首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
 Afternoon observations in summer comparing shoreline with inland atmospheric conditions were made during onshore winds at Victoria, British Columbia, Canada. The onshore wind came from a cool water surface. Mean monthly water temperatures near to shore were between 11 and 11.5° C. The onshore wind brought lower air, ground surface radiant and sky radiant temperatures; lower humidity and greater wind speed. All of these combine to produce a cooler human environment at the shoreline than inland. The relative importance of climatic elements in producing the cooler environment was assessed using sensitivity analyses with eight different human thermal exchange models/indices. Air temperature and wind speed had the greatest effect, followed by ground surface radiant temperature, sky radiant temperature and humidity. Wind speed is the most practical element to consider when trying to maximize human comfort along the shoreline. Received: 9 July 1996 / Revised: 31 March 1997 / Accepted: 14 April 1997  相似文献   

2.

1. 1. The purpose of this paper is to clarify the non-linearity of the human physiological and psychological responses to step change of air temperature by impulse response analysis using Discrete Fourier Transformation.

2. 2. Experiments were conducted to investigate the effect of thermal transients on human responses.

3. 3. Experimental conditions were as follows: lowering air temperature from 30 to 20°C and raising air temperature from 20 to 30°C.

4. 4. The responses of local skin temperature on lowering air temperature from 30 to 20°C are not necessarily opposite to the responses found on raising air temperature from 20 to 30°C.

5. 5. From impulse response analysis using Discrete Fourier Transformation, skin temperature responses to the opposite air temperature change do not necessarily coincide with each other whenever the same temperature stimulus is occurred.

Author Keywords: Air temperature; step change; impulse response; skin temperature; thermal sensation  相似文献   


3.
Focusing on the understanding and the estimation of the biometeorological conditions during summer in outdoor places, a field study was conducted in July 2010 in Athens, Greece over 6 days at three different sites: Syntagma Square, Ermou Street and Flisvos coast. Thermo-physiological measurements of five subjects were carried out from morning to evening for each site, simultaneously with meteorological measurements and subjective assessments of thermal sensation reported by questionnaires. The thermo-physiological variables measured were skin temperature, heat flux and metabolic heat production, while meteorological measurements included air temperature, relative humidity, wind speed, globe temperature, ground surface temperature and global radiation. The possible relation of skin temperature with the meteorological parameters was examined. Theoretical values of mean skin temperature and mean radiant temperature were estimated applying the MENEX model and were compared with the measured values. Two biometeorological indices, thermal sensation (TS) and heat load (HL)—were calculated in order to compare the predicted thermal sensation with the actual thermal vote. The theoretically estimated values of skin temperature were underestimated in relation to the measured values, while the theoretical model of mean radiant temperature was more sensitive to variations of solar radiation compared to the experimental values. TS index underestimated the thermal sensation of the five subjects when their thermal vote was ‘hot’ or ‘very hot’ and overestimated thermal sensation in the case of ‘neutral’. The HL index predicted with greater accuracy thermal sensation tending to overestimate the thermal sensation of the subjects.  相似文献   

4.
All biological bodies live in a thermal environment with the human body as no exception, where skin is the interface with protecting function. When the temperature moves out of normal physiological range, skin fails to protect and pain sensation is evocated. Skin thermal pain is one of the most common problems for humans in everyday life as well as in thermal therapeutic treatments. Nocicetors (special receptor for pain) in skin play an important role in this process, converting the energy from external noxious thermal stimulus into electrical energy via nerve impulses. However, the underlying mechanisms of nociceptors are poorly understood and there have been limited efforts to model the transduction process. In this paper, a model of nociceptor transduction in skin thermal pain is developed in order to build direct relationship between stimuli and neural response, which incorporates a skin thermomechanical model for the calculation of temperature, damage and thermal stress at the location of nociceptor and a revised Hodgkin-Huxley form model for frequency modulation. The model qualitatively reproduces measured relationship between spike rate and temperature. With the addition of chemical and mechanical components, the model can reproduce the continuing perception of pain after temperature has returned to normal. The model can also predict differences in nociceptor activity as a function of nociceptor depth in skin tissue.  相似文献   

