首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In a system consisting of purified proteins inositol-phospholipid-accelerated activation of prekallikrein by alpha-factor XIIa was determined by measuring the appearance of kallikrein amidolytic activity towards the chromogenic substrate, H-D-Pro-Phe-Arg-NH-PhNO2 (PhNO2, 4-nitrophenyl). The activation reaction was ionic-strength dependent. In the absence of high-Mr kininogen optimal activity was recorded at I = 50 mM. Searching for conditions, which could change this optimum towards physiological values, high-Mr kininogen was added. This resulted in an inhibition of the activity, with no change in ionic strength optimum. If, however, Zn2+ were added concomitant with high-Mr kininogen, the inhibition was abolished and optimal activity recorded at physiological ionic strength. The optimal Zn2+ concentration was found to be 0.1 mM. Kinetic analysis of the reaction demonstrated that the kcat/Km was 1.2 x 10(5) M-1 s-1 in the absence and 1.1 x 10(6) M-1 s-1 in the presence of Zn2+. Zn2+ were also required for inositol-phospholipid-accelerated initiation of the contact activation in whole plasma.  相似文献   

2.
Kinetics of activation and autoactivation of human factor XII   总被引:3,自引:0,他引:3  
The kinetics of the enzymic reactions that participate in the contact activation system of human plasma were examined. These reactions are potentiated by dextran sulfate, a negatively charged solute that mimics many of the effects of glass or kaolin on this system. The reactions of reciprocal activation, consisting of activation of factor XII by kallikrein and of prekallikrein by activated factor XII, follow Michaelis-Menten kinetics; values of kcat and Km for each of these reactions were determined in the presence of dextran sulfate and in its absence. In the presence of dextran sulfate, the catalytic efficiency for factor XII activation was increased 11 000-fold, and that for prekallikrein was increased 70-fold. Autoactivation of factor XII in the presence of dextran sulfate also follows Michaelis-Menten kinetics with kcat = 0.033 s-1 and Km = 7.5 microM. This finding supports the concept that autoactivation is an enzymic process, initiated by traces of activated factor XII which are invariably present in factor XII preparations. At prekallikrein and factor XII levels equal to those in plasma, reciprocal activation is approximately 2000-fold more rapid than autoactivation. Thus, reciprocal activation is the predominant mode of factor XII activation in normal plasma.  相似文献   

3.
The effect of zinc ions on the surface-mediated activation of factor XII and prekallikrein was studied, using the contact system reconstituted with the purified proteins from bovine and human plasmas. The sulfatide-mediated activation of factor XII and prekallikrein in the presence of high-molecular-weight (HMW) kininogen was remarkably accelerated by 10(-5) M zinc ions. This accelerating effect was observed only in the presence of HMW kininogen. The kinetic analysis of the accelerating effect of zinc ions demonstrated that zinc ions reduce the Km values and increase the Vmax values on the activation of factor XII by kallikrein and on the activation of prekallikrein by factor XIIa. The value of Vmax/Km increased 26.4-fold in the former reaction and 2.8-fold in the latter reaction, indicating that zinc ions accelerate mainly the activation of factor XII by kallikrein. In the presence of 5 x 10(-4) M zinc ions, typical difference spectra due to a red shift of tryptophan and/or tyrosine residues were observed for HMW kininogen and its derivatives but not low-molecular-weight (LMW) kininogen. Since the concentration of zinc ions required to induce the difference spectra is comparable with that to enhance the activation of factor XII and prekallikrein, it appears that there is some correlation between the conformational change of HMW kininogen and the enhancement of the activation.  相似文献   

