首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genomic organization of a new candidate tumor suppressor gene, LRP1B   总被引:4,自引:0,他引:4  
  相似文献   

2.
The human angiotensin II (AII) type 1a receptor gene and its upstream control sequence has been cloned from a human leukocyte genomic library. The promoter element CAAT and TATA sequences were found at -602 and -538, respectively, upstream from the translational initiation site. The deduced protein sequence is homologous to rat and bovine AT1a receptors (94.7% and 95.3% identity). The expressed gene exhibited high-affinity AII and Dup753 binding and was functionally coupled to inositol phosphate turnover. Northern analysis of human tissues showed AT1 receptor mRNA expression in placenta, lung, heart, liver, and kidney. Using 5' untranslated and coding sequence as probes in a Southern blot analysis, it was established that another AT1 subtype exists in the human genome.  相似文献   

3.
4.
5.
6.
Calcyphosine is a calcium-binding protein containing four EF-hand domains, initially identified as thyroid protein p24. It was first cloned and its counterparts in rabbit, human, and mouse, crayfish and lobster of invertebrate were also cloned. Here we describe the cloning and characterization of a novel human calcyphosine gene. The 3829-bp cDNA encodes a EF-hand Ca(2+)-binding protein homologous to the dog calcyphosine. It also contains two EF-hand Ca(2+)-binding motif. It is abundantly expressed in many tissues including by RT-PCR analysis and believed to play important role in calcium signaling. It was mapped to human genome 12q15.  相似文献   

7.
Sterol carrier protein 2 (SCP2) is believed to play a key role in intracellular lipid movement. Here we report the cloning and nucleotide sequences of cDNAs encoding SCP2-related proteins of 58.85 kD and 30.8 kD and the assignment of the SCP2 gene to human chromosome 1 p21-pter. The SCP2-related proteins share common deduced carboxyl amino acid sequences with SCP2 and the cDNAs have a common 3' untranslated nucleotide sequence. The mRNAs encoding these proteins increased in a coordinate fashion as human placental cytotrophoblasts differentiated into syncytiotrophoblasts in culture. Our observations document the existence of a family of related proteins encoded by the human SCP2 gene.  相似文献   

8.
Cells that are taken from the nucleus pulposus (NP) and that are allowed to proliferate in monolayer cultures often exhibit changes in their cell morphology and matrix-protein synthesis. However, whether concomitant alterations occur with respect to their mRNA levels for collagen I (CI), collagen II (CII) and aggrecan (AGG) is unclear. In this study, human NP cells from seven individuals were cultured in monolayers and specific mRNAs for CI, CII and AGG were quantified by real-time polymerase chain reaction in fresh NP tissue and during four passages of NP-cell culture. In addition, the presence of CI, CII and AGG protein was determined by immunofluorescence staining of NP cells. We found a significant reduction of CI, CII and AGG mRNA after the initiation of culture in DMEM compared with mRNA levels in fresh NP tissue. During passages 2–4, no further reduction of mRNA levels for CII and AGG was observed. The mRNA level for CI was reduced significantly with duration of culture. Immunofluorescence staining of cultured NP cells revealed expression of CI, CII and AGG protein during the whole culture period. Our data thus demonstrate a reduction of specific mRNA for matrix proteins during the initiation of NP-cell culture but the stable expression of the key matrix proteins, CII and AGG, during further expansion of the cells in monolayers, suggesting no functional changes occur in cultured NP cells. This work was supported by the Medizinisch-wissenschaftlicher Fonds des Buergermeisters der Stadt Wien (grant no. 2177).  相似文献   

9.
Esophageal cancer related gene 2 (ECRG2) is a novel candidate of the tumor suppressor gene identified from human esophagus. To study the biological role of the ECRG2 gene, we performed a GAL4-based yeast two-hybrid screening of a human fetal liver cDNA library. Using the ECRG2 cDNA as bait, we identified nine putative clones as associated proteins. The interaction of ECRG2 and metallothionein 2A (MT2A) was confirmed by glutathione S-transferase pull-down assays in vitro and co-immunoprecipitation experiments in vivo. ECRG2 co-localized with MT2A mostly to nuclei and slightly to cytoplasm, as shown by confocal microscopy. Transfection of ECRG2 gene inhibited cell proliferation and induced apoptosis in esophageal cancer cells. In the co-transfection of ECRG2 and MT2A assays, cell proliferation was inhibited and apoptosis was slightly induced compared with control groups. When we used antisense MT2A to interdict the effect of MT2A, the inhibition of cell proliferation and induction of apoptosis were significantly enhanced. When we used antisense ECRG2 to interdict the effect of ECRG2 in the group of Bel7402 cells co-transfected with ECRG2 and MT2A, the inhibition of cell proliferation and induction of apoptosis disappeared. The results provide evidence for ECRG2 in esophageal cancer cells acting as a bifunctional protein associated with the regulation of cell proliferation and induction of apoptosis. ECRG2 might reduce the function of MT2A on the regulation of cell proliferation and induction of apoptosis. The physical interaction of ECRG2 and MT2A may play an important role in the carcinogenesis of esophageal cancer.  相似文献   

