首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Increased smooth muscle contractility or reduced smooth muscle mechanical loads could account for the excessive airway narrowing and hyperresponsiveness seen in asthma. These mechanisms were investigated by using an allergen-induced porcine model of airway hyperresponsiveness. Airway narrowing to electric field stimulation was measured in isolated bronchial segments, over a range of transmural pressures (0-20 cmH(2)O). Contractile responses to ACh were measured in bronchial segments and in isolated tracheal smooth muscle strips isolated from control and test (ovalbumin sensitized and challenged) pigs. Test airways narrowed less than controls (P < 0.0001). Test pigs showed reduced contractility to ACh, both in isolated bronchi (P < 0.01) and smooth muscle strips (P < 0.01). Thus isolated airways from pigs exhibiting airway hyperresponsiveness in vivo are hyporesponsive in vitro. The decreased narrowing in bronchi from hyperresponsive pigs may be related to decreased smooth muscle contractility. These data suggest that mechanisms external to the airway wall may be important to the hyperresponsive nature of sensitized lungs.  相似文献   

2.
To determine whether airway smooth muscle undergoes a maturational change regarding force generation, length-tension relationships were determined in isolated trachealis strips from adult and preterm sheep. At the length of maximum force generation, passive active and total tensions of the adult muscle were 2.5 times greater than preterm values (P less than 0.001). KCl stimulation yielded a greater peak tension in the adult strips than in the preterm strips (P less than 0.01). Preterm strips required higher concentrations of KCl to initiate contractions and higher concentrations to reach peak tension. Acetylcholine- (ACh) induced contraction resulted in greater force development at each dose in the adult strips compared with preterm strips (P less than 0.001). The dose of ACh required to reach a half-maximal response was significantly less for the adult strips than for the preterm strips (P less than 0.005). These data demonstrate that both force generation and receptor sensitivity increase with age. This inability of immature smooth muscle to generate as much force as adult smooth muscle may help explain why very preterm neonates requiring intermittent positive-pressure ventilation are at risk for developing structural airway problems.  相似文献   

3.
We studied the effect of maturation on contractile properties of tracheal smooth muscle from seventeen 2-wk-old swine (2ws) and fifteen 10-wk-old swine (10ws) in situ and in vitro. The response to parasympathetic stimulation was studied in situ in isometrically fixed segments. Contraction was elicited at lower frequencies [half-maximal response to electrical stimulation (ES50) = 6.7 +/- 0.05 Hz] in 2ws than in 10ws (ES50 = 9.1 +/- 0.4 Hz; P less than 0.01). Despite substantial differences in morphometrically normalized cross-sectional area in 2ws (0.012 +/- 0.003 cm2) and 10ws (0.028 +/- 0.001 cm2; P less than 0.01), maximal active tension elicited by parasympathetic stimulation was similar (12.4 +/- 3.2 g/cm in 2ws vs. 13.3 +/- 2.3 g/cm in 10ws; P = NS). In separate in vitro studies in 25 tracheal smooth muscle strips from 10 swine, concentration-response curves generated with potassium-substituted Krebs solution (KCl) were similar in 2ws and 10ws. In 58 other strips (10 swine), maximal active force elicited with acetylcholine (ACh) in 2ws was significantly greater than for 10ws (P less than 0.001). Removal of the epithelium had no effect. However, cholinesterase inhibition with 10(-7) M physostigmine augmented the response to ACh in 10ws (P less than 0.02) but not 2ws. We demonstrate increased force generation and sensitivity to vagal stimulation in 2ws vs. 10ws, which corresponds to increased reactivity to ACh in vitro. The relative hyperresponsiveness in 2ws is specific for cholinergic response and is attenuated at least in part by maturation of the activity of acetylcholinesterase enzyme.  相似文献   

