首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent molecular evidence points towards a capacity for ammonia transport across the skin of adult rainbow trout. A series of in vivo and in vitro experiments were conducted to understand the role of cutaneous ammonia excretion (J amm) under control conditions and after 12-h pre-exposure to high environmental ammonia (HEA; 2 mmol/l NH4HCO3). Divided chamber experiments with bladder-catheterized, rectally ligated fish under light anesthesia were performed to separate cutaneous J amm from branchial, renal, and intestinal J amm. Under control conditions, cutaneous J amm accounted for 4.5 % of total J amm in vivo. In fish pre-exposed to HEA, plasma total ammonia concentration increased 20-fold to approximately 1,000 μmol/l, branchial J amm increased 1.5- to 2.7-fold, and urinary J amm increased about 7-fold. Urinary J amm still accounted for less than 2 % of total J amm. Cutaneous J amm increased 4-fold yet amounted to only 5.7 % of total J amm in these fish. Genes (Rhcg1, Rhcg2, Rhbg, NHE-2, v-type H+-ATPase) known to be involved in ammonia excretion at the gills of trout were all expressed at the mRNA level in the skin, but their expression did not increase with HEA pre-exposure. In vitro analyses using [14C] methylamine (MA), an ammonia analog which is transported by Rh proteins, demonstrated that MA permeability in isolated skin sections was higher in HEA pre-exposed fish than in control fish. The addition of basolateral ammonia (1,000 μmol/l) to this system abolished this increase in permeability, suggesting ammonia competition with MA for Rh-mediated transport across the skin of HEA pre-exposed trout; this did not occur in skin sections from control trout. Moreover, in vitro J amm by the skin of fish which had been pre-exposed to HEA was also higher than in control fish in the absence of basolateral ammonia, pointing towards a possible cutaneous ammonia loading in response to HEA. In vitro MA permeability was reduced upon the addition of amiloride (10?4 mol/l), but not phenamil (10?5 mol/l) suggesting a role for a Na/H-exchanger (NHE) in cutaneous ammonia transport, as has been previously described in the skin of larval fish. Overall, it appears that under control conditions and in response to HEA pre-exposure, the skin makes only a very minor contribution to total J amm, but the observed increases in cutaneous J amm in vivo and in cutaneous J amm and MA permeability in vitro demonstrate the capacity for ammonia transport in the skin of adult trout. It remains unclear if this capacity may become significant under certain environmental challenges or if it is merely a remnant of cutaneous transport capacity from early life stages in these fish.  相似文献   

2.
The stimulation by Mg2+, Na+, K+, NH4 +, and ATP of (Na+, K+)-ATPase activity in a gill microsomal fraction from the freshwater prawn Macrobrachium rosenbergii was examined. Immunofluorescence labeling revealed that the (Na+, K+)-ATPase α-subunit is distributed predominantly within the intralamellar septum, while Western blotting revealed a single α-subunit isoform of about 108 kDa M r. Under saturating Mg2+, Na+, and K+ concentrations, the enzyme hydrolyzed ATP, obeying cooperative kinetics with V M = 115.0 ± 2.3 U mg?1, K 0.5 = 0.10 ± 0.01 mmol L?1. Stimulation by Na+ (V M = 110.0 ± 3.3 U mg?1, K 0.5 = 1.30 ± 0.03 mmol L?1), Mg2+ (V M = 115.0 ± 4.6 U mg?1, K 0.5 = 0.96 ± 0.03 mmol L?1), NH4 + (V M = 141.0 ± 5.6 U mg?1, K 0.5 = 1.90 ± 0.04 mmol L?1), and K+ (V M = 120.0 ± 2.4 U mg?1, K M = 2.74 ± 0.08 mmol L?1) followed single saturation curves and, except for K+, exhibited site–site interaction kinetics. Ouabain inhibited ATPase activity by around 73 % with K I = 12.4 ± 1.3 mol L?1. Complementary inhibition studies suggest the presence of F0F1–, Na+-, or K+-ATPases, but not V(H+)- or Ca2+-ATPases, in the gill microsomal preparation. K+ and NH4 + synergistically stimulated enzyme activity (≈25 %), suggesting that these ions bind to different sites on the molecule. We propose a mechanism for the stimulation by both NH4 +, and K+ of the gill enzyme.  相似文献   