5.
The purpose of this study was to determine whether the different thermal conditions of the arm and leg due to wearing different types of clothing during the afternoon could modulate the circadian rhythm of body temperature and subjective sleep quality. Six healthy female volunteers were studied twice with two types of clothing, leaving the arm and leg covered or uncovered. The environmental chamber was controlled at 24 ± 0.5°C and 50 ± 5% RH during wakefulness and 28 ± 0.5°C and 50 ± 5% RH during night sleep. One type of clothing consisted of long-sleeved shirts and full-length trousers (Type L, 989 g, 0.991 clo); the other type was of half-sleeved shirts and knee-length trousers (Type H, 750 g, 0.747 clo). One testing session lasted for 16 h from 14:00 to 06:00 h the next morning. Subjects wore Type L or Type H clothing during the afternoon exposure (14:00 - 19:00), and Type L clothing during the evening (19:00 - 22:30 h) and the night sleep (22:30 - 06:00 h). Results were as follows. (1) When wearing Type H rather than Type L clothing, skin temperatures of the arm and leg were significantly lower during the time of exposure, and increased more after the evening. (2) Rectal temperature was not significantly different between the two types of clothing except during the early part of the exposure period, but it decreased during the evening by a significantly greater amount when wearing Type H clothing. (3) Subjective sleep quality was not significantly different between the two clothing types. These results suggest that afternoon exposure of the arm and leg to a slightly cool environment does not have a strong after-effect on the body temperature and subjective sleep quality.  相似文献   

6.
7.
Sensations evoked by thermal stimulation (temperature-related sensations) can be divided into two categories, "temperature sensation" and "thermal comfort." Although several studies have investigated regional differences in temperature sensation, less is known about the sensitivity differences in thermal comfort for the various body regions. In the present study, we examined regional differences in temperature-related sensations with special attention to thermal comfort. Healthy male subjects sitting in an environment of mild heat or cold were locally cooled or warmed with water-perfused stimulators. Areas stimulated were the face, chest, abdomen, and thigh. Temperature sensation and thermal comfort of the stimulated areas were reported by the subjects, as was whole body thermal comfort. During mild heat exposure, facial cooling was most comfortable and facial warming was most uncomfortable. On the other hand, during mild cold exposure, neither warming nor cooling of the face had a major effect. The chest and abdomen had characteristics opposite to those of the face. Local warming of the chest and abdomen did produce a strong comfort sensation during whole body cold exposure. The thermal comfort seen in this study suggests that if given the chance, humans would preferentially cool the head in the heat, and they would maintain the warmth of the trunk areas in the cold. The qualitative differences seen in thermal comfort for the various areas cannot be explained solely by the density or properties of the peripheral thermal receptors and thus must reflect processing mechanisms in the central nervous system.  相似文献   

8.
9.
Recently we showed that the Pennes bioheat transfer equation was not adequate to quantify mm wave heating of the skin at high blood flow rates. To do so, it is necessary to incorporate an "effective" thermal conductivity to obtain a hybrid bioheat equation (HBHE). The main aim of this study was to determine the relationship between non-specific tissue blood flow in a homogeneous unilayer model and dermal blood flow in multilayer models providing that the skin surface temperatures before and following mm wave exposure were the same. This knowledge could be used to develop multilayer models based on the fitting parameters obtained with the homogeneous tissue models. We tested four tissue models consisting of 1-4 layers and applied the one-dimensional steady-state HBHE. To understand the role of the epidermis in skin models we added to the one- and three-layer models an external thin epidermal layer with no blood flow. Only the combination of models containing the epidermal layer was appropriate for determination of the relationship between non-specific tissue and dermal blood flows giving the same skin surface temperatures. In this case we obtained a linear relationship between non-specific tissue and dermal blood flows. The presence of the fat layer resulted in the appearance of a significant temperature gradient between the dermis and muscle layer which increased with the fat layer thickness.  相似文献   