4.
The lower airways of guinea-pigs were analyzed for pituitary adenylate cyclase activating peptide (PACAP) using immunocytochemistry. In the trachea a moderate supply of PACAP-immunoreactive nerve fibers occurred around smooth muscle bundles, glands and small blood vessels. In the lung, PACAP-immunoreactive nerve fibers were distributed around small glands and bronchi. A rich supply of PACAP immunoreactive nerve fibers was found around blood vessels in the lungs. PACAP-suppressed smooth muscle responses were analysed using isolated circular segments of trachea, pulmonary arteries and aorta of guinea-pigs. In both airways and arteries PACAP caused a concentration-dependent relaxation of precontracted segments. The maximal relaxation effects were more pronounced in the airways than in the arteries while the order of potency was aorta greater than pulmonary artery greater than trachea. The effect of PACAP was compared to those of acetylcholine (ACh) and vasoactive intestinal peptide (VIP). In the pulmonary artery the vasomotor responses expressed as maximal dilatation had the order: ACh greater than VIP = PACAP while the order of potency was PACAP = VIP greater than ACh. In the trachea, PACAP was slightly more potent than VIP. The relaxatory responses to PACAP in the trachea and the intrapulmonary arteries were unaffected by pretreatment with atropine, prazosin, yohimbine, propranolol, mepyramine, cimetidine and Spantide. Removal of the endothelium abolished PACAP-induced vascular relaxation. Conceivably, PACAP-containing nerve fibers play a role in the regulation of airway resistance and local blood flow.  相似文献   

5.
The effect of epithelium removal on the reactivity of rabbit airway smooth muscle to bronchoactive agents and on the effect of verapamil was studied in vitro using preparations from several levels within the respiratory tree, i.e., trachea, primary (10) and secondary (20) bronchus. Methacholine contracted tissues from all three levels of airway. Histamine contracted strips from 20 bronchus, had an inconsistent action in strips from 10 bronchus and was without effect in tracheal preparations. K+ contracted tissues from the trachea and 10 bronchus, and had a mixed action in 20 bronchial strips. Removal of the epithelial cell layer variably affected the reactivity of the smooth muscle to the three agents studied. In 20 bronchus, epithelium removal potentiated responses to histamine and methacholine. In 10 bronchus, only responses to methacholine were consistently augmented. In tracheal preparations epithelium removal did not alter the reactivity of the tissue to any agent examined. Verapamil (1 microM) attenuated responses to all agents and increased in its potency from tracheal through 10 to 20 bronchial preparations. Following epithelium removal, verapamil was substantially less effective in 20 bronchi, yet its effects were unchanged in the trachea. The results indicate that the epithelial cell layer modulates airway smooth muscle reactivity; this phenomenon is apparently widespread in mammals, the modulatory effect is more prominent in the smaller airways, and the magnitude of the effect of verapamil on airway smooth muscle is, in part, related to the presence of the epithelium.  相似文献   

6.
We studied regional variation in canine trachealis smooth muscle sensitivity and responsiveness to methacholine as well as basal and methacholine-stimulated adenosine 3',5'-cyclic monophosphate (cAMP) and cAMP-dependent protein kinase activity. The trachea between the cricoid cartilage and the carina was divided into three segments of equal length (designated cervical, middle, and thoracic regions), each consisting of approximately 12-14 cartilage rings. Smooth muscle strips from each of the three regions were exposed to cumulative half-log increments of methacholine chloride. The sensitivity (-log EC50) and responsiveness (force per cross-sectional area and force per milligram protein) of the smooth muscle to methacholine in each region was determined from these data. Smooth muscle strips from cervical and thoracic regions were frozen before and after exposure to cumulative half-log increments of methacholine up to each region's previously determined EC50. Frozen samples were assayed for cAMP content or cAMP-dependent protein kinase activity. The relationship between resting tension and methacholine sensitivity and responsiveness were studied. For the size strips we used, 4 g resting tension set the average cervical and thoracic strips at 96 and 101% of their optimal length, respectively. The methacholine EC50 was not affected by a variation in resting tension. Sensitivity to methacholine was 7.1, 6.8, and 6.5 for cervical, middle, and thoracic regions, respectively. The responsiveness of the cervical and thoracic smooth muscle to methacholine was 16.4 and 16.3 g force/mm2, respectively, at an EC50 methacholine. Basal cAMP was lower in cervical smooth muscle than in thoracic. cAMP-dependent protein kinase activity ratios under both basal and EC50 methacholine-stimulated conditions were lower in cervical smooth muscle than in thoracic. We have observed in trachealis smooth muscle an inverse relationship between methacholine sensitivity and either cAMP or cAMP-dependent protein kinase activity. We suggest that cAMP and cAMP-dependent protein kinase play a role in the regulation of airway smooth muscle sensitivity to cholinergic agonists.  相似文献   