3.
In vitro gut-sac preparations of all four sections (stomach, anterior, mid, and posterior intestine) of the gastrointestinal tract (GIT) of freshwater rainbow trout, together with radiotracer (22Na) techniques, were used to study unidirectional Na+ uptake rates (UR, mucosal → blood space) and net absorptive fluid transport rates (FTR) under isosmotic conditions (mucosal = serosal osmolality). On an area-specific basis, unidirectional Na+ UR was highest in the mid-intestine, but when total gut area was taken into account, the three intestinal sections contributed equally, with very low rates in the stomach. The theoretical capacity for Na+ uptake across the whole GIT is sufficient to supply all of the animal’s nutritive requirements for Na+. Transport occurs by low affinity systems with apparent K m values 2–3 orders of magnitude higher than those in the gills, in accord with comparably higher Na+ concentrations in chyme versus fresh water. Fluid transport appeared to be Na+-dependent, such that treatments which altered unidirectional Na+ UR generally altered FTR in a comparable fashion. Pharmacological trials (amiloride, EIPA, phenamil, bafilomycin, furosemide, hydrochlorothiazide) conducted at a mucosal Na+ concentration of 50 mmol L?1 indicated that GIT Na+ uptake occurs by a variety of apical mechanisms (NHE, Na+ channel/H+ ATPase, NCC, NKCC) with relative contributions varying among sections. However, at a mucosal Na+ concentration of 10 mmol L?1, EIPA, phenamil, bafilomycin, and hydrochlorothiazide were no longer effective in inhibiting unidirectional Na+ UR or FTR, suggesting the contribution of unidentified mechanisms under low Na+ conditions. A preliminary model is presented.  相似文献   

4.
Dissolved CH4 concentrations in the Belgian coastal zone (North Sea) ranged between 670 nmol l?1 nearshore and 4 nmol l?1 offshore. Spatial variations of CH4 were related to sediment organic matter (OM) content and gassy sediments. In nearshore stations with fine sand or muddy sediments, the CH4 seasonal cycle followed water temperature, suggesting methanogenesis control by temperature in these OM-rich sediments. In offshore stations with permeable sediments, the CH4 seasonal cycle showed a yearly peak following the chlorophyll-a spring peak, suggesting that in these OM-poor sediments, methanogenesis depended on freshly produced OM delivery. This does not exclude the possibility that some CH4 might originate from dimethylsulfide (DMS) or dimethylsulfoniopropionate (DMSP) or methylphosphonate transformations in the most offshore stations. Yet, the average seasonal CH4 cycle was unrelated to those of DMS(P), very abundant during the Phaeocystis bloom. The annual average CH4 emission was 126 mmol m?2 y?1 in the most nearshore stations (~4 km from the coast) and 28 mmol m?2 y?1 in the most offshore stations (~23 km from the coast), 1260–280 times higher than the open ocean average value (0.1 mmol m?2 y?1). The strong control of CH4 by sediment OM content and by temperature suggests that marine coastal CH4 emissions, in particular in shallow areas, should respond to future eutrophication and warming of climate. This is supported by the comparison of CH4 concentrations at five stations obtained in March 1990 and 2016, showing a decreasing trend consistent with alleviation of eutrophication in the area.  相似文献   

