuclear membrane, and reenvelopment at the trans-Golgi network. In contrast to the hypothesis of de-envelopment by fusion of the primary envelope with the outer nuclear membrane, virions were demonstrated to be transported from the perinuclear space to rough endoplasmic reticulum (RER) cisternae. Here we show by high-resolution microscopy that herpes simplex virus 1 envelopment follows two diverse pathways. First, nuclear envelopment includes budding of capsids at the inner nuclear membrane into the perinuclear space whereby tegument and a thick electron dense envelope are acquired. The substance responsible for the dense envelope is speculated to enable intraluminal transportation of virions via RER into Golgi cisternae. Within Golgi cisternae, virions are packaged into transport vacuoles containing one or several virions. Second, for cytoplasmic envelopment, capsids gain direct access from the nucleus to the cytoplasm via impaired nuclear pores. Cytoplasmic capsids could bud at the outer nuclear membrane, at membranes of RER, Golgi cisternae, and large vacuoles, and at banana-shaped membranous entities that were found to continue into Golgi membranes. Envelopes originating by budding at the outer nuclear membrane and RER membrane also acquire a dense substance. Budding at Golgi stacks, designated wrapping, results in single virions within small vacuoles that contain electron-dense substances between envelope and vacuolar membranes.  相似文献   

5.
This report concerns the effects of Brefeldin A (BFA): i) on the Golgi complex and the ER of retrovirus-transformed murine erythroleukemia (MEL) cells and, ii) on the viral proteins these cells express. Golgi complexes were extensively disorganized by BFA. Within 5 min, most stacked cisternae were converted to vesicles scattered throughout the centrosphere region. By 30 min, the Golgi complexes were completely disassembled. Only clusters of small vesicles ("Golgi remnants") persisted in the vicinity of the centrioles and microtubule-organizing centers. Some of these small vesicles had a simple coat structure on their membranes. Over the next 1 to 2 h of BFA treatment, the number of vesicles in the Golgi area decreased concomitantly with the expansion of a predominantly smooth membrane portion of the ER, consisting of a network of dilated tubules in continuity with regular RER cisternae, annulate lamellae and the nuclear envelope. By electron microscopy, viral glycoproteins appeared to accumulate on the membranes of this network, and immature virions were found to bud preferentially into its cisternal space. Viral accumulations increased with time under BFA. The rest of the RER appeared normal, apparently unaffected by the drug. Preferential virion budding suggests that this expanding network is a chemically differentiated part of the ER. By immunofluorescence, antibodies to viral envelope proteins gave a punctate staining at the surface of control cells, presumably in the areas of virion budding, whereas relatively large intracellular masses of antigens were found in BFA-treated cells. We assume that these masses represent the differentiated parts of the ER. Taken together, these findings suggest that BFA blocks intracellular transport of newly synthesized cellular and viral proteins immediately distal to the distinct compartment of the ER in which virion budding preferentially occurs. BFA effects are rapidly and fully reversible. Within 1 min of the removal of the drug, stacks of Golgi cisternae began to reappear in the vicinity of the centrioles, and by 30 min, Golgi complexes regained their normal structural appearance.  相似文献   

6.
The two envelope glycoproteins and the viral nucleocapsid of the coronavirus A59 were isolated by solubilization of the viral membrane with Nonidet P-40 at 4 degrees C followed by sucrose density gradient sedimentation. Isolated E2 consisted of rosettes of peplomers, whereas E1, the membrane glycoprotein, was irregular and amorphous. Under certain conditions significant interactions occurred between components of Nonidet P-40-disrupted virions. Incubation of the Nonidet P-40-disrupted virus at 37 degrees C resulted in formation of a complex between one of the viral glycoproteins, E1, and the viral nucleocapsid. This was caused by a temperature-dependent conformational change in E1, resulting in aggregation of E1 and interaction with the viral RNA in the nucleocapsid. E1 also bound rRNA. The E1-nucleocapsid complexes can be distinguished on sucrose and Renografin density gradients from native viral nucleocapsids. The separation of the membrane glycoprotein E1 from the peplomeric glycoprotein E2 permitted preparation of antisera against these isolated proteins. A model is proposed for the arrangement of the three major structural proteins in the coronavirus A59 virion in relation to the viral envelope and RNA.  相似文献   

