首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rats fed a semipurified diet supplemented with 3% (w/w) safflower oil [Saf, n-3 fatty acid deficient, high linoleic acid (18:2n-6)] through two generations exhibit decreased correct response ratios in a brightness-discrimination learning test compared with rats fed 3% perilla oil [Per, high alpha-linolenic acid (18:3n-3)]. This is associated with a decreased DHA (22:6n-3)-to-arachidonic acid (20:4n-6) ratio in brain lipids. In the first set of experiments, dietary oil was shifted from Saf to a mixture of 2.4% safflower oil plus 0.6% DHA after weaning (Saf-DHA), but all parameters measured in the learning test were essentially unchanged. Brain 22:6n-3 content of the Saf-DHA group reached that of the Per group but the levels of 20:4n-6 and docosatetraenoic acid (22:4n-6) did not decrease to those of the Per group at the start of the test. In the second set of experiments, dietary oil was shifted to a mixture of 0.6% safflower oil plus 1.2% oleic acid (OA) plus 1.2% DHA (Saf-OA-DHA group) with 18:2n-6 content comparable to that of the Per group. The Saf-OA-DHA group exhibited a learning performance similar to that of the Per group; brain 22:6n-3, 20:4n-6, and 22:4n-6 contents were also comparable to those of the Per group. These results indicate that the altered learning behavior associated with a long-term n-3 fatty acid deficiency is reversed by supplementing 22:6n-3 after weaning, when the levels of competing n-6 fatty acids in the diet and brain lipids are limited.  相似文献   

2.
In adult rats, 22:6(n - 3) dietary deficiency does not affect brain membranes, but has a significant effect on some other visceral organs. 60-day-old male rats fed a diet containing sufficient amounts of both linoleic and alpha-linolenic acid were divided into three groups. One group continued the same diet; the second was fed a diet containing 2% sunflower oil, the third was fed 10% sunflower oil (sunflower oil contains linoleic acid, but trace amount of alpha-linolenic acid). Animals were killed different times after receiving the new diets (1 to 31 weeks). For animals fed the diets containing only sunflower oil, deficiency in cervonic acid content (DHA, docosahexaenoic acid, 22:6(n - 3)) was not detected in whole brain, myelin or nerve endings within 31 weeks. In contrast, this acid progressively declined in liver, heart and testes up to 3 weeks and remained nearly stable thereafter. In parallel to the reduction of cervonic acid content, 22:5(n - 6) content increased in liver and heart, but not in testes. It also increased in brain, nerve endings and myelin from week 3, 6 and, 9 respectively. These results suggest that brain cervonic acid is highly preserved or is maintained at the expense of other organs.  相似文献   

3.
Membrane inositol glycerophospholipid (IGP) is metabolized to phosphatidylinositol-4-phosphate (PIP), phosphatidylinositol-4, 5-bisphosphate (PIP2), and inositol triphosphate (IP3) in signaling transduction. This study was carried out to determine the subclasses of IGP involved in signaling pathway. The acyl chain moieties of the phospholipids are easily modulated by dietary fatty acids. We analyzed acyl chain composition of IGP 3-subclasses, PIP and PIP2 from rat brain after feeding sunflower seed oil enriched with linoleic acid or fish oil high in eicosapentaenoic acid and docosahexaenoic acid. Long chain polyunsaturated fatty acids (LCPUFA) as eicosapentaenoic acid and docosahexaenoic acid were not incorporated into ether-linked IGP (alkenylacylglycerophosphoinositol and alkylacyl-glycerophosphoinositol), PIP and PIP2, while diacyl-glycerophosphoinositol (GPI) contained high LCPUFA. These results suggest that PIP might be phosphorylated from only the ether-linked IGP (alkenylacyl- and alkylacyl species) but not from diacyl subclass for signals to intracellular responses in the plasma membrane of rat brain.  相似文献   

