首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclins are key regulators of cell cycle progression. Previous studies have shown that cyclin genes in plants can be divided into 10 groups. However, because those studies only focused on genes from two well-known model plants (i.e., Arabidopsis thaliana (L.) Heynh. and Oryza sativa L.), it remains unclear whether the 10 groups are reasonably defined. In this study, by analyzing the genomes of 10 representative plants (Chlamydomonas reinhardtii P. A. Dang, Physcomitrella patens(Hedw.) Bruch & Schimp., Selaginella moellendorffii Hieron., Picea abies (L.) H. Karst., Amborella trichopoda Baill., A. thaliana, Populus trichocarpa Torr. & A. Gray ex Hook., Vitis vinifera L., O. sativa, and Sorghum bicolor (L.) Moench), we estimated the phylogenetic relationships of plant cyclins and investigated their evolutionary patterns. We confirmed that plant cyclins can be classified into 10 groups, although only eight ancestral genes may have existed in the most recent common ancestor of extant green plants. We also found that, due to the frequent occurrences of gene duplication events, several groups have expanded extensively in seed plants and, particularly, flowering plants, so that multiple genes belonging to different subgroups are present in a species. Reconciliation of the evolutionary histories of these groups and subgroups further led to the identification of evolutionarily highly conserved and rapidly duplicating gene lineages. These results will guide the classification and nomenclature of plant cyclins and help understand the conservativeness and variation in their functions.  相似文献   

2.
3.
4.
Polycomb group (PcG) proteins play essential roles in animal and plant life cycles by controlling the expression of important developmental regulators. These structurally heterogeneous proteins form multimeric protein complexes that control higher order chromatin structure and, thereby, the expression state of their target genes. Once established, PcG proteins maintain silent gene expression states over many cell divisions providing a molecular basis for a cellular 'memory.' PcG proteins are best known for their role in the control of homeotic genes in Drosophila and mammals. In addition, they play important roles in the control of cell proliferation in vertebrate and invertebrate systems. Recent studies in plants have shown that PcG proteins regulate diverse developmental processes and, as in animals, they affect both homeotic gene expression and cell proliferation. Thus, the function of PcG proteins has been widely conserved between the plant and animal kingdoms.  相似文献   

5.
6.
Plants contain more genes encoding core cell cycle regulators than other organisms but it is unclear whether these represent distinct functions. D-type cyclins (CYCD) play key roles in the G1-to-S-phase transition, and Arabidopsis (Arabidopsis thaliana) contains 10 CYCD genes in seven defined subgroups, six of which are conserved in rice (Oryza sativa). Here, we identify 22 CYCD genes in the poplar (Populus trichocarpa) genome and confirm that these six CYCD subgroups are conserved across higher plants, suggesting subgroup-specific functions. Different subgroups show gene number increases, with CYCD3 having three members in Arabidopsis, six in poplar, and a single representative in rice. All three species contain a single CYCD7 gene. Despite low overall sequence homology, we find remarkable conservation of intron/exon boundaries, because in most CYCD genes of plants and mammals, the first exon ends in the conserved cyclin signature. Only CYCD3 genes contain the complete cyclin box in a single exon, and this structure is conserved across angiosperms, again suggesting an early origin for the subgroup. The single CYCD gene of moss has a gene structure closely related to those of higher plants, sharing an identical exon/intron structure with several higher plant subgroups. However, green algae have CYCD genes structurally unrelated to higher plants. Conservation is also observed in the location of potential cyclin-dependent kinase phosphorylation sites within CYCD proteins. Subgroup structure is supported by conserved regulatory elements, particularly in the eudicot species, including conserved E2F regulatory sites within CYCD3 promoters. Global expression correlation analysis further supports distinct expression patterns for CYCD subgroups.  相似文献   

7.
Although plant and animal cells use a similar core mechanism to deliver proteins to the plasma membrane, their different lifestyle, body organization and specific cell structures resulted in the acquisition of regulatory mechanisms that vary in the two kingdoms. In particular, cell polarity regulators do not seem to be conserved, because genes encoding key components are absent in plant genomes. In plants, the broad knowledge on polarity derives from the study of auxin transporters, the PIN-FORMED proteins, in the model plant Arabidopsis thaliana. In animals, much information is provided from the study of polarity in epithelial cells that exhibit basolateral and luminal apical polarities, separated by tight junctions. In this review, we summarize the similarities and differences of the polarization mechanisms between plants and animals and survey the main genetic approaches that have been used to characterize new genes involved in polarity establishment in plants, including the frequently used forward and reverse genetics screens as well as a novel chemical genetics approach that is expected to overcome the limitation of classical genetics methods.  相似文献   

8.
9.
Ralstonia solanacearum hrp genes encode a type III secretion system required for disease development in host plants and for hypersensitive response elicitation on non-hosts. hrp genes are expressed in the presence of plant cells through the HrpB regulator. This activation, which requires physical interaction between the bacteria and the plant cell, is sensed by the outer membrane receptor PrhA. PrhA transduces the plant cell contact-dependent signal through a complex regulatory cascade integrated by the PrhJ, HrpG, and HrpB regulators. In this study, we have identified two genes, named prhI and prhR, that belong to the hrp gene cluster and whose predicted products show homology with extracytoplasmic function sigma factors and transmembrane proteins, respectively. Strains carrying a mutation in prhIR show a delayed pathogenic phenotype toward host plants. PrhIR control the plant cell contact-dependent activation of hrp genes. prhIR gene expression is induced by a signal present in the plant cell coculture that is not PrhA-dependent. Genetic evidence shows that PrhIR act upstream of PrhJ in the regulatory cascade, likely transducing the signal sensed by PrhA through the periplasm as described for signal transfer systems through three compartments. This is the first report of such a surface signaling mechanism activating pathogenicity determinants in response to a nondiffusible plant cell wall signal.  相似文献   

10.
11.
12.

