首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
During differentiation neurons increase phospholipid biosynthesis to provide new membrane for neurite growth. We studied the regulation of phosphatidylcholine (PC) biosynthesis during differentiation of two neuronal cell lines: PC12 cells and Neuro2a cells. We hypothesized that in PC12 cells nerve growth factor (NGF) would up-regulate the activity and expression of the rate-limiting enzyme in PC biosynthesis, CTP:phosphocholine cytidylyltransferase (CT). During neurite outgrowth, NGF doubled the amount of cellular PC and CT activity. CTbeta2 mRNA increased within 1 day of NGF application, prior to the formation of visible neurites, and continued to increase during neurite growth. When neurites retracted in response to NGF withdrawal, CTbeta2 mRNA, protein, and CT activity decreased. NGF specifically activated CTbeta2 by promoting its translocation from cytosol to membranes. In contrast, NGF did not alter CTalpha expression or translocation. The increase in both CTbeta2 mRNA and CT activity was inhibited by U0126, an inhibitor of mitogen-activated kinase/extracellular signal-regulated kinase kinase 1/2 (MEK1/2). In Neuro2a cells, retinoic acid significantly increased CT activity (by 54%) and increased CTbeta2 protein, coincident with neurite outgrowth but did not change CTalpha expression. Together, these data suggest that the CTbeta2 isoform of CT is specifically up-regulated and activated during neuronal differentiation to increase PC biosynthesis for growing neurites.  相似文献   

4.
Zhang Y  Ding J  Duan W  Fan W 《Bioelectromagnetics》2005,26(5):406-411
The influence of low frequency (50 Hz repetition rate) pulsed electromagnetic field (EMF) on PC12 cell neurite outgrowth in vitro was investigated in this study. We studied the percentage of neurite bearing cells, average length of neurites, and directivity of neurite outgrowth in PC12 cells cultured for 96 h in the presence of nerve growth factor (NGF). PC12 cells were exposed in one incubator to pulsed EMF at 1.36 mT (peak value) generated by a pair of Helmholtz coils, and the control samples were placed in another identical incubator. We found that the pulse duty cycle had significant effect on neurite outgrowth. Low (10%) pulse on-time significantly inhibited the percentage of neurite bearing cells, but at the same time increased the average length of neurites, while 100% on-time (DC) had exactly the opposite effects. Furthermore, we found that neurites were prone to extend along the direction of pulsed EMF with 10% pulse on-time. Our studies show that neurite outgrowth in PC12 cells is sensitive to the pulse duty and this sensitivity was associated with NGF concentration.  相似文献   

5.
The RNA-binding protein HuD binds to a regulatory element in the 3' untranslated region (3' UTR) of the GAP-43 mRNA. To investigate the functional significance of this interaction, we generated PC12 cell lines in which HuD levels were controlled by transfection with either antisense (pDuH) or sense (pcHuD) constructs. pDuH-transfected cells contained reduced amounts of GAP-43 protein and mRNA, and these levels remained low even after nerve growth factor (NGF) stimulation, a treatment that is normally associated with protein kinase C (PKC)-dependent stabilization of the GAP-43 mRNA and neuronal differentiation. Analysis of GAP-43 mRNA stability demonstrated that the mRNA had a shorter half-life in these cells. In agreement with their deficient GAP-43 expression, pDuH cells failed to grow neurites in the presence of NGF or phorbol esters. These cells, however, exhibited normal neurite outgrowth when exposed to dibutyryl-cAMP, an agent that induces outgrowth independently from GAP-43. We observed opposite effects in pcHuD-transfected cells. The GAP-43 mRNA was stabilized in these cells, leading to an increase in the levels of the GAP-43 mRNA and protein. pcHuD cells were also found to grow short spontaneous neurites, a process that required the presence of GAP-43. In conclusion, our results suggest that HuD plays a critical role in PKC-mediated neurite outgrowth in PC12 cells and that this protein does so primarily by promoting the stabilization of the GAP-43 mRNA.  相似文献   