4.
European diets provide a suboptimal intake of eicosapentaenoic (20:5n3) and docosahexaenoic (22:6n3) acids, which are derived mainly from fish oils. The present study indicates that black currant seed oil, which contains 14.5% alpha-linolenic (18:3n3), 12.6% gamma-linolenic (18:3n6), 47.5% linoleic (18:2n6) and 2.7% stearidonic (18:4n3) acids, could potentially serve as alternative to fish oil as a n3 fatty acid source. Fifteen healthy females participated in a randomized, double-blind, crossover study including two 4-week periods with either 3 g/day of black currant seed oil or 2.8 g/day of fish oil separated by a 4-week washout period. The results show that black currant seed oil supplementation increased the proportion of 18:3n6 in triacylglycerols (TAG) and cholesteryl esters (CE), and that of dihomo-gamma-linolenic (20:3n6) in TAGs, CEs and glycerophospholipids (GPL) (P<.05). Proportion of 18:3n6 was higher (P<.05) after black currant seed oil than after fish oil in TAGs and CEs, and that of 20:3n6 in TAGs, CEs and GPLs. Black currant seed oil supplementation caused only minor changes in the proportions of 20:5n3 or 22:6n3. Serum levels of LDL cholesterol were lower (P<.05) after black currant seed oil compared to fish oil. Plasma glucose concentration decreased during the fish oil supplementation (P<.05).  相似文献   

5.
This study examined the effects of dietary alpha-linolenic acid deficiency followed or not by supplementation with phospholipids rich in n;-3 polyunsaturated fatty acid (PUFA) on the fatty acid composition of total phospholipids in 11 brain regions. Three weeks before mating, mice were fed a semisynthetic diet containing both linoleic and alpha-linolenic acid or deficient in alpha-linolenic acid. Pups were fed the same diet as their dams. At the age of 7 weeks, a part of the deficient group were supplemented with n;-3 polyunsaturated fatty acids (PUFA) from either egg yolk or pig brain phospholipids for 2 months. Saturated and monounsaturated fatty acid levels varied among brain regions and were not significantly affected by the diet. In control mice, the level of 22:6 n-3 was significantly higher in the frontal cortex compared to all regions. alpha-Linolenic acid deficiency decreased the level of 22:6 n-3 and was compensated by an increase in 22:5 n-6 in all regions. However, the brain regions were affected differently. After the pituitary gland, the frontal cortex, and the striatum were the most markedly affected with 40% reduction of 22:6 n-3. Supplementation with egg yolk or cerebral phospholipids in deficient mice restored a normal fatty acid composition in brain regions except for the frontal cortex. There was a regional distribution of the fatty acids in the brain and the impact of deficiency in alpha-linolenic acid was region-specific. Dietary egg yolk or cerebral phospholipids are an effective source of n-3 PUFA for the recovery of altered fatty acid composition induced by a diet deficient in n-3 PUFA.  相似文献   

6.
Anti-thrombotic effects of omega-3 (n-3) fatty acids are believed to be due to their ability to reduce arachidonic acid levels. Therefore, weanling rats were fed n-3 acids in the form of linseed oil (18:3n-3) or fish oil (containing 20:5n-3 and 22:6n-3) in diets containing high levels of either saturated fatty acids (hydrogenated beef tallow) or high levels of linoleic acid (safflower oil) for 4 weeks. The effect of diet on the rate-limiting enzyme of arachidonic acid biosynthesis (delta 6-desaturase) and on the lipid composition of hepatic microsomal membrane was determined. Both linseed oil- or fish oil-containing diets inhibited conversion of linoleic acid to gamma-linolenic acid. Inhibition was greater with fish oil than with linseed oil, only when fed with saturated fat. delta 6-Desaturase activity was not affected when n-3 fatty acids were fed with high levels of n-6 fatty acids. Arachidonic acid content of serum lipids and hepatic microsomal phospholipids was lower when n-3 fatty acids were fed in combination with beef tallow but not when fed with safflower oil. Similarly, n-3 fatty acids (18:3n-3, 20:5n-3, 22:5n-3, and 22:6n-3) accumulated to a greater extent when n-3 fatty acids were fed with beef tallow than with safflower oil. These observations indicate that the efficacy of n-3 fatty acids in reducing arachidonic acid level is dependent on the linoleic acid to saturated fatty acid ratio of the diet consumed.  相似文献   