7.
U Dürer  H Franke  R Dargel  J Ude 《Histochemistry》1986,84(3):263-270
We used the protein-A gold technique to demonstrate the presence of apolipoprotein-B in ultrathin sections of fetal rat liver tissue. It was possible to show for the first time that the electron-dense, osmiophilic particles with diameters of 20-40 nm located within the RER cisternae and Golgi complexes of fetal rat hepatocytes contain apolipoprotein-B components and therefore are lipoproteins. After specific labelling an accumulation of gold label was observed on the RER cisternae, Golgi cisternae and the Golgi-associated secretory vesicles of hepatocytes. The specificity of this labelling pattern was assessed by comparison with cytochemical controls. Our qualitative findings were confirmed by a quantitative analysis of the mean labelling intensity (mean number of gold particles per square micron of the surface area of a particular cellular compartment) on the RER, Golgi complexes, mitochondria, nuclei and the remaining cytoplasm of hepatocytes. It is concluded that the hepatocytes of fetal rats are capable of forming apolipoprotein-B-containing lipoprotein particles. With respect to the size-distribution pattern of the observed intra-hepatic lipoprotein particles, we suggest that the hepatocytes of fetal rats produce lipoproteins of the low- and very low-density-lipoprotein type.  相似文献   

8.
Summary Membrane-bounded organelles possessing cisternae, i.e., rough endoplasmic reticulum and Golgi apparatus, in immature rat central neurons were examined by quick-freeze and deep-etch techniques to see how their intracisternal structures are organized and how ribosomes are associated with the membrane of the endoplasmic reticulum. Cisternae of endoplasmic reticulum, 60–100 nm wide, were bridged with randomly-distributed strands (trabecular strands, 12.5 nm in mean diameter). Luminal surfaces of cisternae of the endoplasmic reticulum were decorated with various-sized globular particles, some as small as intramembrane particles, and others as large as granules formed by soluble proteins seen in the cytoplasm. A closer examination revealed much thinner strands (3.3. nm in mean diameter). Such thin strands were short, usually winding toward the luminal surface, and sometimes touching the luminal surface with one end. Ribosomes appeared to be embedded into the entire thickness of cross-fractured membranes of endoplasmic reticulum, that is, their internal portions appeared to be situated at almost the same level as the cisternal luminal surface. From the internal portion of ribosomes, single thin strands occasionally protruded into the lumen, suggesting that these thin strands were newly synthesized polypeptides. A horizontal separation within ribosomes appeared to occur at the same level as the hydrophobic middle of the membrane of the endoplasmic reticulum. Interiors of the Golgi apparatus cisternae, which were much narrower than cisternae of endoplasmic reticulum, were similarly bridged with trabecular strands, but the Golgi trabecular strands were thinner and more frequent. Their cisternal lumina were also dotted with globular particles. No identifiable profiles corresponding to the thin strands in the endoplasmic reticulum were observed. Golgi cisternae showed a heterogeneous distribution of membrane granularity; the membrane in narrow cisternal space was granule-rich, while that in expanded space was granule-poor, suggesting a functional compartmentalization of the Golgi cisternae.  相似文献   

9.
SOME UNUSUAL FEATURES OF FINE STRUCTURE OBSERVED IN HELA CELLS   总被引:5,自引:10,他引:5       下载免费PDF全文
HeLa cells from conventional culture media have been studied in thin sections with the electron microscope; in many cases cells were examined in sets of sections cut in series. The fine structure of the cells is described including three unusual features not hitherto reported. It has been found that numerous cells contained rows of parallel smooth surfaced cisternae spaced about 150 mµ apart and communicating with rough surfaced elements of the endoplasmic reticulum. These cisternae resembled "annulate lamellae" but did not contain regular arrays of pores. In many cells an area of juxtanuclear cytoplasm was occupied by a membranous structure composed of closely applied pairs of narrow cisternae either arranged in concentric rings or else extending in several directions in a haphazard manner. Sparse particles were present on the outer membranes of each pair of cisternae. Communications between the double cisternae and other membrane-bounded structures were not observed. A small number of cells contained areas of cytoplasm devoid of organelles and filled with amorphous fuzzy material. The observations recorded are discussed.  相似文献   