6.
The effects of several kinds of microbial extracellular glycolipids on neurite initiation in PC12 cells were examined. Addition of mannosylerythritol lipid-A (MEL-A), MEL-B, and sophorose lipid (SL) to PC12 cells caused significant neurite outgrowth. Other glycolipids, such as polyol lipid (PL), rhamnose lipid (RL), succinoyl trehalose lipid-A (STL-A) and STL-B caused no neurite-initiation. MEL-A increased acetylcholine esterase (AChE) activity to an extent similar to nerve growth factor (NGF). However, MEL-A induced one or two long neurites from the cell body, while NGF induced many neurites. In addition, MEL-A-induced differentiation was transient, and after 48 h, percentage of cells with neurites started to decrease in contrast to neurons induced by NGF, which occurred in a time-dependent manner. MEL-A could induce neurite outgrowth after treatment of PC12 cells with an anti-NGF receptor antibody that obstructed NGF action. These results indicate that MEL-A and NGF induce differentiation of PC12 cells through different mechanisms. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Past work identified and characterized an apparently novel protein kinase activity (designated HMK) that is highly and transiently stimulated in PC12 pheochromocytoma cells by nerve growth factor (NGF). In vitro, HMK phosphorylates both high molecular weight microtubule-associated proteins and myelin basic protein. This study investigates the potential mechanisms of HMK regulation in intact PC12 cells and reveals the following. 1) HMK activation is independent of macromolecular synthesis while the subsequent post-induction suppression requires both RNA and protein synthesis. 2) Neither cAMP-dependent nor Ca2+/phospholipid-dependent protein kinases appear to play a role in regulation of HMK activity by NGF. 3) In vitro, HMK activity is inactivated by protein phosphatase 2A. 4) In vivo, HMK activation by NGF is inhibited by the kinase inhibitor, K-252a. (5) Vanadate, a tyrosine phosphatase inhibitor, induces HMK activity in intact cells, while okadaic acid, a serine/threonine phosphatase inhibitor, is much less efficacious. 6) Application of okadaic acid to vanadate-pretreated cells synergistically stimulates HMK activity to a level comparable to that achieved with NGF. (7) Activation of HMK by NGF is not significantly affected when cells are pretreated with okadaic acid. However, the subsequent NGF-promoted deactivation of HMK is greatly accelerated by okadaic acid. (8) NGF down-regulated HMK activity can be heterologously restimulated by exposure to vanadate and okadaic acid. These data suggest that phosphorylation plays a critical role in both the up- and down-regulation of HMK activity in NGF-treated cells. Moreover, suppression of HMK activity requires ongoing macromolecular synthesis and appears to occur by inactivation rather than degradation.  相似文献   

8.
We have established a subline of PC12 cells (PC12D) that extend neurites very quickly in response not only to nerve growth factor (NGF) but also to cyclic AMP (cAMP) in the same way as primed PC12 cells (NGF-pretreated cells). When phosphorylation of brain microtubule proteins by extracts of these cells was monitored, two distinct kinase activities were found to be increased [from three- to eightfold in terms of phosphorylation of microtubule-associated protein (MAP) 2] by a brief exposure of cells to NGF or to dibutyryl cAMP(dbcAMP). The effect of the combined stimulation with both NGF and dbcAMP was additive in terms of the phosphorylation of MAP2. The apparent molecular mass of the kinase activated by dbcAMP was 40 kDa, and this kinase appears to be cAMP-dependent protein kinase. The molecular mass of the kinase activated by NGF was 50 kDa. The latter was activated to a measurable extent after 5 min of exposure of cells to NGF; it required Mg2+ for activity but not Mn2+ or Ca2+. This kinase appears to be distinct from previously reported kinases in PC12 cells, and it has been designated as NGF-dependent MAP kinase, although its physiological substrates are not known at present. An inhibitor of protein kinases, K-252a, selectively inhibited the outgrowth of neurites from PC12D cells in response to NGF but not to dbcAMP. When this inhibitor was added to the incubation medium of cells exposed simultaneously to NGF or dbcAMP, the increase in activity of the NGF-dependent MAP kinase was selectively abolished. We isolated several mutant clones of PC12D cells that were deficient in the ability to induce neurites in response to either of the two stimulators. In these variant cells, the activity of the relevant protein kinase was decreased, in parallel with the deficiency in the neurite response to NGF or dbcAMP. These observations suggest that the NGF-dependent MAP kinase may play an important role in the outgrowth of neurites from PC12 cells in response to NGF.  相似文献   