7.
The composition of fatty acids in human milk lipids was determined in 41 women on the 3rd, 4th, 5th and 6th days after labour by the method of gas chromatography. In these investigations no significant differences were demonstrated in the fatty acids in the lipid fractions between these consecutive days. The level of polyunsaturated fatty acids of the n-6 and n-3 groups was about 11.9-13.6%, including linoleic acid (18:2, n-6) about 7.7-9.8%, and alpha-linolenic acid (18:3, n-3) about 0.7-1%. In the analysis group of n-6 fatty acids the determined acids were: linoleic acid (18:2, n-6), gamma-linolenic acid (18:3, n-6), eicosadienoic acid (20:2, n-6), eicosatrienoic acid (20:3, n-6), arachidonic acid (20:4, n-6), docosahexaenoic acid (22:6, n-6). From the group of n-3 acids the identified ones were: alpha-linolenic acid (18:3, n-3), eicosapentaenoic acid (20:5, n-3), docosapentaenoic acid (22:5, n-3) and docosahexaenoic acid (22:6, n-3). The obtained quotients of fatty acids n-6 through n-3 on the consecutive days were: 7.2:1-7.8:1, indicating a too low level of the n-3 acids in the investigated milk. The acids prevailing in human milk lipids were: oleic (18:1, n-9) and palmitic (16:0) which accounted for 37-39% and 25-26% respectively. The polyunsaturated to saturated fatty acid ratio (P:S) ranged from 0.28 to 0.33.  相似文献   

8.
The effects of dietary fish oil containing n - 3 polyunsaturated fatty acids on the fatty acid compositions of the alkylacyl and alkenylacyl species of choline glycerophospholipids (CGP) and ethanolamine glycerophospholipids (EGP) were studied in rat heart and compared with the corresponding diacylglycerophospholipids. After a 7 week feeding period, all phospholipid classes from the fish oil group exhibited much higher levels of the n - 3 polyunsaturated fatty acids including eicosapentaenoic acid (20:5(n - 30)), docosapentaenoic acid (22:5(n - 3)) and docosahexaenoic acid (22:6(n - 3)), as well as lower levels of the n - 6 series (18:2, 20:4, 22:4 and 22:5), relative to animals given sunflower seed oil-enriched in 18:2(n - 6). However, the docosahexaenoic acid rather than eicosapentaenoic acid provided a much greater contribution to the n - 3 accumulation (fish oil group) in the ether-containing CGP, as indicated by the 20:5(n - 3)/22:6(n - 3) molar ratios of 0.32, 0.26 and 0.56 in the alkylacyl, alkenylacyl and diacyl classes, respectively. In addition to accumulating very high levels of docosahexaenoic acid (e.g., 47.2 mol% of fatty acids in alkenylacylglycerophosphoethanolamine of fish oil group), both ether-linked classes of EGP exhibited significantly higher levels of docosapentaenoic acid than the diacylglycerophosphoethanolamine (GPE) and all classes of CGP. These findings may bear relevance to possible beneficial effects of dietary fish oil on pathophysiological states (including myocardial ischemia) in cardiac tissue and their mediation via platelet-activating factor, 1-alkyl-2-acetylglycerophosphocholine (PAF) and arachidonic acid (20:4(n - 6))-derived eicosanoids.  相似文献   

9.
Saturated fatty acids can be synthesized de novo and play a role in determining properties of structural membranes. The effect of dietary essential fatty acids, linoleic acid (18:2(n - 6)) and alpha-linolenic acid (18:3(n - 3)), on the saturated fatty acid content of membrane phospholipid has not previously been considered in newborn nutrition. The studies report the effect of low (1% fatty acids) or high (4%) formula 18:3(n - 3) with low (16%) or high (30-35%) formula 18:2(n - 6) on the saturated and unsaturated fatty acid composition of liver and brain structural lipid of piglets fed formula from birth for 15 days. A significant inverse relationship between the formula % 18:3(n - 3), but not 18:2(n - 6), and the liver phospholipid palmitic acid (16:0) was found. This may indicate a possible effect of dietary 18:3(n - 3) on de novo synthesis of 16:0 and requires further investigation. Monounsaturated fatty acids in both liver and brain were significantly lower in response to high 18:3(n - 3) and to high 18:2(n - 6) plus low 18:1(n - 9) in the formula. Liver phospholipid and brain total lipid % docosahexaenoic acid (22:6(n - 3)) were significantly higher when formula containing 4% rather than 1% 18:3(n - 3) was fed, suggesting that 1% 18:3(n - 3) may limit tissue (n - 3) fatty acid accretion. These results suggest that future studies of essential fatty acid requirements, specifically 18:3(n - 3), should consider possible influences on the saturated fatty acids which also play a functional role in tissue structural lipids.  相似文献   