5.
A sandy culture experiment was conducted to investigate the effects of exogenous CaCl2 on the indole alkaloid accumulation in Catharanthus roseus under salt stress. One-month seedlings of C. roseus were treated with the different concentrations of NaCl (0, 50, and 100 mmol l? 1) and 7.5 mmol l? 1 CaCl2. The plant samples were analyzed after 7 days of the treatments. The NaCl-stressed plants showed decrease of fresh and dry weight and increase of malondialdehyde (MDA) content compared to control. Tryptophan decarboxylase (TDC) activity increased significantly under 50 mmol l? 1 NaCl without CaCl2 addition, 50 mmol l? 1 NaCl with 7.5 mmol l? 1 CaCl2, and CaCl2 treatment without NaCl addition. There was a significant increase in peroxidase activity under NaCl stress compared to control. The vindoline, catharanthine, vincristine, and vinblastine contents increased under salt stress (especially with 50 mmol l? 1 NaCl treatment with or without CaCl2). Addition of CaCl2 to NaCl-stressed plants increased biomass, TDC activity, vindoline, and catharanthine contents and lowered MDA and vincirstine contents compared to the plants without CaCl2. The plants treated with CaCl2 alone showed higher TDC activity, vindoline, catharanthine, and vinblastine content when compared to control. The results showed that exogenous CaCl2 could promote the indole alkaloid metabolism under salt stress.  相似文献   

6.
A key evolutionary development facilitating land colonization in terrestrial isopods (Isopoda: Oniscidea) is the intermittent liberation of waste nitrogen as volatile ammonia. Intermittent ammonia release exploits glutamine (Gln) as an intermediary nitrogen store. Here, we explore the relationship between temporal patterns of ammonia release and Gln accumulation in three littoral oniscideans from Southern California. Results are interpreted in terms of water availability, habitat, activity patterns, and ancestry. A two-way experimental design was used to test whether ammonia excretion and Gln accumulation follow a tidal or diel periodicity. Ammonia excretion was studied in the laboratory using chambers with or without available seawater and using an acid trap to collect volatile ammonia. Ligia occidentalis releases ammonia directly into seawater and accumulates Gln during low tide (48.9 ± 6.5 μmol g?1 at low tide, 24.1 ± 3.0 μmol g?1 at high tide), indicating that excretion is tidally constrained. Alloniscus perconvexus and Tylos punctatus can excrete ammonia directly into seawater or utilize volatilization. Both species burrow in sand by day and show a diel excretory pattern, accumulating Gln nocturnally (31.8 ± 2.7 μmol g?1 at dawn and 21.8 ± 2.3 μmol g?1 at dusk for A. perconvexus; 85.7 ± 15.1 μmol g?1 at dawn and 25.4 ± 2.9 μmol g?1 at dusk for T. punctatus) and liberating ammonia diurnally. Glutaminase shows higher activity in terrestrial (0.54–0.86 U g?1) compared to intertidal (0.25–0.31 U g?1) species, consistent with the need to generate high PNH3 for volatilization. The predominant isoform in Armadillidium vulgare is phosphate dependent and maleate independent; phosphate is a plausible regulator in vivo.  相似文献   

7.
Sugar transport is very critical in developing an efficient and rapid conversion process of a mixture of sugars by engineered microorganisms. By using expressed sequence tag data generated for the fructophilic yeast Candida magnoliae JH110, we identified two fructose-specific transporters, CmFSY1 and CmFFZ1, which show high homology with known fructose transporters of other yeasts. The CmFSY1 and CmFFZ1 genes harbor no introns and encode proteins of 574 and 582 amino acids, respectively. Heterologous expression of the two fructose-specific transporter genes in a Saccharomyces cerevisiae, which is unable to utilize hexoses, revealed that both transporters are functionally expressed and specifically transport fructose. These results were further corroborated by kinetic analysis of the fructose transport that showed that CmFsy1p is a high-affinity fructose–proton symporter with low capacity (K M?=?0.13?±?0.01 mM, V max?=?2.1?±?0.3 mmol h?1 [gdw]?1) and that CmFfz1p is a low-affinity fructose-specific facilitator with high capacity (K M?=?105?±?12 mM, V max?=?8.6?±?0.7 mmol h?1 [gdw]?1). These fructose-specific transporters can be used for improving fructose transport in engineered microorganisms for the production of biofuels and chemicals from fructose-containing feedstock.  相似文献   