9.
High levels of the neuron-specific protein kinase C substrate, B-50 (= GAP43), are present in neurites and growth cones during neuronal development and regeneration. This suggests a hitherto nonelucidated role of this protein in neurite outgrowth. Comparable high levels of B-50 arise in the pheochromocytoma PC12 cell line during neurite formation. To get insight in the putative growth-associated function of B-50, we compared its ultrastructural localization in naive PC12 cells with its distribution in nerve growth factor (NGF)- or dibutyryl cyclic AMP (dbcAMP)-treated PC12 cells. B-50 immunogold labeling of cryosections of untreated PC12 cells is mainly associated with lysosomal structures, including multivesicular bodies, secondary lysosomes, and Golgi apparatus. The plasma membrane is virtually devoid of label. However, after 48-h NGF treatment of the cells, B-50 immunoreactivity is most pronounced on the plasma membrane. Highest B-50 immunoreactivity is observed on plasma membranes surrounding sprouting microvilli, lamellipodia, and filopodia. Outgrowing neurites are scattered with B-50 labeling, which is partially associated with chromaffin granules. In NGF-differentiated PC12 cells, B-50 immunoreactivity is, as in untreated cells, also associated with organelles of the lysosomal family and Golgi stacks. B-50 distribution in dbcAMP-differentiated cells closely resembles that in NGF-treated cells. The altered distribution of B-50 immunoreactivity induced by differentiating agents indicates a shift of the B-50 protein towards the plasma membrane. This translocation accompanies the acquisition of neuronal features of PC12 cells and points to a neurite growth-associated role for B-50, performed at the plasma membrane at the site of protrusion.  相似文献   

10.
Mature retinal ganglion cells (RGCs) do not normally regenerate severed axons after optic nerve injury and show only little neurite outgrowth in culture. However, RGCs can be transformed into an active regenerative state after lens injury (LI) enabling these neurons to regrow axons in vitro and in vivo. In the current study we investigated the role of CK1δ and CK1ε activity in neurite outgrowth of LI stimulated RGCs and nerve growth factor (NGF) stimulated PC12 cells, respectively. In both cell types CK1δ and ε were localized in granular particles aligned at microtubules in neurites and growth cones. Although LI treatment did not measurably affect the expression of CK1δ and ε, it significantly elevated the specific kinase activity in the retina. Similarly, CK1δ/ε specific kinase activity was also elevated in NGF treated PC12 cells compared with untreated controls. Neurite extension in PC12 cells was associated with a change in the activity of CK1δ C-terminal targeting kinases, suggesting that activity of these kinases might be necessary for neurite outgrowth. Pharmacological inactivation of CK1δ and ε markedly compromised neurite outgrowth of both, PC12 cells and LI stimulated RGCs in a concentration dependent manner. These data provide evidence for a so far unknown, but essential role of CK1 isoforms in neurite growth.  相似文献   