10.
We studied the long-chain conversion of [U-13C]alpha-linolenic acid (ALA) and linoleic acid (LA) and responses of erythrocyte phospholipid composition to variation in the dietary ratios of 18:3n-3 (ALA) and 18:2n-6 (LA) for 12 weeks in 38 moderately hyperlipidemic men. Diets were enriched with either flaxseed oil (FXO; 17 g/day ALA, n=21) or sunflower oil (SO; 17 g/day LA, n=17). The FXO diet induced increases in phospholipid ALA (>3-fold), 20:5n-3 [eicosapentaenoic acid (EPA), >2-fold], and 22:5n-3 [docosapentaenoic acid (DPA), 50%] but no change in 22:6n-3 [docosahexanoic acid (DHA)], LA, or 20:4n-6 [arachidonic acid (AA)]. The increases in EPA and DPA but not DHA were similar to those in subjects given the SO diet enriched with 3 g of EPA plus DHA from fish oil (n=19). The SO diet induced a small increase in LA but no change in AA. Long-chain conversion of [U-13C]ALA and [U-13C]LA, calculated from peak plasma 13C concentrations after simple modeling for tracer dilution in subsets from the FXO (n=6) and SO (n=5) diets, was similar but low for the two tracers (i.e., AA, 0.2%; EPA, 0.3%; and DPA, 0.02%) and varied directly with precursor concentrations and inversely with concentrations of fatty acids of the alternative series. [13C]DHA formation was very low (<0.01%) with no dietary influences.  相似文献   

11.
In our earlier study, we have shown that rats fed spray-dried milk containing alpha-linolenic acid (LNA 18:3 n-3) or eicosapentaenoic acid (EPA 20:5 n-3) and docosahexaenoic acid (DHA 22:6 n-3) had significantly lower amounts of serum and liver cholesterol. To evaluate the mechanism for hypocholesterolemic effect of n-3 fatty acids containing milk formulation, we fed male Wistar rats with spray-dried milk containing linseed oil (LSO) (source of LNA) or fish oil (FO) (source of EPA+DHA) for 8 weeks. Feeding n-3 fatty acid containing milk formulation lowered the hepatic 3-hydroxy-methylglutaryl coenzyme A (HMG Co A) activity by 17-22% compared to rats given control diet devoid of n-3 fatty acids. The cholesterol level in liver microsomes was found to be decreased by 16% and 20%, respectively, in LSO and FO containing formulation fed rats. The bile flow was enhanced to an extent of 19-23% in experimental groups compared to control animals. The biliary cholesterol and phospholipid secretion was increased to an extent of 49-55% and 140-146%, respectively, in rats fed n-3 fatty acid containing formulation. The increase in the total bile acids secretion in bile was mainly reflected on an increase in the levels of taurine conjugated bile acids. These results indicated that n-3 fatty acid containing spray-dried milk formulation would bring about the hypocholesterolemic effect by lowering HMG Co A reductase activity in liver and by increasing the secretion of bile constituents.  相似文献   

12.
The objective of this study was to investigate the effects of alpha-linolenic acid (18:3n-3) and linoleic acid (18:2n-6) on the fatty acid composition and the activity and release of mast cell mediators in the canine mastocytoma cell line C2. Cells were cultured in Dulbecco's modified Eagle's medium mixed with 50% Ham's F12 (containing linoleic acid 0.14 micro M). The basic medium (DEH) was supplemented with 0.14 micro M alpha-linolenic acid. 14.0 micro M alpha-linolenic acid (DEH-n-3) or 14.0 micro M linoleic acid (DEH-n-6) was added. Eight days after culturing of C2 in DEH-n-3 we measured elevated levels of n-3 fatty acids up to 22:3. The tryptase activity and the stimulated PGE2 production and histamine release were reduced. In contrast, after culturing of C2 in DEH-n-6 we determined elevated levels of n-6 fatty acids up to 20:3, increased tryptase activity and stimulated histamine release. Thus 18:3n-3 has anti-inflammatory effects in cultured canine mastocytoma cells.  相似文献   