10.
Summary The modified protein A-gold immunocytochemical technique was applied to the localization of amylase in rat pancreatic acinar cells. Due to the good ultrastructural preservation of the cellular organelles obtained on glutaraldehyde-fixed, osmium tetroxide-postfixed tissue, the labelling was detected with high resolution over the cisternae of the rough endoplasmic reticulum (RER), the Golgi apparatus, the condensing vacuoles, the immature pre-zymogen granules, and the mature zymogen granules. Over the Golgi area, the labelling was present over the transitional elements of the endoplasmic reticulum, some of the smooth vesicular structures at thecis- andtrans-faces and all the different Golgi cisternae. The acid phosphatase-positive rigidtrans-cisternae as well as the coated vesicles were either negative or weakly labelled. Quantitative evaluations of the degree of labelling demonstrated an increasing intensity which progresses from the RER, through the Golgi, to the zymogen granules and have identified the sites where protein concentration occurs. The results obtained have thus demonstrated that amylase is processed through the conventional RER-Golgi-granule secretory pathway in the pancreatic acinar cells. In addition a concomitance has been found between some sites where protein concentration occurs: thetrans-most Golgi cisternae, the condensing vacuoles, the pre- and the mature zymogen granules, and the presence of actin at the level of the limiting membranes of these same organelles as reported previously (Bendayan, 1983). This suggests that beside their possible role in transport and release of secretory products, contractile proteins may also be involved in the process of protein concentration.  相似文献   

11.
The vaccinia virus E2L (VACWR058) gene is conserved in all sequenced chordopoxviruses and is predicted to encode an 86-kDa protein with no recognizable functional motifs or nonpoxvirus homologs. Although the region immediately upstream of the open reading frame lacked optimal consensus promoter motifs, expression of the E2 protein occurred after viral DNA replication. Transfection studies, however, indicated that the promoter was weak compared to well-characterized intermediate and late promoters. The E2 protein was present in mature virions purified from infected cells but was more abundant in extracellular enveloped forms. Despite the conservation of the E2L gene in chordopoxviruses, deletion mutants could be isolated from both the WR and IHD-J strains of vaccinia virus. These null mutants produced very small plaques in all cell lines tested, reduced amounts of mature infectious virions, and very low numbers of extracellular virions. Nevertheless, viral protein synthesis appeared qualitatively and quantitatively normal. The defect in extracellular virus formation was corroborated by electron microscopy, which also showed some aberration in the wrapping of virions by cisternal membranes. Extracellular virions that did form, however, were able to induce actin tail formation.  相似文献   

12.
Budding of enveloped viruses has been shown to be driven by interactions between a nucleocapsid and a proteolipid membrane. By contrast, we here describe the assembly of viral envelopes independent of a nucleocapsid. Membrane particles containing coronaviral envelope proteins were assembled in and released from animal cells co-expressing these proteins' genes from transfected plasmids. Of the three viral membrane proteins only two were required for particle formation, the membrane glycoprotein (M) and the small envelope protein (E). The spike (S) protein was dispensable but was incorporated when present. Importantly, the nucleocapsid protein (N) was neither required not taken into the particles when present. The E protein, recently recognized to be a structural protein, was shown to be an integral membrane protein. The envelope vesicles were found by immunogold labelling and electron microscopy to form a homogeneous population of spherical particles indistinguishable from authentic coronavirions in size (approximately 100 nm in diameter) and shape. They were less dense than virions and sedimented slightly slower than virions in sucrose velocity gradients. The nucleocapsid-independent formation of apparently bona fide viral envelopes represents a novel mode of virus assembly.  相似文献   

13.
Receptors for Sendai virions in human erythrocyte ghost membranes were identified by virus overlay of protein blots. Among the various erythrocyte polypeptides, only glycophorin was able to bind Sendai virions effectively. The detection of Sendai virions bound to glycophorin was accomplished either by employing anti-Sendai virus antibodies or by autoradiography, when 125I-labeled Sendai virions were used. The binding activity was associated with the viral hemagglutinin/neuraminidase (HN) glycoprotein, as inferred from the observation that the binding pattern of purified HN glycoprotein to human erythrocyte membranes was identical to that of intact Sendai virions. No binding was observed when blots, containing either human erythrocyte membranes or purified glycophorin, were probed with the viral fusion factor (F glycoprotein). Active virions competed effectively with the binding of 125I-labeled Sendai virions (or purified HN glycoprotein), whereas no competition was observed with inactivated Sendai virus. The results of the present work clearly show that protein blotting can be used to identify virus receptors in cell membrane preparations.  相似文献   