10.
To identify novel psoriasis-associated genes, we focused on several ESTs (expressed sequence tags) whose expression was predominantly increased in the affected skin in patients with psoriasis vulgaris, as assessed by microarray assay. In this paper, a full-length cDNA corresponding to one of those ESTs (AI440266) was isolated by screening of cultured human keratinocyte cDNA libraries. This cDNA has an open reading frame of a 309-amino-acid protein, sharing significant homology to one of the short-chain alcohol dehydrogenase/reductase (SDR) families that can catalyze the first and rate-limiting step that generates retinaldehyde from retinol. So, this gene was designated as hRDH-E2 (human epidermal retinal dehydrogenase 2). The hRDH-E2 gene has a single functional copy on chromosome 8q12.1, spanning approximately 20kb with seven exons. The deduced amino acid sequence contains three motifs that are conserved in the SDR family. Qualitative RT-PCR demonstrated that the mRNA levels of hRDH-E2 were significantly elevated in the affected skin in psoriasis patients as compared to the unaffected skin in patients and the normal skin in healthy individual. These results suggest that hRDH-E2 may be involved in the pathogenesis of psoriasis through its critical role in retinol metabolism in keratinocyte proliferation.  相似文献   

11.
12.
Gliomas take a number of different genetic routes in the progression to glioblastoma multiforme, a highly invasive variant that is mostly unresponsive to current therapies. Gliomas express elevated levels of matrix metalloproteinases (MMPs), which have been implicated in the control of proliferation and invasion as well as neovascularization. Progressive loss of LGI1 expression has been associated with the development of high grade gliomas. We have shown previously that the forced re-expression of LGI1 in different glioma cells inhibits proliferation, invasiveness, and anchorage-independent growth in cells null for its expression. Here, using Affymetrix gene chip analysis, we show that reexpression of LGI1 in T98G cells results in the down-regulation of several MMP genes, in particular MMP1 and MMP3. LGI1 expression also results in the inhibition of ERK1/2 phosphorylation but not p38 phosphorylation. Inhibition of the MAPK pathway using the pharmacological inhibitors PD98059, U0126, and SB203580 in T98G LGI1-null cells inhibits MMP1 and MMP3 production in an ERK1/2-dependent manner. Treatment of LGI1-expressing cells with phorbol myristate acetate prevents the inhibition of MMP1/3 and restores invasiveness and ERK1/2 phosphorylation, suggesting that LGI1 acts through the ERK/MAPK pathway. Furthermore, LGI1 expression promotes phosphorylation of AKT, which leads to phosphorylation of Raf1(Ser-259), an event shown previously to negatively regulate ERK1/2 signaling. These data suggest that LGI1 plays a major role in suppressing the production of MMP1/3 through the phosphatidylinositol 3-kinase/ERK pathway. Loss of LGI1 expression, therefore, may be an important event in the progression of gliomas that leads to a more invasive phenotype in these cells.  相似文献   

13.
Osteopontin (OPN), also called cytokine Eta-1, expressed in the myocardium co-incident with heart failure plays an important role in post myocardial infarction (MI) remodeling by promoting collagen synthesis and accumulation. Angiotensin II (Ang II) and inflammatory cytokines are increased in the heart following MI. We studied the involvement of mitogen-activated protein kinases (ERK1/2, JNKs, p38 kinase) and reactive oxygen species (ROS) in Ang II- and cytokine-induced OPN gene expression in adult rat cardiac fibroblasts. Ang II alone increased OPN mRNA (3.3 +/- 0.3-folds; P < 0.05; n = 7), while interleukin-1beta (IL-1beta), tumor necrosis factor (TNF-alpha), and interferon-gamma (IFN-gamma) had no effect. A combination of Ang II with IL-1beta or TNF-alpha, not IFN-gamma, increased OPN mRNA more than Ang II alone. Nitric oxide donor, S-nitrosoacetylpenicillamine (SNAP), alone or in combination with Ang II had no effect. Diphenylene iodonium (DPI), inhibitor of NAD(P)H oxidase, and tiron, superoxide scavenger, inhibited Ang II- and Ang II+ IL-1beta-stimulated increases in OPN mRNA. Ang II activated ERK1/2 within 5 min of treatment, not JNKs. IL-1beta activated ERK1/2 and JNKs within 15 min of treatment. A combination of Ang II and IL-1beta activated ERK1/2 within 5 min of treatment. None of these stimuli activated p38 kinase. DPI almost completely inhibited Ang II + IL-1beta-stimulated activation of ERK1/2, while partially inhibiting JNKs. PD98059, ERK1/2 pathway inhibitor, and SP600125, JNKs inhibitor, partially inhibited Ang II + IL-1beta-stimulated increases in OPN mRNA. A combination of PD98059 and SP600125 almost completely inhibited Ang II + IL-1beta-stimulated increases in OPN mRNA. Thus, Ang II alone increases OPN expression, while IL-1beta and TNF-alpha act synergistically with Ang II to increase OPN mRNA possibly via NO independent mechanisms. The synergistic increase in OPN mRNA involves ROS-mediated activation of ERK1/2 and JNKs, not P38 kinase, pathways in cardiac fibroblasts.  相似文献   

