首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The innate host response to virus infection is largely dominated by the production of type I interferon and interferon stimulated genes. In particular, fibroblasts respond robustly to viral infection and to recognition of viral signatures such as dsRNA with the rapid production of type I interferon; subsequently, fibroblasts are a key cell type in antiviral protection. We recently found, however, that primary fibroblasts deficient for the production of interferon, interferon stimulated genes, and other cytokines and chemokines mount a robust antiviral response against both DNA and RNA viruses following stimulation with dsRNA. Nitric oxide is a chemical compound with pleiotropic functions; its production by phagocytes in response to interferon-γ is associated with antimicrobial activity. Here we show that in response to dsRNA, nitric oxide is rapidly produced in primary fibroblasts. In the presence of an intact interferon system, nitric oxide plays a minor but significant role in antiviral protection. However, in the absence of an interferon system, nitric oxide is critical for the protection against DNA viruses. In primary fibroblasts, NF-κB and interferon regulatory factor 1 participate in the induction of inducible nitric oxide synthase expression, which subsequently produces nitric oxide. As large DNA viruses encode multiple and diverse immune modulators to disable the interferon system, it appears that the nitric oxide pathway serves as a secondary strategy to protect the host against viral infection in key cell types, such as fibroblasts, that largely rely on the type I interferon system for antiviral protection.  相似文献   

3.
Insects are not only major vectors of mammalian viruses, but are also host to insect-restricted viruses that can potentially be transmitted to mammals. While mammalian innate immune responses to arboviruses are well studied, less is known about how mammalian cells respond to viruses that are restricted to infect only invertebrates. Here we demonstrate that IIV-6, a DNA virus of the family Iridoviridae, is able to induce a type I interferon-dependent antiviral immune response in mammalian cells. Although IIV-6 is a DNA virus, we demonstrate that the immune response activated during IIV-6 infection is mediated by the RIG-I-like receptor (RLR) pathway, and not the canonical DNA sensing pathway via cGAS/STING. We further show that RNA polymerase III is required for maximal IFN-β secretion, suggesting that viral DNA is transcribed by this enzyme into an RNA species capable of activating the RLR pathway. Finally, we demonstrate that the RLR-driven mammalian innate immune response to IIV-6 is functionally capable of protecting cells from subsequent infection with the arboviruses Vesicular Stomatitis virus and Kunjin virus. These results represent a novel example of an invertebrate DNA virus activating a canonically RNA sensing pathway in the mammalian innate immune response, which reduces viral load of ensuing arboviral infection.  相似文献   

4.
Double-stranded RNA (dsRNA) is a common by-product of viral infections and a potent inducer of innate antiviral immune responses in vertebrates. In the marine shrimp Litopenaeus vannamei, innate antiviral immunity is also induced by dsRNA in a sequence-independent manner. In this study, the hypothesis that dsRNA can evoke not only innate antiviral immunity but also a sequence-specific antiviral response in shrimp was tested. It was found that viral sequence-specific dsRNA affords potent antiviral immunity in vivo, implying the involvement of RNA interference (RNAi)-like mechanisms in the antiviral response of the shrimp. Consistent with the activation of RNAi by virus-specific dsRNA, endogenous shrimp genes could be silenced in a systemic fashion by the administration of cognate long dsRNA. While innate antiviral immunity, sequence-dependent antiviral protection, and gene silencing could all be induced by injection of long dsRNA molecules, injection of short interfering RNAs failed to induce similar responses, suggesting a size requirement for extracellular dsRNA to engage antiviral mechanisms and gene silencing. We propose a model of antiviral immunity in shrimp by which viral dsRNA engages not only innate immune pathways but also an RNAi-like mechanism to induce potent antiviral responses in vivo.  相似文献   

5.
Activation of antiviral innate immune responses depends on the recognition of viral components or viral effectors by host receptors. This virus recognition system can activate two layers of host defence, pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI). While ETI has long been recognized as an efficient plant defence against viruses, the concept of antiviral PTI has only recently been integrated into virus–host interaction models, such as the RNA silencing-based defences that are triggered by viral dsRNA PAMPs produced during infection. Emerging evidence in the literature has included the classical PTI in the antiviral innate immune arsenal of plant cells. Therefore, our understanding of PAMPs has expanded to include not only classical PAMPS, such as bacterial flagellin or fungal chitin, but also virus-derived nucleic acids that may also activate PAMP recognition receptors like the well-documented phenomenon observed for mammalian viruses. In this review, we discuss the notion that plant viruses can activate classical PTI, leading to both unique antiviral responses and conserved antipathogen responses. We also present evidence that virus-derived nucleic acid PAMPs may elicit the NUCLEAR SHUTTLE PROTEIN-INTERACTING KINASE 1 (NIK1)-mediated antiviral signalling pathway that transduces an antiviral signal to suppress global host translation.  相似文献   