14.
Husain M  Moss B 《Journal of virology》2003,77(21):11754-11766
Vaccinia virus assembles two distinct lipoprotein membranes. The primary membrane contains nonglycosylated proteins, appears as crescents in the cytoplasm, and delimits immature and mature intracellular virions. The secondary or wrapping membrane contains glycoproteins, is derived from virus-modified trans-Golgi or endosomal cisternae, forms a loose coat around some intracellular mature virions, and becomes the envelope of extracellular virions. Although the mode of formation of the wrapping membrane is partially understood, we know less about the primary membrane. Recent reports posit that the primary membrane originates from the endoplasmic reticulum-Golgi intermediate compartment (ERGIC). According to this model, viral primary membrane proteins are cotranslationally inserted into the ER and accumulate in the ERGIC. To test the ERGIC model, we employed Sar1(H79G), a dominant negative form of the Sar1 protein, which is an essential component of coatomer protein II (COPII)-mediated cargo transport from the ER to the ERGIC and other post-ER compartments. Overexpression of Sar1(H79G) by transfection or by a novel recombinant vaccinia virus with an inducible Sar1(H79G) gene resulted in retention of ERGIC 53 in the ER but did not interfere with localization of viral primary membrane proteins in factory regions or with formation of viral crescent membranes and infectious intracellular mature virions. Wrapping of intracellular mature virions and formation of extracellular virions did not occur, however, because some proteins that are essential for the secondary membrane were retained in the ER as a consequence of Sar1(H79G) overexpression. Our data argue against an essential role of COPII-mediated cargo transport and the ERGIC in the formation of the viral primary membrane. Instead, viral membranes may be derived directly from the ER or by a novel mechanism.  相似文献   

15.
The mucilage-secreting desmid, Closterium acerosum, is sensitive to the secretory inhibiting drug, brefeldin A (BFA). After 5 min of treatment with 5 g ml-1 of BFA, the Golgi body displays the following alterations: the number of cisternae decreases from 12-15 to 6-7; peripheries of cisternae from the same Golgi body often fuse to yield unique profiles; secretory vesicles still merge from the Golgi body; the cisternal stack dissociates to form irregular masses in the alleys of cytoplasm created by the lobes of the chloroplast. Fluoresbrite bead labelling shows that mucilage production ceases in cells treated with BFA even after only 5 min of treatment. Immunogold labelling using anti-mucilage antibody reveals that mucilage production still occurs in the Golgi body and associated vesicles. Helix pomatia lectin-gold labelling shows that wall synthesis still occurs in BFA-treated Golgi bodies and wall precursors accumulate in the perforate cisternal/vesicular masses seen in the TGN region of the Golgi stack.  相似文献   

16.
Confronting cisternae (CC) are described for the first time in normal fetal rat and mouse liver and intestinal epithelial cells. In these cells, CC characteristically consist of 2 parallel cisternae which are devoid of ribosomes on their juxtaposed surfaces. The intracisternal spacing is consistently 20 nm. While CC occur in rapidly proliferating tissues such as fetal liver and intestinal epithelium, they do not occur in hepatocytes following partial hepatectomy. Although it has been postulated that the intact CC profiles represent a mechanism of assuring the presence of pre-formed nuclear envelope (NE) or rough endoplasmic reticulum (RER) in cells, it is more likely that the subunits which result from CC degradation serve as a pool of membrane precursors for new NE or RER.  相似文献   

17.
Sequential effects of rubella virus infection in BHK-21 cells were studied by electron microscopy of thin sections of control and infected cells, 2 to 7 days after infection. Vacuolization of cytoplasm in Golgi areas apparently preceded budding of virions from vacuole membranes and involvement of the endoplasmic reticulum. Newly formed endoplasmic reticulum cisternae encircled and segregated virionforming vacuoles together with other cellular elements. Large vacuolar complexes with numerous virus particles developed, and virus release from these areas occurred with disruption at the cell periphery. The viral particles, with a mean diameter of about 56 nm, consisted of an electron-dense core surrounded by a less dense capsid, enveloped by a typical unit membrane derived from the vacuole membrane.  相似文献   