14.
Environmental effects and mitogens determine cell phenotype in eukaryotes mainly through MAPK pathways. However, MAPK signaling pathways in T. thermophila have not been studied comprehensively. This study aims to express recombinant MPK2, a MAPK from T. thermophila, in E. coli to characterize its kinase activity. MPK2 was cloned by RT-PCR using degenerate oligonucleotide primers and RACE method. The full-length cDNA of the MPK2 gene is 1705 bp that includes 1281 bp ORF coding for a putative protein of 426 amino acids having a mass of 50.2 kDa. The putative MPK2 protein contains all eleven conserved subdomains that are characteristics of serine/threonine protein kinases, and a TDY motif, which is a putative dual phosphorylation site common in Protista. MPK2 displays highest 48% overall identity to human ERK5 (MAPK7). The expression vector pGEX4T-1-MPK2 was constructed by inserting the coding region of MPK2 cDNA into pGEX4T-1 after introducing the nine point mutations, and then transformed into E. coli BL21(DE3). Autophosphorylation of 76 kDa GST-MPK2 at tyrosine residues was confirmed not only by Western blot using anti-phosphotyrosine monoclonal antibody but also by in vitro kinase assay. GST-MPK2 was also able to phosphorylate the artificial substrate myelin basic protein. This study concludes that the free-living unicellular protist T. thermophila MPK2 has commonly conserved MAPK enzyme features, possibly involved in the regulation of cell survival responding to abiotic or biotic stressors, and the production and movement of haploid gametic nuclei between pairs during conjugation.  相似文献   

15.
16.
17.
Proteins which recognize the two messengers phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3), a membrane lipid, and inositol 1,3,4,5-tetrakisphosphate (InsP4), a water-soluble ligand, play important roles by integrating external stimuli, which lead to differentiation, cell death or survival. p42IP4, a PtdInsP3/InsP4-binding protein, is predominantly expressed in brain. The recently described centaurin alpha2 of similar molecular mass which is 58% identical and 75% homologous to the human p42IP4 orthologue, is expressed rather ubiquitously in many tissues. Here, elucidating the gene structure for both proteins, we found the human gene for centaurin alpha2 located on chromosome 17, position 17q11.2, near to the NF1 locus, and human p42IP4 on chromosome 7, position 7p22.3. The two isoforms, which both have 11 exons and conserved exon/intron transitions, seem to result from gene duplication. Furthermore, we studied binding of the two second messengers, PtdInsP3 and InsP4, and subcellular localization of the two proteins. Using recombinant baculovirus we expressed centaurin alpha2 and p42IP4 in Sf9 cells and purified the proteins to homogeneity. Recombinant centaurin alpha2 bound both InsP4 and PtdInsP3 equally well in vitro. Furthermore, fusion proteins of centaurin alpha2 and p42IP4, respectively, with the green fluorescent protein (GFP) were expressed in HEK 293 cells to visualize subcellular distribution. In contrast to p42IP4, which was distributed throughout the cell, centaurin alpha2 was concentrated at the plasma membrane already in unstimulated cells. The protein centaurin alpha2 was released from the membrane upon addition of wortmannin, which inhibits PI3-kinase. p42IP4, however, translocated to plasma membrane upon growth factor stimulation. Thus, in spite of the high homology between centaurin alpha2 and p42IP4 and comparable affinities for InsP4 and PtdInsP3, both proteins showed clear differences in subcellular distribution. We suggest a model, which is based on the difference in phosphoinositide binding stoichiometry of the two proteins, to account for the difference in subcellular localization.  相似文献   

18.
19.
We report the identification and characterization of Ψ3Tom20, a novel processed pseudogene of the human Tom20 (hTom20) gene, which is 96.2% similarity with the hTom20 cDNA and is 5′ and 3′ truncated. In addition, we present the complete characterization of Ψ1Tom20 and Ψ2Tom20, the two other recently reported members of this pseudogene family. Comparison of the sequences of Ψ3Tom20 with that of the previously reported Ψ2Tom20 revealed and corrected an error in the previously determined sequence of Ψ2Tom20. A detailed analysis of these three pseudogenes, including their flanking regions, is presented. It suggests they probably arose from mRNAs that were polyadenylated at different sites. Possible mechanisms involved in their integration as retroposons are also discussed. Received: 29 October 1998 / Accepted: 7 May 1999  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号