8.
A real-time quantitative polymerase chain reaction (QPCR) was used to evaluate biokinetic coefficients of Nitrosomonas nitrosa and N. cryotolerans clusters growing simultaneously in a batch mode of ammonia oxidation. The mathematical models based on Monod equation were employed to describe the competitive relationship between these clusters and were fitted to experimental data to obtain biokinetic values. The maximum growth rates (μ m), half-saturation coefficients (K S), microbial yields (Y) and decay coefficients (k d) of N. nitrosa and N. cryotolerans were 1.77 and 1.21 day?1, 23.25 and 23.06 mg N·L?1, 16 × 108 and 1 × 108 copies·mg N?1, 0.26 and 0.20 day?1, respectively. The estimated coefficients were applied for modeling continuous operations at various hydraulic retention times (HRTs) with an influent ammonia concentration of 300 mg N·L?1. Modeling results revealed that ammonia oxidation efficiencies were achieved 55–98 % at 0.8–10 days HRTs and that the system was predicted to be washed out at HRT of 0.7 days. Overall, use of QPCR for estimating biokinetic coefficients of the two AOB cluster growing simultaneously by use of ammonia were successful. This idea may open a new direction towards biokinetics of ammonia oxidation in which respirometry tests are usually employed.  相似文献   

9.
Effects of oxygen transfer on recombinant protein production by Pichia pastoris under glyceraldehyde-3-phosphate dehydrogenase promoter were investigated. Recombinant glucose isomerase was chosen as the model protein. Two groups of oxygen transfer strategies were applied, one of which was based on constant oxygen transfer rate where aeration rate was Q O/V = 3 and 10 vvm, and agitation rate was N = 900 min?1; while the other one was based on constant dissolved oxygen concentrations, C DO = 5, 10, 15, 20 and 40 % in the fermentation broth, by using predetermined exponential glucose feeding with μ o = 0.15 h?1. The highest cell concentration was obtained as 44 g L?1 at t = 9 h of the glucose fed-batch phase at C DO = 20 % operation while the highest volumetric and specific enzyme activities were obtained as 4440 U L?1 and 126 U g?1 cell, respectively at C DO = 15 % operation. Investigation of specific enzyme activities revealed that keeping C DO at 15 % was more advantageous with an expense of relatively higher by-product formation and lower specific cell growth rate. For this strategy, the highest oxygen transfer coefficient and oxygen uptake rate were K L a = 0.045 s?1 and OUR = 8.91 mmol m?3 s?1, respectively.  相似文献   

10.
Post-hatch fishes lack a functional gill and use cutaneous surfaces for exchange with the surrounding environment. The ionoregulatory hypothesis posits that ionoregulation is the first physiological process to be limited by cutaneous exchange, necessitating its shift to the gills. We hypothesized that the ontogeny of branchial ammonia excretion (Jamm) is coupled to Na+ uptake () in accordance with the current model for exchange in freshwater. Using divided chambers, branchial and cutaneous Jamm, and oxygen consumption (MO2) by larval rainbow trout were assessed. Following hatch, the skin accounted for 97% and 86% of total Jamm and , respectively. Jamm and shifted to the gills simultaneously at 15 days post-hatch (dph) and were highly correlated (R2 = 0.951) at the gills, but not the skin, over development. Contrastingly, MO2 shifted significantly later at 27 dph, in agreement with the ionoregulatory hypothesis. Moreover, the mRNA expression and/or enzymatic activity of Rhesus proteins, Na+/H+-exchanger, H+-ATPase, Na+/K+-ATPase and carbonic anhydrase, all key components of the -exchange system, increased in the gills over larval development. We propose that the ontogeny of branchial occurs as exchange and provide evidence for a novel element to the ionoregulatory hypothesis, the excretion of potentially lethal metabolic ammonia.  相似文献   