10.
11.
Temporal relationships between warmth imagery and associated psychophysiological changes were studied by recording digital pulse amplitude, skin temperature, and thermal sensations in 5 subjects. After each trial the subjects were asked whether they thought they had been successful in producing the expected mental image. During the subjectively successful imagery tasks the digital pulse amplitude and the skin temperature of the hand rose significantly. The subjective onset of imagery took place after the digital pulse amplitude had started to change but before the skin temperature had begun to rise. This implies that mental imagery of skin warming as a conscious experience is not a prerequisite of somatic change. The thermal sensation (i.e. feeling of warmth) took place while the skin temperature was rising or immediately after that. This suggests that it is not caused by the mental image per se but by activation of skin temperature receptors.  相似文献   

12.
13.
14.
15.
Skin temperature is an essential physiological parameter of thermal comfort. The purpose of this research was to reveal the effects of clothing thermal resistance and operative temperature on local skin temperature (LST) and mean skin temperature (MST). The LSTs (at 32 sites) in stable condition were measured for different clothing thermal resistances 1.39, 0.5 and 0.1 clo. To study the effect of environmental temperature on LST and MST, the LSTs were also measured for operative temperatures 23, 26 and 33 °C. The experimental data showed that the effect of clothing thermal resistance on the foot was greater compared to the other human parts, and the effect of operative temperature on many parts of the human body was great, such as foot, hand, trunk, and arm. The MSTs measured on the conditions that air speed was under 0.1 m/s, RH was about 30–70%, and metabolic rate was about 1 met, were collected from previous studies. On the basis of these experimental data, a MST prediction equation with the operative temperature and clothing thermal resistance as independent variables, was obtained by multiple linear regression. This equation was a good alternative and provided convenience to predict the MST in different operative temperatures and clothing thermal resistances.  相似文献   

16.
17.
18.
The elephant with its low surface-to-volume ratio presents an interesting problem concerning heat dissipation. To understand how such large mammals remain in thermal balance, we determined the major avenues of heat loss for an adult African elephant and an immature Indian elephant. Because conventional physiological measurements are difficult for these animals, the present study used a non-invasive technique, infrared thermography, to measure skin temperatures of each elephant. Detailed surface temperature profiles and surface area measurements of each elephant were used in standard equations for convective, conductive and radiant heat transfer. Results demonstrated that heat transfer by free convection and radiation accounted for 86% of the total heat loss for the elephants at T a= 12·6 °C. Heat transfer across the ears, an important thermal window at high ambient temperatures, represented less than 8% of the total heat loss. Surface area of the animals, and metabolic heat production calculated from total heat loss of the African elephant, scaled predictably with body mass. In contrast, the thermal conductance of the elephants (71·6 W /°C, African; 84·5 W /°C, Indian) was three to five times higher than predicted from an allometric relationship for smaller mammals. The high thermal conductance of elephants is attributed to the absence of fur and appears to counteract reduced heat transfer associated with a low surface-to-volume ratio.  相似文献   

19.
20.
The probit technique for analysis of subjective assessments of thermal sensation is described. It enables transition temperatures from any selected thermal sensation to the adjacent thermal sensation (e.g. from neutral to warm) to be identified. A transition temperature is defined as that temperature at which the maximum number of people would change their assessment from one thermal sensation to the next. Thus if a seven-point scale of thermal sensation is used, six transition temperatures are possible. Increments between them will not necessarily be identical, as would be assumed in a linear regression analysis. The method has been applied in three studies: laboratory studies by the Kansas State University, field studies in Port Moresby, and field studies in Melbourne. In the first it is shown that men are more thermally tolerant than women, in the second it is shown that in Port Moresby the preferred temperatures of Melanesians are 2°C higher than those of Caucasians and in the third it is suggested that subjects in Melbourne have a slightly lower preferred temperature than predicted by Fanger (1972).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号