4.
The activation of Factor XII and prekallikrein by polysaccharide sulfates and sulfatides in the presence of high-molecular-weight (HMW) kininogen was studied, and compared with the kaolin-mediated activation reaction. Among a variety of artificially-sulfated polysaccharides and native polysaccharide sulfates, amylose sulfate (M.W.= 380,000 and sulfur content, 19.1%) and sulfatide were found to have the most efficient ability to trigger the activation of prekallikrein by Factor XII. The effects of these two kinds of negatively-charged surfaces on the following three activation reactions were compared; the activation of prekallikrein by Factor XII (reaction 1), the activation of Factor XII by kallikrein (reaction 2) and the activation of prekallikrein by Factor XIIa (reaction 3). All three reactions mediated by the selected surfaces were strongly accelerated by HMW kininogen and its derivatives, kinin-free protein and fragment 1.2-linked light chain, like the kaolin-mediated activation. However, this accelerating effect of HMW kininogen on the amylose sulfate- and sulfatide-mediated activations (reaction 1) was diminished after treatment with fluorescein iso-thiocyanate, whereas the effect on the kaolin-mediated activation was not influenced by fluorescein-labeling. In addition, reaction 2 mediated by amylose sulfate and sulfatide was extremely slow even in the presence of HMW kininogen, and the results also differed from those with kaolin. The sulfatide-mediated activation of reaction 1 was not inhibited by fragment 1.2 (His-rich fragment), which is released from HMW kininogen by the action of kallikrein, and is known to be a potent inhibitor of the kaolin-dependent activation. These results indicate that the mechanisms responsible for surface activation triggered by soluble amylose sulfate, sulfatide micelles and kaolin differ from each other as regards the molecular interaction with the contact factors.  相似文献   

5.
Binding of high-Mr kininogen and factor XII/factor XIIa to phospholipids coated on to polystyrene microtiter plates was investigated by ELISA. Both high-Mr kininogen and factor XII/factor XIIa bound specifically to the phospholipid surface. Binding was observed to negatively charged phospholipids only. The binding of high-Mr kininogen was not affected by the presence of zinc ions. At a surface concentration of 20% phosphatidylinositol phosphate in phosphatidylcholine a dissociation constant (kD) of 10 nM for the binding of high-Mr kininogen was calculated. The amount of bound purified alpha-factor XIIa could be increased 4-5-fold in the presence of zinc ions. The lowest zinc ion concentration giving maximal binding was 0.1 mM. The binding of alpha-factor XIIa was inhibited by high-Mr kininogen. Independent of the presence of zinc ions or high-Mr kininogen, a kD of 7.9 nM was calculated for alpha-factor XIIa binding. The binding of prekallikrein was dependent upon the presence and the concentration of high-Mr kininogen. In plasma containing aprotinin, the binding of high-Mr kininogen was apparently inhibited in the presence of zinc ions, which was a prerequisite for the binding of factor XII. This apparently inhibitory effect of zinc ions on the binding of high-Mr kininogen was probably due to the increased binding of factor XII, which displaced high-Mr kininogen.  相似文献   

6.
In this paper we report the effect of sulfatides on the rate constants of factor XII activation by kallikrein and its isolated light chain (the domain of kallikrein that contains the active site of the enzyme). In the absence of sulfatides, kallikrein and the light chain were equally effective in factor XII activation (k1 = 1.57 X 10(3) M-1 s-1 at pH 7.0). The pH optima were the same (pH 7.0) and the reaction was not affected by variation of the ionic strength. Sulfatides strongly increased the rate constants of factor XIIa formation. In the presence of sulfatides kallikrein was, however, much more active than its light chain. At 330 microM sulfatides, pH 7.0 and 100 mM NaCl the rate constants of factor XII activation were 5.34 X 10(6) M-1 s-1 and 4.17 X 10(4) M-1 s-1 for kallikrein and its light chain, respectively. The pH optimum of factor XII activation by kallikrein in the presence of sulfatides was shifted to pH 6.3, and the reaction became highly ionic-strength-dependent. The rate constant increased considerably at decreasing NaCl concentrations. The optimum pH for light-chain-dependent factor XII activation in the presence of sulfatides remained unaltered and the reaction was not affected by the ionic strength. Binding studies revealed that both kallikrein and factor XII bind to the sulfatide surface, whereas no binding of the light chain of kallikrein was detectable. The isolated heavy chain of kallikrein had the same binding properties as kallikrein, which indicates that the heavy-chain domain contains the functional information for kallikrein binding to sulfatides. Since the effects of pH and ionic strength on the rate constants of kallikrein-dependent factor XII activation in the presence of sulfatides correlated with effects on the binding of kallikrein, it is concluded that under these conditions surface-bound factor XII is activated by surface-bound kallikrein. Our data suggest that sulfatides stimulate kallikrein-dependent factor XII activation by two distinct mechanisms: by making factor XII more susceptible to peptide bond cleavage by kallikrein and by promoting the formation of the enzyme-substrate complex through surface binding of kallikrein and factor XII.  相似文献   