11.
Myall Lakes has experienced algal blooms in recent years which threaten water quality. Biomarkers, benthic fluxes measured with chambers, and pore water metabolites were used to identify the nature and reactivity of organic matter (OM) in the sediments of Bombah Broadwater (BB), and the processes controlling sediment-nutrient release into the overlying waters. The OM in the sediments was principally from algal sources although terrestrial OM was found near the Myall River. Terrestrial faecal matter was identified in muddy sediments and was probably sourced via runoff from farm lands. The reactive OM which released nutrients into the overlying waters was from diatoms, dinoflagellates and probably cyanobacteria. Microcystis filaments were observed in surface sediments. OM degradation rates varied between 5.3 and 47.1 mmol m?2 day?1 (64–565 mg m?2 day?1), were highest in the muddy sediments and sulphate reduction rates accounted for 20–40% of the OM degraded. Diatoms, being heavy sink rapidly, and are an important vector to transport catchment N and P to sites of denitrification and P-trapping in the sediments. Denitrification rates (mean ~4 mmol N m?2 day?1), up to 7 mmol N m?2 day?1 (105 mg N m?2 day?1) were measured, and denitrification efficiencies were highest (mean = 86 ± 4%) in the sandy sediments (~20% of the area of BB), but lower in the muddy sediments (mean = 63 ± 15%). These differences probably result from higher OM loads and anaerobic respiration in muddy sediments. Most DIP (>70%) from OM degradation was not released into overlying waters but remained trapped in surface sediments. Biophysical (advective) processes were responsible for the measured metabolite (O2, CO2, DSi, DIN and DIP) fluxes across the sediment–water interface.  相似文献   

12.
The structure and speciation of the complexes formed between mercury(II) ions and glutathione (GSH = L-glutamyl-L-cysteinyl-glycine) have been studied for a series of alkaline aqueous solutions (\( C_{{{\text{Hg}}^{{2 + }}}}\,{\sim18\,{\rm{mmol}}\,{\rm{{dm^{-3}}}}}\) and C GSH = 40–200 mmol dm?3 at pH ~10.5) by means of extended X-ray absorption fine structure (EXAFS) and 199Hg NMR spectroscopy at ambient temperature. The dominant complexes are [Hg(GS)2]4? and [Hg(GS)3]7?, with mean Hg–S bond distances of 2.32(1) and 2.42(2) Å observed in digonal and trigonal Hg–S coordination, respectively. The proportions of the Hg2+–glutathione complexes were evaluated by fitting linear combinations of model EXAFS oscillations representing each species to the experimental EXAFS spectra. The [Hg(GS)4]10? complex, with four sulfur atoms coordinated at a mean Hg–S bond distance of 2.52(2) Å, is present in minor amounts (<30%) in solutions containing a large excess of glutathione (C GSH ≥ 160 mmol dm?3). Comparable alkaline mercury(II) cysteine (H2Cys) solutions were also investigated and a reduced tendency to form higher complexes was observed, because the deprotonated amino group of Cys2? allows the stable [Hg(S,N-Cys)2]2? chelate to form. The effect of temperature on the distribution of the Hg2+–glutathione complexes was studied by comparing the EXAFS spectra at ambient temperature and at 25 K of a series of glycerol/water (33/67, v/v) frozen glasses with \( C_{{{\text{Hg}}^{{2 + }} }} \,{\sim7\,{\rm{mmol}}\,{\rm{{dm^{-3}}}}} \) and C GSH = 16–81 mmol dm?3. Complexes with high Hg–S coordination numbers, [Hg(GS)3]7? and [Hg(GS)4]10?, became strongly favored when just a moderate excess of glutathione (C GSH ≥28 mmol dm?3) was used in the glassy samples, as expected for a stepwise exothermic bond formation. Addition of glycerol had no effect on the Hg(II)–glutathione speciation, as shown by the similarity of the EXAFS spectra obtained at room temperature for two parallel series of Hg(II)-glutathione solutions with \( C_{{{\text{Hg}}^{{2 + }} }} \,{\sim7\,{\rm{mmol}}\,{\rm{{dm^{-3}}}}},\) with and without 33% glycerol. Also, the 199Hg NMR chemical shifts of a series of ~18 mmol dm?3 mercury(II) glutathione solutions with 33% glycerol were not significantly different from those of the corresponding series in aqueous solution.  相似文献   