Background

The orderly progression through mitosis is regulated by the Anaphase-Promoting Complex (APC), a large multiprotein E3 ubiquitin ligase that targets key cell-cycle regulators for destruction by the 26 S proteasome. The APC is composed of at least 11 subunits and associates with additional regulatory activators during mitosis and interphase cycles. Despite extensive research on APC and activator functions in the cell cycle, only a few components have been functionally characterized in plants.

Results

Here, we describe an in-depth search for APC subunits and activator genes in the Arabidopsis, rice and poplar genomes. Also, searches in other genomes that are not completely sequenced were performed. Phylogenetic analyses indicate that some APC subunits and activator genes have experienced gene duplication events in plants, in contrast to animals. Expression patterns of paralog subunits and activators in rice could indicate that this duplication, rather than complete redundancy, could reflect initial specialization steps. The absence of subunit APC7 from the genome of some green algae species and as well as from early metazoan lineages, could mean that APC7 is not required for APC function in unicellular organisms and it may be a result of duplication of another tetratricopeptide (TPR) subunit. Analyses of TPR evolution suggest that duplications of subunits started from the central domains.

Conclusions

The increased complexity of the APC gene structure, tied to the diversification of expression paths, suggests that land plants developed sophisticated mechanisms of APC regulation to cope with the sedentary life style and its associated environmental exposures.  相似文献   

13.
14.
15.
The plant cell cycle   总被引:4,自引:0,他引:4  
Molecular controls of the plant cell cycle must integrate environmental signals within developmental contexts. Recent advances highlight the fundamental conservation of underlying cell cycle mechanisms between animals and plants, overlaid by a rich molecular and regulatory diversity that is specific to plant systems. Here we review plant cell cycle regulators and their control.  相似文献   

16.
17.
18.
Plants have substantially higher gene duplication rates compared with most other eukaryotes. These plant gene duplicates are mostly derived from whole genome and/or tandem duplications. Earlier studies have shown that a large number of duplicate genes are retained over a long evolutionary time, and there is a clear functional bias in retention. However, the influence of duplication mechanism, particularly tandem duplication, on duplicate retention has not been thoroughly investigated. We have defined orthologous groups (OGs) between Arabidopsis (Arabidopsis thaliana) and three other land plants to examine the functional bias of retained duplicate genes during vascular plant evolution. Based on analysis of Gene Ontology categories, it is clear that genes in OGs that expanded via tandem duplication tend to be involved in responses to environmental stimuli, while those that expanded via nontandem mechanisms tend to have intracellular regulatory roles. Using Arabidopsis stress expression data, we further demonstrated that tandem duplicates in expanded OGs are significantly enriched in genes that are up-regulated by biotic stress conditions. In addition, tandem duplication of genes in an OG tends to be highly asymmetric. That is, expansion of OGs with tandem genes in one organismal lineage tends to be coupled with losses in the other. This is consistent with the notion that these tandem genes have experienced lineage-specific selection. In contrast, OGs with genes duplicated via nontandem mechanisms tend to experience convergent expansion, in which similar numbers of genes are gained in parallel. Our study demonstrates that the expansion of gene families and the retention of duplicates in plants exhibit substantial functional biases that are strongly influenced by the mechanism of duplication. In particular, genes involved in stress responses have an elevated probability of retention in a single-lineage fashion following tandem duplication, suggesting that these tandem duplicates are likely important for adaptive evolution to rapidly changing environments.  相似文献   

19.
20.
Genetic structure and evolution of RAC-GTPases in Arabidopsis thaliana   总被引:10,自引:0,他引:10  
Winge P  Brembu T  Kristensen R  Bones AM 《Genetics》2000,156(4):1959-1971
Rho GTPases regulate a number of important cellular functions in eukaryotes, such as organization of the cytoskeleton, stress-induced signal transduction, cell death, cell growth, and differentiation. We have conducted an extensive screening, characterization, and analysis of genes belonging to the Ras superfamily of GTPases in land plants (embryophyta) and found that the Rho family is composed mainly of proteins with homology to RAC-like proteins in terrestrial plants. Here we present the genomic and cDNA sequences of the RAC gene family from the plant Arabidopsis thaliana. On the basis of amino acid alignments and genomic structure comparison of the corresponding genes, the 11 encoded AtRAC proteins can be divided into two distinct groups of which one group apparently has evolved only in vascular plants. Our phylogenetic analysis suggests that the plant RAC genes underwent a rapid evolution and diversification prior to the emergence of the embryophyta, creating a group that is distinct from rac/cdc42 genes in other eukaryotes. In embryophyta, RAC genes have later undergone an expansion through numerous large gene duplications. Five of these RAC duplications in Arabidopsis thaliana are reported here. We also present an hypothesis suggesting that the characteristic RAC proteins in higher plants have evolved to compensate the loss of RAS proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号