7.
Inositolphospholipid-accelerated activation of prekallikrein by alpha-factor XIIa was determined by measuring the appearance of kallikrein amidolytic activity towards the chromogenic substrate, D-prolyl-phenylalanyl-arginyl p-nitroanilide (S-2302). The activation reaction did not exhibit normal Michaelis-Menten kinetics. The Hill coefficient was found to be 1.6 indicating that the activation followed an allosteric reaction mechanism. The temperature dependence of the reaction showed a thermal transition at 30 degrees C, which in addition to the allosteric reaction mechanism is indicative of a conformational change of prekallikrein following binding to the inositolphospholipid. The reaction exhibited pH optimum at pH 7.2 and ionic strength optimum at 50 mM NaCl. At optimal conditions the apparent KA value and the kcat/KA value for factor XIIa on prekallikrein were calculated to be 73 nM and 9.3 x 10(6) s-1 M-1, respectively. Kinetic constants could not be calculated at salt concentrations higher than the optimal concentrations, as Lineweaver-Burk plots were curvilinear in agreement with the Hill coefficient greater than unity. The activation was inhibited competitively by beta 2-glycoprotein I with a Ki value of 77 nM as determined by the Dixon plot.  相似文献   

8.
Amidolytic assays have been developed to determine factor XIIa, factor XIa and plasma kallikrein in mixtures containing variable amounts of each enzyme. The commercially available chromogenic p-nitroanilide substrates Pro-Phe-Arg-NH-Np (S2302 or chromozym PK), Glp-Pro-Arg-NH-Np (S2366), Ile-Glu-(piperidyl)-Gly-Arg-NH-Np (S2337), and Ile-Glu-Gly-Arg-NH-Np (S2222) were tested for their suitability as substrates in these assays. The kinetic parameters for the conversion of S2302, S2222, S2337 and S2366 by beta factor XIIa, factor XIa and plasma kallikrein indicate that each active enzyme exhibits considerable activity towards a number of these substrates. This precludes direct quantification of the individual enzymes when large amounts of other activated contact factors are present. Several serine protease inhibitors have been tested for their ability to inhibit those contact factors selectively that may interfere with the factor tested for. Soybean trypsin inhibitor very efficiently inhibited kallikrein, inhibited factor XIa at moderate concentrations, but did not affect the amidolytic activity of factor XIIa. Therefore, this inhibitor can be used to abolish a kallikrein and factor XIa contribution in a factor XIIa assay. We also report the rate constants of inhibition of contact activation factors by three different chloromethyl ketones. D-Phe-Pro-Arg-CH2Cl was moderately active against contact factors (k = 2.2 X 10(3) M-1 s-1 at pH 8.3) but showed no differences in specifity. D-Phe-Phe-Arg-CH2Cl was a very efficient inhibitor of plasma kallikrein (k = 1.2 X 10(5) M-1 s-1 at pH 8.3) whereas it slowly inhibited factor XIIa (k = 1.4 X 10(3) M-1 s-1) and factor XIa (k = 0.11 X 10(3) M-1 s-1). Also Dns-Glu-Gly-Arg-CH2Cl was more reactive towards kallikrein (k = 1.6 X 10(4) M-1 s-1) than towards factor XIIa (k = 4.6 X 10(2) M-1 s-1) and factor XIa (k = 0.6 X 10(2) M-1 s-1). Since Phe-Phe-Arg-CH2Cl is highly specific for plasma kallikrein it can be used in a factor XIa assay selectively to inhibit kallikrein. Based on the catalytic efficiencies of chromogenic substrate conversion and the inhibition characteristics of serine protease inhibitors and chloromethyl ketones we were able to develop quantitative assays for factor XIIa, factor XIa and kallikrein in mixtures of contact activation factors.  相似文献   