13.
The oxygen transfer rate (OTR) was evaluated as a scale-up criterion for alginate production in 3- and 14-L stirred fermentors. Batch cultures were performed at different agitation rates (200, 300, and 600 rpm) and airflow rates (0.25, 0.5, and 1 vvm), resulting in different maximum OTR levels (OTRmax). Although the two reactors had a similar OTRmax (19 mmol L?1 h?1) and produced the same alginate concentration (3.8 g L?1), during the cell growth period the maximum molecular weight of the alginate was 1,250 kDa in the 3-L stirred fermentor and 590 kDa in 14-L stirred fermentor. The results showed for the first time the evolution of the molecular weight of alginate and OTR profiles for two different scales of stirred fermentors. There was a different maximum specific oxygen uptake rate between the two fermenters, reaching 8.3 mmol g?1 h?1 in 3-L bioreactor and 10.6 mmol g?1 h?1 in 14-L bioreactor, which could explain the different molecular weights observed. These findings open the possibility of using $ q_{{{\text{O}}_{ 2} }} $ instead of OTRmax as a scaling criterion to produce polymers with similar molecular weights during fermentation.  相似文献   

14.
In ruminants, gastrointestinal recycling of urea is acutely enhanced by fibre-rich diets that lead to high ruminal concentration of short chain fatty acids (SCFA), while high ammonia has inhibitory effects. This study attempted to clarify if urea flux to the porcine cecum is similarly regulated. Thirty-two weaned piglets were fed diets containing protein (P) of poor prececal digestibility and fibre (F) at high (H) or low levels (L) in a 2 × 2 factorial design. After slaughter, cecal content was analyzed and the cecal mucosa incubated in Ussing chambers to measure the effect of pH, SCFA and NH4 + on the flux rates of urea, short-circuit current (I sc) and tissue conductance (G t). NH4 + significantly enhanced I sc (from 0.5 ± 0.2 to 1.2 ± 0.1 μEq cm?2 h?1). No acute effects of SCFA or ammonia on urea flux were observed. Tissue conductance was significantly lower in the high dietary fibre groups irrespective of the protein content. Only the HP-LF group emerged as different from all others in terms of urea flux (74 ± 6 versus 53 ± 3 nmol cm?2 h?1), associated with higher cecal ammonia concentration and reduced fecal consistency. The data suggest that as in the rumen, uptake of ammonia by the cecum may involve electrogenic transport of the ionic form (NH4 +). In contrast to findings in the rumen, neither a high fibre diet nor acute addition of SCFA enhanced urea transport across the pig cecum. Instead, a HP-LF diet had stimulatory effects. A potential role for urea recycling in stabilizing luminal pH is discussed.  相似文献   