13.
The delta 6-desaturase reaction is regarded to be the rate-limiting step in the conversion of linoleic acid (18:2(n - 6)) to arachidonic acid (20:4(n - 6)). The same is probably also the case with the conversion of alpha-linolenic acid (18:3(n - 3)) to eicosapentaenoic acid (20:5(n - 3)). However, there are very few in vivo studies that directly compared the conversion rate between 18:3(n - 3) and stearidonic acid (18:4(n - 3)), which is the delta 6-desaturated product of 18:3(n - 3). We compared this rate by feeding rats on a lipid-free diet supplemented with lard (9%, w/w) and 18:3(n - 3) ethyl ester (1%) diet or on a diet containing lard (9%) and 18:4(n - 3) ethyl ester (1%). A lard (10%)-supplemented diet was used as the control diet. The fatty acid compositions of total phospholipids, triglycerides and free fatty acids of both liver and plasma were measured after 1 or 3 weeks on different diets. The molar ratio of 20:5(n - 3) of most lipid fractions was about 2-fold higher in rats fed the 18:4(n - 3)-supplemented diet than in rats fed the 18:3(n - 3)-supplemented diet. 18:4(n - 3) was found in the liver lipid fraction in only a very small amount, even in the 18:4(n - 3)-supplemented groups. Thus, desaturation at C-6 is suggested to be the rate-limiting step in the conversion of 18:3(n - 3) to 20:5(n - 3).  相似文献   

14.
We investigated whether maternal fat intake alters amniotic fluid and fetal intestine phospholipid n-6 and n-3 fatty acids. Female rats were fed a 20% by weight diet from fat with 20% linoleic acid (LA; 18:2n-6) and 8% alpha-linolenic acid (ALA; 18:3n-3) (control diet, n = 8) or 72% LA and 0.2% ALA (n-3 deficient diet, n = 7) from 2 wk before and then throughout gestation. Amniotic fluid and fetal intestine phospholipid fatty acids were analyzed at day 19 gestation using HPLC and gas-liquid chromotography. Amniotic fluid had significantly lower docosahexaenoic acid (DHA; 22:6n-3) and higher docosapentaenoic acid (DPA; 22:5n-6) levels in the n-3-deficient group than in the control group (DHA: 1.29 +/- 0.10 and 6.29 +/- 0.33 g/100 g fatty acid; DPA: 4.01 +/- 0.35 and 0.73 +/- 0.15 g/100 g fatty acid, respectively); these differences in DHA and DPA were present in amniotic fluid cholesterol esters and phosphatidylcholine (PC). Fetal intestines in the n-3-deficient group had significantly higher LA, arachidonic acid (20:4n-6), and DPA levels; lower eicosapentaenoic acid (EPA; 20:5n-3) and DHA levels in PC; and significantly higher DPA and lower EPA and DHA levels in phosphatidylethanolamine (PE) than in the control group; the n-6-to-n-3 fatty acid ratio was 4.9 +/- 0.2 and 32.2 +/- 2.1 in PC and 2.4 +/- 0.03 and 17.1 +/- 0.21 in PE in n-3-deficient and control group intestines, respectively. We demonstrate that maternal dietary fat influences amniotic fluid and fetal intestinal membrane structural lipid essential fatty acids. Maternal dietary fat can influence tissue composition by manipulation of amniotic fluid that is swallowed by the fetus or by transport across the placenta.  相似文献   