11.
As a dual‐specificity phosphatase catalyzing the dephosphorylation of phosphatidylinositols and protein substrates, PTEN is critically involved in the nervous system development. However, the regulatory role of PTEN in neurite outgrowth is still controversial, and the downstream signaling events remain elusive. Here, we show that PTEN knockdown promoted the proliferation and survival but not the neurite outgrowth of rat pheochromocytoma PC12 cells when exposed to nerve growth factor (NGF). In contrast, selective PTEN silencing in differentiating PC12 cells that express nestin significantly facilitated neurite elongation. Elevated Akt and Erk1/2 phosphorylation was involved in accelerated NGF‐induced neurite development of PC12 cells following PTEN knockdown. Discriminated roles of the lipid phosphatase and protein phosphatase activities of PTEN in neurite development, as well as the detailed molecular profiles affected by these phosphatase activities, were defined by restored expression of a lipid phosphatase‐deficient PTEN mutant following endogenous PTEN silencing in PC12 cells. Our study suggests an overall inhibitory effect of PTEN in neurite development reconciled by a probably indispensable role of this phosphatase in the initiation of PC12 cell differentiation. J. Cell. Biochem. 111: 1390–1400, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
13.
The structurally similar compounds staurosporine and K252a are potent inhibitors of protein kinases. K252a has previously been reported to inhibit most or all of the effects of nerve growth factor (NGF) on PC12 pheochromocytoma cells, and staurosporine has been reported both to inhibit and to mimic NGF-induced neurite outgrowth from a PC12 cell subclone in a dose-dependent manner. We have studied the interactions of these agents with each other, with NGF, and with forskolin, an activator of adenylate cyclase, on the parent PC12 cell line and on normal neonatal and adult rat chromaffin cells. Staurosporine alone or in conjunction with forskolin induces outgrowth of short neurites from PC12 cells but does not substitute for NGF in promoting cell survival. It does not abolish NGF-induced neurite outgrowth but does reverse the effects of NGF on catecholamine synthesis. K252a abolishes NGF-induced neurite outgrowth but only partially decreases outgrowth induced by NGF plus forskolin. It does not inhibit neurite outgrowth produced by staurosporine or staurosporine plus forskolin. These findings with PC12 cells suggest that staurosporine might act downstream from K252a and NGF on components of one or more signal transduction pathways by which NGF selectively affects the expression of certain traits. Both neonatal and adult rat chromaffin cells show dramatic flattening and extension of filopodia in response to staurosporine, an observation suggesting that some of the same pathways might remain active in cells that do not exhibit a typical NGF response. Only a small amount of neurite outgrowth is observed, however, and only in neonatal cultures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
SHP-1 and SHP-2 are intracellular protein tyrosine phosphatases containing two adjacent src homology 2 domains that target these phosphatases to cell surface receptor signaling complexes and play a role in receptor signal transduction. In this report the PC12 cell system was used to investigate the potential roles of SHP-1 and SHP-2 in the induction of neuronal differentiation by nerve growth factor (NGF). By using neurite outgrowth as a marker for differentiation, the effects of transfected constructs of SHP-1 and SHP-2 were assessed. Overexpression of a catalytically inactive SHP-2, but not a catalytically inactive SHP-1, blocked NGF-stimulated neurite outgrowth. The mitogen-activated protein kinase (MAPK) signaling cascade is important for the morphological differentiation in PC12 cells, and both SHP-1 and SHP-2 have been implicated to act upstream of MAPK in other receptor signaling systems. A positive role for SHP-2 but not SHP-1 in the activation of MAPK by NGF was demonstrated by introduction of the SHP-2 phosphatase mutants along with hemagglutinin-tagged MAPK. Coexpression studies with the SHP-2 mutant along with mutant forms of MAPK kinase suggested that SHP-2 functions upstream of MAPK kinase and MAPK in NGF-induced neurite outgrowth.  相似文献   

15.
The rat pheochromocytoma cell line PC12 can be induced to differentiate in response to nerve growth factor (NGF) in the presence of 1% fetal calf serum (FCS). Using a novel assay procedure we have developed a purification protocol which has allowed the isolation of the protein in serum responsible for neurite outgrowth after NGF treatment. FCS has been fractionated using four chromatographic procedures and in each case the peak of biological activity copurified with vitronectin. We have concluded, therefore, that vitronectin is the protein present in FCS which can mediate NGF-dependent neurite outgrowth in PC12 cells. Vitronectin and fibronectin from FCS have been chromatographically separated and only the former is capable of inducing neurite outgrowth. We have also shown that vitronectin utilizes the RGD amino acid sequence in binding to the surface of PC12s.  相似文献   