15.
The influence of Potamogeton pectinatus colonisation on benthic nitrogen dynamics was studied in the littoral zone of a lowland pit lake with high nitrate concentration (~200 μM). Our hypothesis was that in aquatic environments where nitrogen availability is not limiting, colonisation by rooted macrophytes changes the dynamics of the benthic nitrogen cycle, stimulating N assimilation and denitrification and increasing the system capacity to take up external nitrogen loads. To test this hypothesis, we quantified and compared seasonal variations of light and dark benthic metabolism, dissolved inorganic nitrogen (DIN) fluxes, denitrification and N assimilation rates in an area colonised by P. pectinatus and a reference site colonised by microphytobenthos. In both areas, the benthic system was net autotrophic and a sink for DIN (2,241–2,644 mmol m?2 y?1). Plant colonisation increased nitrogen losses via denitrification by 30% compared to the unvegetated area. In contrast to what is generally observed in coastal marine systems, where the presence of rooted macrophytes limits denitrification rates, under the very high nitrate concentrations in the studied lake, both denitrification (1,237–1,570 mmol m?2 y?1) and N assimilation (1,039–1,095 mmol m?2 y?1) played important and comparable roles in the removal of DIN from the water column.  相似文献   

16.
The effects of organic enrichment on sediment biogeochemistry was studied in diffusion controlled sediment mesocosms, where labile organic matter (OM) (fish feed) pulses were added once a week to the sediment surface. Two types of sediments, differing mainly in content of reactive Fe, were used. The aim of this experiment was two-fold, (1) to evaluate the importance of Fe-driven sulfide buffering for sulfide accumulation in surface enriched sediments, and (2) to estimate the diagenetic capacity for degradation of labile OM near the sediment surface. The simulated OM loading rate of 375 mmol C m?2 day?1 led to a 5–6 times increase in CO2-production and a 4–5 times increase in O2-uptake. Sulfate reduction estimated by radiotracer experiments and CO2-release was 105–131 mmol m?2 day?1, but accumulation of porewater sulfide was low in both sediment types. Instead 99% of sulfide was oxidized with O2 at the sediment water interface in the low Fe treatment, whereas 46% of produced sulfide precipitated as Fe-S compound in the high Fe treatment resulting in significantly lower O2-uptake. Furthermore, the accumulation of up to 30% of added OM by the end of the experiment indicated a saturation of the heterotrophic microbial communities in the upper enriched surface layer. These results suggest a maximum diagenetic capacity for OM degradation in the range of ~25 μmol C cm?3 day?1 or 260 mmol m?2 day?1 for the present sediment types.  相似文献   

17.
We measured CO2 concentration and determined evasion rate and piston velocity across the water–air interface in flow-through chambers at eight stations along two 20 km long streams in agricultural landscapes in Zealand, Denmark. Both streams were 9–18-fold supersaturated in CO2 with daily means of 240 and 340 μM in January–March and 130 and 180 μM in June–August. Annual CO2 medians were 212 μM in six other streams and 460 μM in four groundwater wells, while seven lakes were weakly supersaturated (29 μM). Air concentrations immediately above stream surfaces were close to mean atmospheric conditions except during calm summer nights. Piston velocity from 0.4 to 21.6 cm h?1 was closely related to current velocity permitting calculation of evasion rates for entire streams. CO2 evasion rates were highest in midstream reaches (170–1,200 mmol m?2 day?1) where CO2-rich soil water entered fast stream flow, while rates were tenfold lower (25–100 mmol m?2 day?1) in slow-flowing lower reaches. CO2 evasion mainly derived from the input of CO2 in soil water. The variability of CO2 evasion along the two lowland streams covered much of the range in sub-Arctic and temperate streams reported previously. In budgets for the two stream catchments, loss of carbon from soils via the hydrological cycle was substantial (3.2–5.7 mmol m?2 day?1) and dominated by CO2 consumed to form HCO3 ? by mineral dissolution (69–76%) and export of organic carbon (15–23%) relative to dissolved CO2 export (7–9%).  相似文献   