6.
Drosophila melanogaster has a robust and efficient innate immune system, which reacts to infections ranging from bacteria to fungi and, as discovered recently, viruses as well. The known Drosophila immune responses rely on humoral and cellular activities, similar to those found in the innate immune system of other animals. Recently, RNAi or 'RNA silencing' has arisen as a possible means by which Drosophila can react to a specific pathogens, transposons and retroviral elements, in a fashion similar to that of a traditional mammalian adaptive immune system instead of in a more generalized and genome encoded innate immune-based response. RNAi is a highly conserved regulation and defence mechanism, which suppresses gene expression via targeted RNA degradation directed by either exogenous dsRNA (cleaved into siRNAs) or endogenous miRNAs. In plants, RNAi has been found to act as an antiviral immune response system. Here we show that RNAi is an antiviral response used by Drosophila to combat infection by Drosophila X Virus, a birnavirus, as well. Additionally, we identify multiple core RNAi pathway genes, including piwi, vasa intronic gene (vig), aubergine (aub), armitage (armi), Rm62, r2d2 and Argonaute2 (AGO2) as having vital roles in this response in whole organisms. Our findings establish Drosophila as an ideal model for the study of antiviral RNAi responses in animals.  相似文献   

7.
Recognition of pathogens by the innate immune system is mediated by pattern recognition receptors (PRRs), which recognize specific molecular structures of the infectious agents and subsequently trigger expression of genes involved in host defense. Toll-like receptors (TLRs) represent a well-characterized class of membrane-bound PRRs, and the RNA helicase retinoic acid inducible gene I (RIG-I) has recently been described as a novel cytoplasmic PRR recognizing double-stranded RNA (dsRNA). Here we show that activation of signal transduction and induction of cytokine expression by the paramyxovirus Sendai virus is dependent on virus replication and involves PRRs in a cell-type-dependent manner. While nonimmune cells relied entirely on recognition of dsRNA through RIG-I for activation of an antiviral response, myeloid cells utilized both the single-stranded RNA sensing TLR7 and TLR8 and dsRNA-dependent mechanisms independent of RIG-I, TLR3, and dsRNA-activated protein kinase R to trigger this response. Therefore, there appears to be a large degree of cell-type specificity in the mechanisms used by the host to recognize infecting viruses.  相似文献   

8.
Double-stranded RNA (dsRNA) longer than 30 bp is a key activator of the innate immune response against viral infections. It is widely assumed that the generation of dsRNA during genome replication is a trait shared by all viruses. However, to our knowledge, no study exists in which the production of dsRNA by different viruses is systematically investigated. Here, we investigated the presence and localization of dsRNA in cells infected with a range of viruses, employing a dsRNA-specific antibody for immunofluorescence analysis. Our data revealed that, as predicted, significant amounts of dsRNA can be detected for viruses with a genome consisting of positive-strand RNA, dsRNA, or DNA. Surprisingly, however, no dsRNA signals were detected for negative-strand RNA viruses. Thus, dsRNA is indeed a general feature of most virus groups, but negative-strand RNA viruses appear to be an exception to that rule.  相似文献   

9.
Insects are infected by a wide array of viruses some of which are insect restricted and pathogenic, and some of which are transmitted by biting insects to vertebrates. The medical and economic importance of these viruses heightens the need to understand the interaction between the infecting pathogen and the insect immune system in order to develop transmission interventions. The interaction of the virus with the insect host innate immune system plays a critical role in the outcome of infection. The major mechanism of antiviral defense is the small, interfering RNA pathway that responds through the detection of virus-derived double-stranded RNA to suppress virus replication. However, other innate antimicrobial pathways such as Imd, Toll, and Jak-STAT and the autophagy pathway have also been shown to play important roles in antiviral immunity. In this review, we provide an overview of the current understanding of the main insect antiviral pathways and examine recent findings that further our understanding of the roles of these pathways in facilitating a systemic and specific response to infecting viruses.  相似文献   

10.
Vector-borne viruses are an important class of emerging and re-emerging pathogens; thus, an improved understanding of the cellular factors that modulate infection in their respective vertebrate and insect hosts may aid control efforts. In particular, cell-intrinsic antiviral pathways restrict vector-borne viruses including the type I interferon response in vertebrates and the RNA interference (RNAi) pathway in insects. However, it is likely that additional cell-intrinsic mechanisms exist to limit these viruses. Since insects rely on innate immune mechanisms to inhibit virus infections, we used Drosophila as a model insect to identify cellular factors that restrict West Nile virus (WNV), a flavivirus with a broad and expanding geographical host range. Our genome-wide RNAi screen identified 50 genes that inhibited WNV infection. Further screening revealed that 17 of these genes were antiviral against additional flaviviruses, and seven of these were antiviral against other vector-borne viruses, expanding our knowledge of invertebrate cell-intrinsic immunity. Investigation of two newly identified factors that restrict diverse viruses, dXPO1 and dRUVBL1, in the Tip60 complex, demonstrated they contributed to antiviral defense at the organismal level in adult flies, in mosquito cells, and in mammalian cells. These data suggest the existence of broadly acting and functionally conserved antiviral genes and pathways that restrict virus infections in evolutionarily divergent hosts.  相似文献   