15.
The phospholipids, particularly phosphatidylethanolamine, of brain gray matter are enriched with docosahexaenoic acid (22:6n-3). The importance of uptake of preformed 22:6n-3 from plasma compared with synthesis from the alpha-linolenic acid (18:3n-3) precursor in brain is not known. Deficiency of 18:3n-3 results in a compensatory increase in the n-6 docosapentaenoic acid (22:5n-6) in brain, which could be formed from the precursor linoleic acid (18:2n-6) in liver or brain. We studied n-3 and n-6 fatty acid incorporation in brain astrocytes cultured in chemically defined medium using delipidated serum supplemented with specific fatty acids. High performance liquid chromatography with evaporative light scattering detection and gas liquid chromatography were used to separate and quantify cell and media lipids and fatty acids. Although astrocytes are able to form 22:6n-3, incubation with 18:3n-3 or eicosapentaenoic acid (20:5n-3) resulted in a time and concentration dependent accumulation of 22:5n-3 and decrease in 22:6n-3 g/g cell fatty acids. Astrocytes cultured with 18:2n-6 failed to accumulate 22:5n-6. Astrocytes secreted cholesterol esters (CE) and phosphatidylethanolamine containing saturated and monounsaturated fatty acids, and arachidonic acid (20:4n-6) and 22:6n-3. These studies suggest conversion of 22:5n-3 limits 22:6n-3 synthesis, and show astrocytes release fatty acids in CE.  相似文献   

16.
In this study, we have examined the effects of n-3 fatty acid deficient diets on the phospholipids (PL) molecular species composition in the hippocampus. Female rats were raised for two generations on diets containing linoleic acid (18:2n-6), with or without supplementation of alpha-linolenic acid (18:3n-3) or 18:3n-3 plus docosahexaenoic acid (22:6n-3). At 84 days of age, the hippocampal phospholipids were analyzed by reversed phase HPLC-electrospray ionization mass spectrometry. Depleting n-3 fatty acids from the diet led to a reduction of 22:6n-3 molecular species in phosphatidylcholine (PC), phosphatidylethanolamine (PE), PE-plasmalogens (PLE), and phosphatidylserine (PS) by 70-80%. In general, 22:6n-3 was replaced with 22:5n-6 but the replacement at the molecular species level did not always occur in a reciprocal manner, especially in PC and PLE. In PC, the 16:0,22:6n-3 species was replaced by 16:0,22:5n-6 and 18:0,22:5n-6. In PLE, substantial increases of both 22:5n-6 and 22:4n-6 species compensated for the decreases in 22:6n-3 species in n-3 fatty acid deficient groups. While the total PL content was not affected by n-3 deficiency, the relative distribution of PS decreased by 28% with a concomitant increase in PC.The observed decrease of 22:6n-3 species along with PS reduction may represent key biochemical changes underlying losses in brain-hippocampal function associated with n-3 deficiency.  相似文献   

17.
The desaturation, chain elongation and esterification of [1-14C]eicosapentaenoic acid, [1-14C]arachidonic acid, [1-14C]eicosatrienoic acid, [1-14C]linolenic acid and [1-14C]linoleic acid were studied in isolated liver cells. Rats fed diets with either 15% hydrogenated coconut oil or 15% partially hydrogenated marine oil, both deficient in essential fatty acids, 15% soybean oil or standard pellet diet with 6% fat, were used. The delta 4-desaturation of 22:5(n - 3) and 22:4(n - 6) as well as the delta 6-desaturase activity was distinctly higher in cells from animals fed coconut or marine oil than with soybean oil or standard pellet. The rate of delta 5-desaturation of 20:3(n - 6) and 20:4(n - 3) was nearly the same in cells from rats fed coconut, marine and soybean oils and higher than with standard pellet. The chain elongation of 20:5(n - 3) to 22:5(n - 3) was distinctly more pronounced than the elongation of 20:4(n - 6) with all four diets. 20:5(n - 3) was mainly esterified in the phospholipids with marine and coconut oils, and mainly in triacylglycerol with standard pellet and soybean oils. The proportion of [1-14C]20:4(n - 6) in the phospholipids to that in triacylglycerol decreased in the order marine oil greater than coconut oil greater than standard pellet greater than soybean oil. The different endogenous arachidonic acid content in the phospholipids induced by the different diets increased in the same order. 20:5(n - 3) was rapidly esterified in triacylglycerol and phospholipids, then liberated especially from the triacylglycerol fraction, chain elongated to 22:5(n - 3) and reesterified.  相似文献   