7.
We investigated whether the airway constrictive response to stimulation of bronchopulmonary C-fiber afferents is altered during the maturation process. Isometric tension was measured in airway rings isolated from three tracheobronchial locations (intrathoracic trachea and main and hilar bronchi) and compared in mature [M, 407 +/- 10 (SE) g body wt, n = 36] and immature (IM, 161 +/- 5 g body wt, n = 35) guinea pigs. Our results showed no difference in the ACh (10(-5) M)- or KCl (40 mM)-induced contraction between M and IM groups, regardless of the airway location. In sharp contrast, the concentration-response curves of 10(-8)-10(-6) M capsaicin were distinctly lower in IM hilar bronchi; for example, response to the same concentration of capsaicin (10(-6) M) was 89.2 +/- 15.3% of the response to 10(-5) M ACh in IM and 284.7 +/- 43.2% in M animals. Similar, but smaller, differences in the bronchoconstrictive response to capsaicin between IM and M groups were also observed in the trachea and main bronchus. Electrical field stimulation induced airway constriction in all three locations in M and IM groups. However, after administration of 10(-6) M atropine and 10(-6) M propranolol, electrical field stimulation-induced contraction was significantly smaller in the hilar bronchus of IM than M animals, and this difference was not prevented by pretreatment with 5 x 10(-5) M indomethacin. Although radioimmunoassay showed no difference in the tissue content of substance P between M and IM airways, the constrictive responses to exogenous substance P and neurokinin A were markedly greater in M airways at all three locations. In conclusion, the constriction of isolated airways evoked by C-fiber stimulation was significantly weaker in the IM guinea pigs, probably because of a less potent effect of tachykinins on the airway smooth muscle.  相似文献   