9.
Human high Mr kininogen was purified from normal plasma in 35% yield. The purified high Mr kininogen appeared homogeneous on polyacrylamide gels in the presence of sodium dodecyl sulfate and mercaptoethanol and gave a single protein band with an apparent Mr = 110,000. Using sedimentation equilibrium techniques, the observed Mr was 108,000 +/- 2,000. Human plasma kallikrein cleaves high Mr kininogen to liberate kinin and give a kinin-free, two-chain, disulfide-linked molecule containing a heavy chain of apparent Mr = 65,000 and a light chain of apparent Mr = 44,000. The light chain is histidine-rich and exhibits a high affinity for negatively charged materials. The isolated alkylated light chain quantitatively retains the procoagulant activity of the single-chain parent molecule. 125I-Human high Mr kininogen undergoes cleavage in plasma during contact activation initiated by addition of kaolin. This cleavage, which liberates kinin and gives a two-chain, disulfide-linked molecule, is dependent upon the presence of prekallikrein and Factor XII (Hageman factor) in plasma. Addition of purified plasma kallikrein to normal plasma or to plasmas deficient in prekallikrein or Factor XII in the presence or absence of kaolin results in cleavage of high Mr kininogen and kinin formation.  相似文献   

10.
Previous studies from our laboratories (Sugo et al. (1980) Biochemistry 19, 3215-3220) have shown that bovine high-molecular-weight (HMW) kininogen remarkably accelerates the kaolin-mediated activation of Factor XII in the presence of prekallikrein, and that both fragment 1.2 and the light chain regions located in the COOH terminal half of the kininogen molecule are essential for the activation. In the present study, we demonstrate that the accelerating effect of HMW kininogen is mediated through its adsorption on the kaolin surface through the fragment 1.2 region and its complex formation with prekallikrein through the light chain region. The evidence is as follows: 1. HMW kininogen radio-labeled with 125I was adsorbed on kaolin and the adsorption was inhibited by the prior treatment of kaolin with fragment 1.2, fragment 1.2-light chain, kinin-free protein or HMW kininogen, but not with kinin- and fragment 1.2-free protein, light chain or low molecular-weight (LMW) kininogen. 2. The complex formation of HMW kininogen with prekallikrein in bovine plasma or in the purified system was examined by gel-filtration on a column of Sephacryl S-200 In bovine plasma, prekallikrein was eluted in the same fraction as HMW kininogen, showing an apparent molecular weight of 250,000, whereas purified prekallikrein was eluted in the fraction corresponding to an apparent molecular weight of 100,000. When purified prekallikrein was mixed with purified HMW kininogen in a mol ratio of 1 to 2, all prekallikrein was found to be associated with HMW kininogen. Furthermore, purified prekallikrein mixed with kininogen derivatives, such as kinin- and fragment 1.2-free protein, fragment 1.2-light chain or light chain, was eluted in the higher molecular weight fraction. HMW kininogen did not form a complex with prekallikrein. Using the same technique, it was shown that kinin- and fragment 1.2-free protein forms a complex not only with prekallikrein but also with kallikrein.  相似文献   

11.
Human factor XII was activated by adsorption onto kaolin in the presence of high molecular weight kininogen. The washed kaolin-containing precipitates activate prekallikrein to kallikrein. When antithrombin III was added to the reaction mixture, the conversion of prekallikrein to kallikrein was inhibited, the degree of inhibition depending on the concentration of antithrombin and the time of incubation. Heparin had a slight enhancing effect with low concentrations of antithrombin and short incubation times. However, the inhibition of the generated kallikrein by antithrombin III was markedly enhanced by heparin. Antithrombin III inhibited also the effect of activated factor XII on the partial thromboplastin time, using factor XII-deficient plasma. Of other plasma proteinase inhibitors used (α1-antitrypsin, α2-macroglobulin, Cl-inactivator) only Cl-inactivator inhibited activated factor XII.  相似文献   