16.
17.
The outgrowth of neurites from rat PC12 cells stimulated by combined treatment of nerve growth factor (NGF) with cAMP is significantly more rapid and extensive than the outgrowth induced by either factor alone. We have compared the responses of PC12 cells under three different growth conditions, NGF alone, cAMP alone, and combined treatment, with respect to surface morphology, rapidity of neurite outgrowth, and stability of neurite microtubules, to understand the synergistic action of NGF and cAMP on PC12. Surface events at early times in these growth conditions varied, suggesting divergent pathways of action of NGF and cAMP. This suggestion is strongly supported by the finding that cells exposed to saturating levels of dibutyryl cAMP without substantial neurite outgrowth initiated neurites within 5 min of NGF. This response has been adopted as a convenient assay for NGF. Neurites that regenerated in the three growth conditions showed marked differences in stability to treatments that depolymerize microtubules. The results indicate that microtubules in cells treated with both NGF and cAMP are significantly more stable than in either growth factor alone. We suggest that a shift of the assembly equilibrium favoring tubulin assembly is a necessary prerequisite for the initiation of neurites by PC12.  相似文献   

18.
The Rho family of small GTPases has been implicated in cytoskeletal reorganization and subsequent morphological changes in various cell types. Among them, Rac and Cdc42 have been shown to be involved in neurite outgrowth in neuronal cells. In this study, we examined the role of RhoG, another member of Rho family GTPases, in nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells. Expression of wild-type RhoG in PC12 cells induced neurite outgrowth in the absence of NGF, and the morphology of wild-type RhoG-expressing cells was similar to that of NGF-differentiated cells. Constitutively active RhoG-transfected cells extended short neurites but developed large lamellipodial or filopodial structures at the tips of neurites. RhoG-induced neurite outgrowth was inhibited by coexpression with dominant-negative Rac1 or Cdc42. In addition, expression of constitutively active RhoG elevated endogenous Rac1 and Cdc42 activities. We also found that the NGF-induced neurite outgrowth was enhanced by expression of wild-type RhoG whereas expression of dominant-negative RhoG suppressed the neurite outgrowth. Furthermore, constitutively active Ras-induced neurite outgrowth was also suppressed by dominant-negative RhoG. Taken together, these results suggest that RhoG is a key regulator in NGF-induced neurite outgrowth, acting downstream of Ras and upstream of Rac1 and Cdc42 in PC12 cells.  相似文献   

19.
20.
Okadaic acid, a selective inhibitor of serine/threonine protein phosphatases, was utilized to investigate the requirement for phosphatases in cell cycle progression of GH4 rat pituitary cells. Okadaic acid inhibited GH4 cell proliferation in a concentration-dependent manner with a half-maximal inhibition (IC50) of approximately 5 nM. Treatment of GH4 cells with 10 nM okadaic acid resulted in a 40-60% decrease in phosphatase activity and an increase in the proportion of phosphorylated retinoblastoma (RB) protein. Cell cycle analysis indicated that okadaic acid increased the percentage of cells in G2-M, decreased proportionally the percentage of cells in G1 phase, and had little effect on the percentage of cells in S-phase. The absence of a change in the proportion of S-phase cells indicates that G1-specific phosphatases responsible for dephosphorylation of RB protein were not inhibited by 10 mM okadaic acid. Mitotic index revealed that 10 nM okadaic acid decreased proliferation of GH4 cells specifically by slowing the progression through mitosis. Immunostaining with anti-tubulin demonstrated that 10 nM okadaic acid-treated mitotic cells contained mitotic spindles; however, the spindle apparatus in these cells frequently contained multiple poles. These results suggest that the organization of spindle microtubules during prometaphase requires a protein phosphatase that is sensitive to nanomolar concentrations of okadaic acid. Chromosomes in 10 nM okadaic acid-treated cells appear to be attached to spindle microtubules and the nuclear envelope is absent. The effects of okadaic acid on the spindle differ from those elicited by the calcium channel blocker, nimodipine, indicating that this okadaic acid sensitive phosphatase is not part of the calcium signalling events which participate in mitotic progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号