11.
The immune response against viral infection relies on the early production of cytokines that induce an antiviral state and trigger the activation of immune cells. This response is initiated by the recognition of virus-associated molecular patterns such as dsRNA, a viral replication intermediate recognized by TLR3 and certain RNA helicases. Infection with West Nile virus (WNV) can lead to lethal encephalitis in susceptible individuals and constitutes an emerging health threat. In this study, we report that WNV envelope protein (WNV-E) specifically blocks the production of antiviral and proinflammatory cytokines induced by dsRNA in murine macrophages. This immunosuppressive effect was not dependent on TLR3 or its adaptor molecule Trif. Instead, our experiments show that WNV-E acts at the level of receptor-interacting protein 1. Our results also indicate that WNV-E requires a certain glycosylation pattern, specifically that of dipteran cells, to inhibit dsRNA-induced cytokine production. In conclusion, these data show that the major structural protein of WNV impairs the innate immune response and suggest that WNV exploits differential vector/host E glycosylation profiles to evade antiviral mechanisms.  相似文献   

12.
Our main objective of this study was to determine how Human Immunodeficiency Virus (HIV) avoids induction of the antiviral Type I Interferon (IFN) system. To limit viral infection, the innate immune system produces important antiviral cytokines such as the IFN. IFN set up a critical roadblock to virus infection by limiting further replication of a virus. Usually, IFN production is induced by the recognition of viral nucleic acids by innate immune receptors and subsequent downstream signaling. However, the importance of IFN in the defense against viruses has lead most pathogenic viruses to evolve strategies to inhibit host IFN induction or responses allowing for increased pathogenicity and persistence of the virus. While the adaptive immune responses to HIV infection have been extensively studied, less is known about the balance between induction and inhibition of innate immune defenses, including the antiviral IFN response, by HIV infection. Here we show that HIV infection of T cells does not induce significant IFN production even IFN I Interferon production. To explain this paradox, we screened HIV proteins and found that two HIV encoded proteins, Vpu and Nef, strongly antagonize IFN induction, with expression of these proteins leading to loss of expression of the innate immune viral RNA sensing adaptor protein, IPS-1 (IFN-β promoter stimulator-1). We hypothesize that with lower levels of IPS-1 present, infected cells are defective in mounting antiviral responses allowing HIV to replicate without the normal antiviral actions of the host IFN response. Using cell lines as well as primary human derived cells, we show that HIV targeting of IPS-1 is key to limiting IFN induction. These findings describe how HIV infection modulates IFN induction providing insight into the mechanisms by which HIV establishes infection and persistence in a host.  相似文献   

13.
14.
The interferon-regulated antiviral responses are essential for the induction of both innate and adaptive immunity in mammals. Production of virus-derived small-interfering RNAs (vsiRNAs) to restrict virus infection by RNA interference (RNAi) is a recently identified mammalian immune response to several RNA viruses, which cause important human diseases such as influenza and Zika virus. However, little is known about Dicer processing of viral double-stranded RNA replicative intermediates (dsRNA-vRIs) in mammalian somatic cells. Here we show that infected somatic cells produced more influenza vsiRNAs than cellular microRNAs when both were produced by human Dicer expressed de novo, indicating that dsRNA-vRIs are not poor Dicer substrates as previously proposed according to in vitro Dicer processing of synthetic long dsRNA. We report the first evidence both for canonical vsiRNA production during wild-type Nodamura virus infection and direct vsiRNA sequestration by its RNAi suppressor protein B2 in two strains of suckling mice. Moreover, Sindbis virus (SINV) accumulation in vivo was decreased by prior production of SINV-targeting vsiRNAs triggered by infection and increased by heterologous expression of B2 in cis from SINV genome, indicating an antiviral function for the induced RNAi response. These findings reveal that unlike artificial long dsRNA, dsRNA-vRIs made during authentic infection of mature somatic cells are efficiently processed by Dicer into vsiRNAs to direct antiviral RNAi. Interestingly, Dicer processing of dsRNA-vRIs into vsiRNAs was inhibited by LGP2 (laboratory of genetics and physiology 2), which was encoded by an interferon-stimulated gene (ISG) shown recently to inhibit Dicer processing of artificial long dsRNA in cell culture. Our work thus further suggests negative modulation of antiviral RNAi by a known ISG from the interferon response.  相似文献   