8.
To evaluate the developmental changes in pulmonary vascular smooth muscle contractile protein content, mechanical properties, and their contribution to the high resistance characteristic of the fetal and immediate neonatal period, we studied pulmonary vessels of fetal, newborn, and adult sheep, as well as newborn and adult pigs. Strips of the second- through fifth-generation vessels were dissected, and their content of tissue total smooth muscle cell protein, myosin, and actin-to-myosin ratio were measured; the mechanical properties of the second-generation vascular strips were also studied. For all ages the smooth muscle protein and myosin content of the second-generation vessels were significantly greater than for the lower pulmonary vascular orders (P less than 0.05). The myosin content in fetal sheep (0.77 +/- 0.03 micrograms/mg wet tissue) was similar to that of the newborn (0.79 +/- 0.04) and adult (0.86 +/- 0.05). However, the smooth muscle protein content (7.94 +/- 0.21 micrograms/mg wet tissue) and the actin-to-myosin ratio of the pulmonary vascular tissue of the fetus (1.00 +/- 0.04) were lower (P less than 0.01) in the fetal than in the newborn (9.16 +/- 0.26 and 1.60 +/- 0.12) and adult (9.38 +/- 0.3 and 1.60 +/- 0.11, respectively). No differences were observed for these parameters between the newborn and adult pig. Stress (16.5 +/- 1.7 mN/mm2) and the maximum shortening capacity (13.0 +/- 1.5% of optimal length) in the newborn pulmonary vascular strips were significantly greater than for the fetus (6.8 +/- 1.4 and 5.9 +/- 1.0, respectively) but similar to those of the adult sheep.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Summary The occurrence and distribution of peptide-containing nerve fibres [substance P (SP), calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP), peptide histidine isoleucine (PHI), neuropeptide Y (NPY)] and noradrenergic nerve fibres [tyrosine hydroxylase (TH)- and dopamine beta hydroxylase (DBH)-positive] in the airways of the pig were studied by means of immunohistochemistry. SP- and CGRP-immunoreactive (-IR) nerve fibres were present close to and within the lining respiratory epithelium, around blood vessels, within the tracheobronchial smooth muscle layer and around local tracheobronchial ganglion cells. The content of CGRP- and neurokinin A (NKA)-like immunoreactivity (-LI) measured by radioimmunoassay (RIA) was twice as high in the trachea compared to that in the peripheral bronchi. SP was a more potent constrictor agent than NKA on pig bronchi in vitro. CGRP had a relaxant effect on precontracted pig bronchi. On blood vessels CGRP exerted a relaxant effect that was more pronounced on pulmonary arteries than on bronchial arteries. VIP/PHI-IR fibres were seen in association with exocrine glands and in the tracheobronchial smooth muscle layer. VIP-positive nerve fibres were abundant around blood vessels in the trachea but sparse or absent around blood vessels in the peripheral bronchi. This histological finding was supported by RIA; it was shown that the content of peptides displaying VIP-like immunoreactivity (-LI) was 18 times higher in the trachea compared to peripheral bronchi. VIP was equally potent as CGRP in relaxing precontracted pig bronchi in vitro. Both bronchial and pulmonary arteries were relaxed by VIP. NPY was colocalized with VIP in tracheal periglandular nerve fibres and in nerve fibres within the tracheobronchial smooth muscle layer. NPY was also present in noradrenergic (DBH-positive) vascular nerve fibres. The content of NPY was much higher (15-fold) in the trachea compared to small bronchi. NPY caused a contraction of both pulmonary and bronchial arteries. The bronchial smooth muscle contraction to field stimulation in vitro was purely cholinergic. A non-cholinergic relaxatory effect following field stimulation was observed after bronchial precontraction. Capsaicin had no effect on pig bronchi in vitro.  相似文献   

10.
Contractility of the proximal and distal vaginal wall smooth muscle may play distinct roles in the female sexual response and pelvic support. The goal of this study was to determine whether differences in contractile characteristics of smooth muscle from these regions reside in differences in the expression of isoforms of myosin, the molecular motor for muscle contraction. Adult female Sprague-Dawley rats were killed on the day of estrus, and the vagina was dissected into proximal and distal segments. The Vmax at peak force was greater for tissue strips of the proximal vagina compared with that of distal (P < 0.01), although, at steady state, the Vmax for the muscle strips from the two regions was not different. Furthermore, at steady state, muscle stress was higher (P < 0.001) for distal vaginal strips (n = 5). Consistent with the high Vmax for the proximal vaginal strips, RT-PCR results revealed a higher %SM-B (P < 0.001) in the proximal vagina. A greater expression of SM-B protein (P < 0.001) was also detected by Western blotting (n = 4). Interestingly, there was no regional difference noted in SM-1/SM-2 isoforms (n = 6). The proximal vagina had a higher expression of myosin heavy chain protein (P < 0.01) and a greater percentage of smooth muscle bundles (P < 0.001). The results of this study are the first demonstration of a regional heterogeneity in Vmax and myosin isoform distribution in the vagina wall smooth muscle and confirm that the proximal vaginal smooth muscle exhibits phasic contractile characteristics compared with the distal vaginal smooth muscle, which is tonic.  相似文献   