12.
The binding of human factor XII and prekallikrein to vesicles of various compositions and the relationship to activation of factor XII were studied. Factor XII, factor XIIa, and the 40-kilodalton binding fragment of factor XII bound tightly to all of the negatively charged lipids investigated, including sulfatide, phosphatidylserine, and phosphatidylethanolamine, but not to the neutral lipid phosphatidylcholine. Binding could be reversed by high salt, and the dissociation constant for binding to sulfatide vesicles was in the nanomolar range at an ionic strength of 0.15 M. Prekallikrein did not bind significantly to either sulfatide or phosphatidylethanolamine vesicles under the conditions used. Stopped-flow studies showed that the association rate for the factor XII-sulfatide interaction was biphasic and very rapid; the faster rate corresponded to about 30% collisional efficiency. The kinetics of activation of factor XII was investigated and was in agreement with previous studies; sulfatide promoted activation but phosphatidylserine, phosphatidylethanolamine, and phosphatidylcholine did not. Autoactivation rates correlated closely with the packing density of factor XII and factor XIIa on the vesicle surface. In contrast, kallikrein activation of factor XII correlated with the amount of sulfatide-bound factor XII and was relatively insensitive to the density of factor XII on the vesicle surface. When the concentration of factor XII was reduced to only several molecules per vesicle, the autoactivation rate dropped very low whereas kallikrein activation held relatively constant. These results indicated that the autoactivation and the kallikrein activation of factor XII were dependent on different properties of the surface component.  相似文献   

13.
The interaction of high-molecular-weight (HMW) kininogen, Factor XII and prekallikrein with sulfatide was studied by fluorescence polarization. Fluorescein-conjugated derivatives of HMW kininogen, Factor XII and prekallikrein were prepared by reacting the purified bovine factors with fluorescein isothiocyanate (FITC). The apparent dissociation constant (Kd) for the binding of FITC-labeled HMW kininogen (F-HMW kininogen) with sulfatide was calculated to be 3.2 (+/- 0.3) X 10(-8) M. This binding was partially inhibited by three kininogen derivatives, fragment 1 X 2, kinin-free protein and fragment 1 X 2-light chain, but not by kinin and fragment 1 X 2-free protein. In the presence of Factor XII, the binding of F-HMW kininogen with sulfatide was strongly inhibited, suggesting that the zymogen and the protein cofactor compete for the same or a closely related binding site on the sulfatide surface. In contrast, the binding of FITC-labeled Factor XII (F-Factor XII) with sulfatide was weakly inhibited by HMW kininogen but not by prekallikrein. The Kd value for binding of F-Factor XII with sulfatide was calculated to be 2.0 (+/- 0.3) X 10(-8) M. F-Prekallikrein did not interact with sulfatide. Moreover, the fluorescence polarization value of F-HMW kininogen decreased in the presence of prekallikrein, leveling off at a one-to-one molar ratio of prekallikrein to F-HMW kininogen. The Kd value for binding of F-HMW kininogen-light chain (F-light chain) with prekallikrein was calculated to be 3.8 (+/- 0.6) X 10(-8) M and the stoichiometry was estimated as 1 to 1.2 on a molar basis from the Scatchard plot.  相似文献   