18.
The preparation of fish oil concentrates containing only ( n -3) polyunsaturated fatty acids (PUFA) with different ratios of 20:5 ( n -3)/22:6 ( n -3) is described. Three groups of turbot were maintained on different diets containing: 1, 10% of the dry weight of the diet as natural fish oil, equivalent to 2.5% ( n -3) PUFA and 0–23% ( n -6) PUFA; 2, 10% of the dry weight of the diet as palmitic acid, i.e. no PUFA; 3, 8–7% palmitic acid and 1–3% of the dry weight as ( n -3 PUFA and negligible ( n -6) PUFA. Only the fish on the diet containing natural fish oil showed significant growth over a 15-week period. In addition there were high mortalities on the two experimental diets (2 and 3). Changing the ratio of 20:5 ( n -3)/22:6 ( n -3) from 13–8 to 2–2 in the diet containing 1 3% (n-3) PUFA and negligible ( n -6) PUFA markedly decreased the mortalities. Fish fed the two experimental diets (2 and 3) developed gross changes in gill structure involving the disappearance of chloride cells, a 'sloughing off' of the epithelium along the primary and secondary filaments and an accumulation of cellular material in the inter-lamellar spaces. The tissue ultimately disintegrated to leave a skeleton of connective tissue and a mass of cellular material in the inter-lamellar spaces. It is concluded that 22:6 (n-3) is an essential fatty acid for turbot and that the gill epithelium is a sensitive indicator of this deficiency in this species.  相似文献   

19.
Human lipid intake contains various amounts of trans fatty acids. Refined vegetable and frying oils, rich in linoleic acid and/or alpha-linolenic acid, are the main dietary sources of trans-18:2 and trans-18:3 fatty acids. The aim of the present study was to compare the oxidation of linoleic acid, alpha-linolenic acid, and their major trans isomers in human volunteers. For that purpose, TG, each containing two molecules of [1-(13)C]linoleic acid, alpha-[1-(13)C]linolenic acid, [1-(13)C]-9cis,12trans-18:2, or [1-(13)C]-9cis,12cis,15trans-18:3, were synthesized. Eight healthy young men ingested labeled TG mixed with 30 g of olive oil. Total CO(2) production and (13)CO(2) excretion were determined over 48 h. The pattern of oxidation was similar for the four fatty acids, with a peak at 8 h and a return to baseline at 24 h. Cumulative oxidation over 8 h of linoleic acid, 9cis,12trans-18:2, alpha-linolenic acid, and 9cis,12cis,15trans-18:3 were, respectively, 14.0 +/- 4.1%, 24.7 +/- 6.7%, 23.6 +/- 3.3%, and 23.4 +/- 3.7% of the oral load, showing that isomerization increases the postprandial oxidation of linoleic acid but not alpha-linolenic acid in men.  相似文献   

20.
Rats fed dietary fats rich in 20- and 22-carbon polyenoic fatty acids deposit less fat and expend more energy at rest than rats fed other types of fats. We hypothesized that this decrease in energetic efficiency was the product of: (a) enhanced peroxisomal fatty acid oxidation and/or (b) the up-regulation of genes encoding proteins that were involved with enhanced heat production, i.e. mitochondrial uncoupling proteins (UCP-2, UCP-3) and peroxisomal fatty acid oxidation proteins. Two groups of male Fisher 344 rats 3-4 week old (n=5 per group) were pair fed for 6 weeks a diet containing 40% of its energy fat derived from either fish oil or corn oil. Epididymal fat pads from rats fed the fish oil diet weighed 25% (P < 0.05) less than those found in rats fed corn oil. The decrease in fat deposition associated with fish oil ingestion was accompanied by a significant increase in the abundance of skeletal muscle UCP-3 mRNA. The level of UCP-2 mRNA skeletal muscle was unaffected by the type of dietary oil, but the abundance of UCP-2 mRNA in the liver and heart were significantly lower (P < 0.05) in rats fed fish oil than in rats fed corn oil. In addition to inducing UCP-3 expression, dietary fish oil induced peroxisomal acyl-CoA oxidase gene expression 2-3 fold in liver, skeletal muscle and heart. These data support the hypothesis that dietary fish oil reduces fat deposition by increasing the expression of mitochondrial uncoupling proteins and increasing fatty acid oxidation by the less efficient peroxisomal pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号