11.
Two heavy chains of smooth muscle myosin (MHC1 and MHC2) were identified in pig airways and parenchyma. The ratio of MHC1 to MHC2 was the same along the bronchial tree in animals of the same age, but it changed with age (mature, young, suckling, and fetus), ranging from 0.8 in the mature to 2.2 in the fetus. Stress developed in airway (trachea, bronchus, and bronchiole) and parenchymal preparations in response to carbachol and histamine (mN/mm2) was normalized for myosin content (N/mm2 myosin). Airways from sucklings always developed the greatest stress to carbachol and histamine with the rank order of maximum force (Emax) suckling greater than fetus greater than young greater than mature for carbachol in large airways. Airway ranking to histamine was similar except that Emax of fetal bronchus and bronchiole were least. In parenchymal strips, mature animals gave strong responses to carbachol and histamine compared with other age groups. Sensitivity to carbachol was increased in the suckling trachea; otherwise it did not vary with age. Chemically skinned tracheal fibers exhibited three- to fourfold greater sensitivity to Ca2+ in fetal and suckling airways compared with the older animals. It is concluded that maturation of smooth muscle occurs in the expression of myosin, in the Ca2(+)-force relationships of the contractile machinery, and in the pharmacological responsiveness of the intact smooth muscle, with the latter greatest at or soon after birth.  相似文献   

12.
The interaction of contractile agonists on the relaxation elicited with isoproterenol (ISO) was studied in 112 tracheal smooth muscle (TSM) strips from 20 dogs in vitro. Strips were contracted to the same active target tension (TT) with acetylcholine (ACh), histamine (HIS), serotonin (5-hydroxytryptamine, 5-HT), potassium chloride (KCl), or the combinations of ACh + HIS, ACh + 5-HT, HIS + KCl, HIS + 5-HT (50% TT from each agonist). Although a less potent agonist, adding HIS to cause 50% of the TT reduced the concentration of ACh to elicit the remaining 50% TT and substantially altered relaxation by ISO compared with HIS alone [concentration required to achieve 50% relaxation (RC50) = 9.2 +/- 2.4 X 10(-8) vs. 9.0 +/- 4.4 X 10(-9) M to HIS alone; P less than 0.003]. Relaxation for TSM strips contracted with ACh + HIS was comparable to that elicited from the same TT with ACh alone, although concentrations required in combination were lower than for either agonist alone. Trachealis strips contracted equivalently with KCl + HIS also had augmented contraction and attenuated relaxation (RC50 = 3.7 +/- 0.8 X 10(-8) M; P less than 0.015 vs. HIS alone). However, combinations of 5-HT + ACh and 5-HT + HIS did not alter relaxation to ISO from that elicited by the weaker agonist alone. We demonstrate that TSM relaxation depends on the combination of agonists eliciting contraction and may be inhibited substantially by interactions among contractile agonists.  相似文献   

13.
To test the influence of smooth muscle tone on extremely immature airways, tracheal segments (n = 19) were excised from premature lambs at 114-121 days gestation and mounted in a chamber filled with Krebs solution. Inflation (Si) and collapsing (Sc) compliance were determined by altering transmural pressure from 30 to 0 Torr and -30 to 0 Torr, respectively, both during control (C) and after acetylcholine (ACh) administration (experimental, E). Flow (V = 2-15 l/min) was then introduced through the tracheal lumen while chamber pressure (Pc) was increased from 0 to 30 Torr and driving pressure (Pd) was recorded for both C and E conditions. Tracheae were found to be extremely compliant; both Si and Sc were significantly (P less than 0.005) lower after ACh administration. Resistance to airflow (R = Pd/V) was also significantly (P less than 0.05) lower after ACh administration at each compressive pressure and each flow value. These results suggest that the highly compliant preterm trachea exhibits pressure-flow characteristics similar to a Starling resistor, and the effects of compressive pressures may be attenuated by ACh-induced smooth muscle contraction. Comparison of these results with data from adult and newborn animals suggests a developmental difference in tracheal mechanics and pressure-flow relationships, as well as in the way airway function is altered by smooth muscle stimulation.  相似文献   