18.
Most fluvial networks worldwide include watercourses that recurrently cease to flow and run dry. The spatial and temporal extent of the dry phase of these temporary watercourses is increasing as a result of global change. Yet, current estimates of carbon emissions from fluvial networks do not consider temporary watercourses when they are dry. We characterized the magnitude and variability of carbon emissions from dry watercourses by measuring the carbon dioxide (CO2) flux from 10 dry streambeds of a fluvial network during the dry period and comparing it to the CO2 flux from the same streambeds during the flowing period and to the CO2 flux from their adjacent upland soils. We also looked for potential drivers regulating the CO2 emissions by examining the main physical and chemical properties of dry streambed sediments and adjacent upland soils. The CO2 efflux from dry streambeds (mean ± SD = 781.4 ± 390.2 mmol m?2 day?1) doubled the CO2 efflux from flowing streambeds (305.6 ± 206.1 mmol m?2 day?1) and was comparable to the CO2 efflux from upland soils (896.1 ± 263.2 mmol m?2 day?1). However, dry streambed sediments and upland soils were physicochemically distinct and differed in the variables regulating their CO2 efflux. Overall, our results indicate that dry streambeds constitute a unique and biogeochemically active habitat that can emit significant amounts of CO2 to the atmosphere. Thus, omitting CO2 emissions from temporary streams when they are dry may overlook the role of a key component of the carbon balance of fluvial networks.  相似文献   

19.
Microalgae as sources for biodiesel production have been widely investigated. Microalgae biomass, lipid content and fatty acid profiles of microalgae are limiting factors for the cost-effective production of biodiesel. In this paper, the effects of high ferric ion concentrations on three species of microalgae (Tetraselmis subcordiformis, Nannochloropsis oculata and Pavlova viridis) were studied. The microalgae were cultured in different concentrations (1.2?×?10?2, 1.2?×?10?1, 1.2 and 12 mmol L?1) of ferric ion. The growth, lipid content and fatty acid profiles of the three microalgae were analysed. When algae were cultured in 1.2 mmol L?1 ferric ion for 10 days, the final cell density and specific growth rates of T. subcordiformis, N. oculata and P. viridis decreased significantly (p?<?0.05), and the total lipid contents of the microalgae, 33.72, 37.34 and 29.48 % (dry mass) in T. subcordiformis, N. oculata and P. viridis, respectively, were higher than those at other concentrations. The neutral lipid/total lipid ratios of the three microalgae species increased with increasing ferric ion concentration. Neutral lipids accounted for 50.75, 48.37 and 46.59 % of the total lipid in T. subcordiformis, N. oculata and P. viridis, respectively, when cultured in 12 mmol L?1 ferric ion. The proportions of saturated fatty acids in all three species cultured in 12 mmol L?1 ferric ion were significantly higher than those cultured in lower ferric ion concentrations. An optimum ferric ion concentration can improve the properties of T. subcordiformis, N. oculata and P. viridis as sources for biodiesel.  相似文献   

20.
The phytase (PPHY) of Pichia anomala has the requisite properties of thermostability and acidstability, broad substrate spectrum, and protease insensitivity, which make it a suitable candidate as a feed and food additive. The 1,389-bp PPHY gene was amplified from P. anomala genomic DNA, cloned in pPICZαA, and expressed extracellularly in P. pastoris X33. Three copies of PPHY have been detected integrated into the chromosomal DNA of the recombinant P. pastoris. The size exclusion chromatography followed by electrophoresis of the pure rPPHY confirmed that this is a homohexameric glycoprotein of ~420 kDa with a 24.3 % portion as N-linked glycans. The temperature and pH optima of rPPHY are 60 °C and 4.0, similar to the endogenous enzyme. The kinetic characteristics K m, V max, K cat, and K cat/K m of rPPHY are 0.2 ± 0.03 mM, 78.2 ± 1.43 nmol mg?1 s?1, 65,655 ± 10.92 s?1, and 328.3 ± 3.12 μM?1 s?1, respectively. The optimization of medium components led to a 21.8-fold improvement in rPPHY production over the endogenous yeast. The rPPHY titer attained in shake flasks could also be sustained in the laboratory fermenter. The rPPHY accounts for 57.1 % of the total secreted protein into the medium. The enzyme has been found useful in fractionating allergenic protein glycinin from soya protein besides dephytinization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号