18.
The intracellular assembly site for flaviviruses in currently not known but is presumed to be located within the lumen of the rough endoplasmic reticulum (RER). Building on previous studies involving immunofluorescence (IF) and cryoimmunoelectron microscopy of Kunjin virus (KUN)-infected cells, we sought to identify the steps involved in the assembly and maturation of KUN. Thus, using antibodies directed against envelope protein E in IF analysis, we found the accumulation of E within regions coincident with the RER and endosomal compartments. Immunogold labeling of cryosections of infected cells indicated that E and minor envelope protein prM were localized to reticulum membranes continuous with KUN-induced convoluted membranes (CM) or paracrystalline arrays (PC) and that sometimes the RER contained immunogold-labeled virus particles. Both proteins were also observed to be labeled in membranes at the periphery of the induced CM or PC structures, but the latter were very seldom labeled internally. Utilizing drugs that inhibit protein and/or membrane traffic throughout the cell, we found that the secretion of KUN particles late in infection was significantly affected in the presence of brefeldin A and that the infectivity of secreted particles was severely affected in the presence of monensin and N-nonyl-deoxynojirimycin. Nocodazole did not appear to affect maturation, suggesting that microtubules play no role in assembly or maturation processes. Subsequently, we showed that the exit of intact virions from the RER involves the transport of individual virions within individual vesicles en route to the Golgi apparatus. The results suggest that the assembly of virions occurs within the lumen of the RER and that subsequent maturation occurs via the secretory pathway.  相似文献   

19.
Polyclonal antibodies to types I and II regulatory (R) subunits of cyclic AMP-dependent protein kinase (cA-PK) were utilized in a post-embedding immunogold-labeling procedure to localize these proteins in rat parotid acinar cells. Both RI and RII were present in the nuclei, cytoplasm, rough endoplasmic reticulum (RER), Golgi apparatus, and secretory granules. In the nuclei, gold particles were mainly associated with the heterochromatin. In the cytoplasm, the label was principally found in areas of RER. Most gold particles were located between adjacent RER cisternae or over their membranes and attached ribosomes; occasional particles were also present over the cisternal spaces. Labeling of the Golgi apparatus was significantly greater than background, although it was slightly lower than that over the RER cisternae. In secretory granules, gold particles were present over the granule content; no preferential localization to the granule membrane was observed. Morphometric analysis revealed equivalent labeling intensities for RI and RII in the cytoplasm-RER compartment. Labeling intensities for RII in the nuclei and secretory granules were about 50% greater than in the cytoplasm-RER, and 3 to 4-fold greater than values for RI in these two compartments. Electrophoresis and autoradiography of the postnuclear parotid-tissue fraction, the contents of purified secretory granules and saliva collected from the main excretory duct, after photoaffinity labeling with [32P]-8-azido-cyclic AMP, revealed the presence of R subunits. Predominantly RII was present in the granule contents and saliva, while both RII and RI were present in the cell extracts. Additionally, R subunits were purified from saliva by affinity chromatography on agarose-hexane-cyclic AMP. These findings confirm the localization of cA-PK in parotid cell nuclei and establish the acinar secretory granules as the source of the cyclic AMP-binding proteins in saliva.  相似文献   

20.
These studies compare the secretory pathways of newly formed rat serum glycoproteins and albumin by studying their submicrosomal localization at early times after the beginning of their synthesis and also by determining the submicrosomal site of incorporation of N-acetylglucosamine, mannose, galactose, and leucine into protein. N-acetylglucosamine, mannose, and galactose were only incorporated in vitro into proteins from membrane-attached polysomes and not into proteins from free polysomes. Mannose incorporation occurred in the rough endoplasmic reticulum, was stimulated by puromycin but not by cycloheximide, and 90% of the mannose-labeled protein was bound to the membranes. Galactose incorporation, by contrast, occurred in the smooth microsome fraction and 89% of the radioactive protein was in the cisternae. Albumin was mostly recovered (98%) in the cisternae, with negligible amounts in the membranes. To determine whether the radio-active sugars were being incorporated into serum proteins or into membrane protein, the solubilized in vivo-labeled proteins were treated with specific antisera to rat serum proteins or to albumin. Immunoelectrophoresis of the 14C-labeled leucine membrane and cisternal proteins showed that the membranes contained radioactive serum glycoprotein but no albumin, while the cisternal fraction contained all of the radioactive albumin and some glycoproteins. The results indicate that newly formed serum glycoproteins remain attached to the membranes of the rough endoplasmic reticulum after they are released from the membrane-attached polysomes, while albumin passes directly into the cisternae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号