14.
Effects of isoproterenol on isometric force, and 20,000 Da myosin light chain (LC20) phosphorylation were examined in smooth muscle fibre strips from lamb trachea stimulated with endothelin-1 (ET-1). ET-1 induced a rapidly rising isometric tension which was coupled with a multiple site phosphorylation of LC20. Isoproterenol addition at the time of peak isometric force resulted in a brisk relaxation of the fibre strips. Myosin light chain phosphorylation, however, remained unaffected.  相似文献   

15.
Focal adhesion kinase (FAK)undergoes tyrosine phosphorylation in response to the contractilestimulation of tracheal smooth muscle. We hypothesized that FAK mayplay an important role in signaling pathways that regulate smoothmuscle contraction. FAK antisense or FAK sense was introduced intomuscle strips by reversible permeabilization, and strips were incubatedwith antisense or sense for 7 days. Antisense decreased FAK expressioncompared with that in untreated and sense-treated tissues, but it didnot affect the expression of vinculin or myosin light chain kinase. Increases in force, intracellular free Ca2+, and myosinlight chain phosphorylation in response to stimulation with ACh or KClwere depressed in FAK-depleted tissues, but FAK depletion did notaffect the activation of permeabilized tracheal muscle strips withCa2+. The tyrosine phosphorylation of paxillin, a substratefor FAK, was also significantly reduced in FAK-depleted strips. Weconclude that FAK is a necessary component of the signaling pathwaysthat regulate smooth muscle contraction and that FAK plays a role in regulating intracellular free Ca2+ and myosin light chain phosphorylation.

  相似文献   

16.
Vimentin intermediate filaments undergo spatial reorganization in cultured smooth muscle cells in response to contractile activation; however, the role of vimentin in the physiological properties of smooth muscle has not been well elucidated. Tracheal smooth muscle strips were loaded with antisense oligonucleotides (ODNs) against vimentin and then cultured for 2 days to allow for protein degradation. Treatment with vimentin antisense, but not sense, ODNs suppressed vimentin protein expression; neither vimentin antisense nor sense ODNs affected protein levels of desmin and actin. Force development in response to ACh stimulation or KCl depolarization was lower in vimentin-deficient tissues than in vimentin sense ODN- or non-ODN-treated muscle strips. Passive tension was also depressed in vimentin-depleted muscle tissues. Vimentin downregulation did not attenuate increases in myosin light chain (MLC) phosphorylation in response to contractile stimulation or basal MLC phosphorylation. In vimentin sense ODN-treated or non-ODN-treated smooth muscle strips, the desmosomal protein plakoglobin was primarily localized in the cell periphery. The membrane-associated localization of plakoglobin was reduced in vimentin-depleted muscle tissues. These studies suggest that vimentin filaments play an important role in mediating active force development and passive tension, which are not regulated by MLC phosphorylation. Vimentin downregulation impairs the structural organization of desmosomes, which may be associated with the decrease in force development. intermediate filaments; cytoskeleton; contraction; desmin  相似文献   

17.
The intermediate filament protein vimentin has been shown to be required for smooth muscle contraction. The adapter protein p130 Crk-associated substrate (CAS) participates in the signaling processes that regulate force development in smooth muscle. However, the interaction of vimentin filaments with CAS has not been well elucidated. In the present study, ACh stimulation of tracheal smooth muscle strips increased the ratio of soluble to insoluble vimentin (an index of vimentin disassembly) in association with force development. ACh activation also induced vimentin phosphorylation at Ser(56) as assessed by immunoblot analysis. More importantly, CAS was found in the cytoskeletal vimentin fraction, and the amount of CAS in cytoskeletal vimentin was reduced in smooth muscle strips on contractile stimulation. CAS redistributed from the myoplasm to the periphery during ACh activation of smooth muscle cells. The ACh-elicited decrease in CAS distribution in cytoskeletal vimentin was attenuated by the downregulation of p21-activated kinase (PAK) 1 with antisense oligodeoxynucleotides. Vimentin phosphorylation at this residue, the ratio of soluble to insoluble vimentin, and active force in smooth muscle strips induced by ACh were also reduced in PAK-depleted tissues. These results suggest that PAK may regulate CAS release from the vimentin intermediate filaments by mediating vimentin phosphorylation at Ser(56) and the transition of cytoskeletal vimentin to soluble vimentin. The PAK-mediated dissociation of CAS from the vimentin network may participate in the cellular processes that affect active force development during ACh activation of tracheal smooth muscle tissues.  相似文献   