15.
Several autonomous arms of innate immunity help cells to combat viral infections. One of these is autophagy, a central cytosolic lysosomal‐dependent catabolic process constitutively competent to destroy infectious viruses as well as essential viral components that links virus detection to antiviral innate immune signals. Ongoing autophagy can be upregulated upon virus detection by pathogen receptors, including membrane bound and cytosolic pattern recognition receptors, and may further facilitate pattern recognition receptor‐dependent signalling. Autophagy or autophagy proteins also contribute to the synthesis of antiviral innate type I interferon cytokines as well as to antiviral interferon γ signalling. Additionally, autophagy may play a crucial role during viral infections in containing an excessive cellular response by regulating the intensity of the inflammatory response. As a consequence, viruses have evolved strategies to counteract antiviral innate immunity through manipulation of autophagy. This review highlights recent findings on the cross‐talk between autophagy and innate immunity during viral infections.  相似文献   

16.
Antiviral signaling through pattern recognition receptors   总被引:10,自引:0,他引:10  
Viral infection is detected by the host innate immune system. Innate immune cells such as dendritic cells and macrophages detect nucleic acids derived from viruses through pattern recognition receptors (PRRs). Viral recognition by PRRs initiates the activation of signaling pathways that lead to production of type I interferon and inflammatory cytokines, which are important for the elimination of viruses. Two types of PRRs that recognize viral nucleic acids, Toll-like receptors (TLR) and RIG-I-like RNA helicases (RLH), have been identified. Of the TLRs, TLR3 recognizes viral double-stranded (ds) RNA, TLR7 and human TLR8 identify viral single-stranded (ss) RNA and TLR9 detects viral DNA. TLRs are located in endosomal compartments, whereas RLH are present in the cytoplasm where they detect viral dsRNA or ssRNA. Here we review the role of TLRs and RLHs in the antiviral innate immune response.  相似文献   

17.
18.
Influenza viruses continue to pose a major public health threat worldwide and options for antiviral therapy are limited by the emergence of drug-resistant virus strains. The antiviral cytokine, interferon (IFN) is an essential mediator of the innate immune response and influenza viruses, like many viruses, have evolved strategies to evade this response, resulting in increased replication and enhanced pathogenicity. A cell-based assay that monitors IFN production was developed and applied in a high-throughput compound screen to identify molecules that restore the IFN response to influenza virus infected cells. We report the identification of compound ASN2, which induces IFN only in the presence of influenza virus infection. ASN2 preferentially inhibits the growth of influenza A viruses, including the 1918 H1N1, 1968 H3N2 and 2009 H1N1 pandemic strains and avian H5N1 virus. In vivo, ASN2 partially protects mice challenged with a lethal dose of influenza A virus. Surprisingly, we found that the antiviral activity of ASN2 is not dependent on IFN production and signaling. Rather, its IFN-inducing property appears to be an indirect effect resulting from ASN2-mediated inhibition of viral polymerase function, and subsequent loss of the expression of the viral IFN antagonist, NS1. Moreover, we identified a single amino acid mutation at position 499 of the influenza virus PB1 protein that confers resistance to ASN2, suggesting that PB1 is the direct target. This two-pronged antiviral mechanism, consisting of direct inhibition of virus replication and simultaneous activation of the host innate immune response, is a unique property not previously described for any single antiviral molecule.  相似文献   

19.
Double-stranded RNA (dsRNA) is a by-product of viral RNA polymerase activity, and its recognition is one mechanism by which the innate immune system is activated. Cellular responses to dsRNA include induction of alpha/beta interferon (IFN) synthesis and activation of the enzyme PKR, which exerts its antiviral effect by phosphorylating the eukaryotic initiation factor eIF-2 alpha, thereby inhibiting translation. We have recently identified the nonstructural protein NSs of Bunyamwera virus (BUNV), the prototype of the family Bunyaviridae, as a virulence factor that blocks the induction of IFN by dsRNA. Here, we investigated the potential of NSs to inhibit PKR. We show that wild-type (wt) BUNV that expresses NSs triggered PKR-dependent phosphorylation of eIF-2 alpha to levels similar to those of a recombinant virus that does not express NSs (BUNdelNSs virus). Furthermore, the sensitivity of viruses in cell culture to IFN was independent of PKR and was not determined by NSs. PKR knockout mice, however, succumbed to infection approximately 1 day earlier than wt mice or mice deficient in expression of RNase L, another dsRNA-activated antiviral enzyme. Our data indicate that (i) bunyaviruses activate PKR, but are only marginally sensitive to its antiviral effect, and (ii) NSs is different from other IFN antagonists, since it inhibits dsRNA-dependent IFN induction but has no effect on the dsRNA-activated PKR and RNase L systems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号