18.
Human airway smooth muscle in culture   总被引:2,自引:0,他引:2  
We describe a method for culturing human airway smooth muscle. Cells were enzymatically and mechanically dispersed from strips of smooth muscle harvested from surgically removed lobar bronchi, and were seeded on to dishes containing Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum. After 14-21 days confluent monolayers of cells formed, which were subcultured and identified as smooth muscle by positive immunocytochemical staining for actin and myosin. The retention of functional plasmalemmal receptors and of intracellular signal transduction pathways in cell culture was demonstrated in 45Ca-labelled monolayers by the stimulation of efflux of intracellularly stored 45Ca in response to extracellularly applied 10 microM carbachol or 10 microM histamine. Human airway smooth muscle in cell culture provides a novel preparation for investigating the physiology and pathophysiology of the human airways.  相似文献   

19.
Tropomyosin and caldesomon reciprocally control the actomyosin system in smooth muscle and some non-muscle cells. To compare this mechanism between arterial smooth muscle and platelets, we carried out extensive exchange experiments. Actin, myosin, tropomyosin from arterial smooth muscle cells and platelets were recombined and the effects of two species of caldesmon ('caldesmon77' and 'caldesmon140') on the ATPase activities of both systems were examined and analyzed by the method of analysis of variance. (a) The actomyosin system itself is different between artery and platelets, the difference being determined by myosin (P less than 0.05) and not by actin. (b) Platelet tropomyosin differentiates platelet actin from arterial actin (P less than 0.01), while arterial tropomyosin does not. Neither does tropomyosin differentiate myosin. (c) The effect of caldesmon77 differentiates the origins of myosin (P less than 0.01), actin (P less than 0.05) and tropomyosin (P less than 0.05). The effect of caldesmon140 differentiates the origin of myosin (P less than 0.05) and the actin-myosin 'interaction' (combination) (P less than 0.01), but not the origin of tropomyosin (P greater than 0.1). (1) It is concluded that actomyosin/tropomyosin-caldesmon system is distinguishable between platelets and artery. (2) It is suggested that caldesmon is an actomyosin inhibitor which may interact with myosin, in addition to actin and tropomyosin.  相似文献   

20.
The actin-regulatory protein profilin has been shown to regulate the actin cytoskeleton and the motility of nonmuscle cells. To test the hypothesis that profilin plays a role in regulating smooth muscle contraction, profilin antisense or sense oligodeoxynucleotides were introduced into the canine carotid smooth muscle by a method of reversible permeabilization, and these strips were incubated for 2 days for protein downregulation. The treatment of smooth muscle strips with profilin antisense oligodeoxynucleotides inhibited the expression of profilin; it did not influence the expression of actin, myosin heavy chain, and metavinculin/vinculin. Profilin sense did not affect the expression of these proteins in smooth muscle tissues. Force generation in response to stimulation with norepinephrine or KCl was significantly lower in profilin antisense-treated muscle strips than in profilin sense-treated strips or in muscle strips not treated with oligodeoxynucleotides. The depletion of profilin did not attenuate increases in phosphorylation of the 20-kDa regulatory light chain of myosin (MLC20) in response to stimulation with norepinephrine or KCl. The increase in F-actin/G-actin ratio during contractile stimulation was significantly inhibited in profilin-deficient smooth muscle strips. These results suggest that profilin is a necessary molecule of signaling cascades that regulate carotid smooth muscle contraction, but that it does not modulate MLC20 phosphorylation during contractile stimulation. Profilin may play a role in the regulation of actin polymerization or organization in response to contractile stimulation of smooth muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号