14.
We studied the characteristics of two monoclonal antibodies (mAbs), F1 and F3, against human coagulation factor XII (Hageman factor). Experiments with trypsin-digested 125I-factor XII revealed that the epitope for mAb F1 is located in the NH2-terminal Mr 40,100 portion of factor XII, whereas that for mAb F3 resides in the COOH-terminal Mr 30,000 portion of this protein. Factor XII in fresh plasma (single-chain factor XII) bound approximately 190 times less to mAb F1 than factor XII in dextran sulfate-activated plasma (cleaved factor XII). However, no difference in accessibility of the epitope for mAb F1 was observed between cleaved and single-chain factor XII when bound to glass. mAb F3 appeared to bind to both single-chain and cleaved factor XII in plasma as well as when bound to glass. Neither mAb F1, nor F3 affected the amidolytic activity of factor XIIa, whereas both mAb F1 and F3 inhibited factor XII-coagulant activity to about 15 and 70%, respectively, at a molar ratio of mAb to factor XII of 20 to 1. mAb F1, as well as F(ab')2 and F(ab') fragments of this antibody induced activation of the contact system in plasma, as reflected by the generation of factor XIIa. C1 inhibitor and kallikrein. C1 inhibitor complexes. Activation was induced neither upon incubation with mAb F3, nor with that of control mAbs. mAb F1-induced contact activation required the presence of factor XII, prekallikrein, and high molecular weight kininogen and, in contrast to activation by negatively charged surfaces, was not inhibited by the presence of Polybrene. Based on these results we propose that a conformational change in factor XII is a key event in the activation process of this molecule. This conformational change can be induced by binding of factor XII to a surface as well as by proteolytic cleavage. As mAb F1 can also induce this conformational change, this antibody may provide a unique tool in studies of the activation of factor XII.  相似文献   

15.
Human plasma kallikrein was isolated from a plasma fraction related to Cohn fraction IV4 by affinity- and Sephadex G-150 chromotography yielding a material with 17.3 TAME-U/A280 unit. The preparation was characterized by immunological and enzymatic methods. Complex formation with alpha2-macroglobulin, C1-inactivator and aprotinin was demonstrated by immunoelectrophoresis. The bradykinin release from high-molecular weight kininogen and its inhibition by antibodies to kallikrein, AT III and AT III-heparin complex were measured using a biological test system (rat uterus). Time dependent inactivation of kallikrein by AT III, and AT III-heparin complex was shown by means of a synthetic kallikrein substrate: Bz-Pro-Phe-Arg-pNan. The same substrate was used to measure the activation of prekallikrein in plasma by kaolin and F XII a. Antibodies raised against kallikrein were shown to inhibit the reaction specifically. A quantitative determination of plasma prekallikrein by electroimmunodiffusion according to Laurell was developed: the plasma concentration in normal individuals was found to be 1.8 - 2.2 TAME-U/ml related to kallikrein activity; this corresponds approximately to 9 - 11 mg antigen/100 ml plasma.  相似文献   

16.
Steady-state kinetic parameters were compared for the action of alpha- and gamma-thrombin on the physiologically important thrombin substrates fibrinogen and factor XIII at 37 degrees C, pH 7.4, and 0.14 M NaCl. gamma-Thrombin, an alpha-thrombin derivative proteolytically cleaved at R-B73 and K-B154, was observed to catalyze the release of fibrinopeptide A (FPA) from fibrinogen with a specificity constant (kcat/Km) of 5 X 10(3) M-1 s-1. This value was approximately 2400-fold lower than the specificity constant for the corresponding alpha-thrombin-catalyzed reaction. The low specificity constant was attributed to an increase in Km and a decrease in kcat for gamma-thrombin-catalyzed release of FPA from fibrinogen. Conversion of alpha-thrombin to gamma-thrombin also resulted in an approximately 800-fold reduction in the specificity constant for thrombin-catalyzed release of fibrinopeptide B (FPB) from fibrin I, as well as a loss in discriminatory power. Whereas alpha-thrombin preferentially released FPA from intact fibrinogen, gamma-thrombin released FPA and FPB from intact fibrinogen at similar rates. In contrast to the large difference in specificity constants observed for alpha- and gamma-thrombin catalysis with fibrin(ogen) as substrate, the specificity constant (2.6 X 10(4) M-1 s-1) observed for gamma-thrombin-catalyzed release of activation peptide from factor XIII was only 5-fold lower than the corresponding value for the alpha-thrombin-catalyzed reaction. Additionally, the promotion of factor XIII activation by fibrin characteristic of the alpha-thrombin-catalyzed reaction did not occur in the gamma-thrombin-catalyzed reaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The kallikrein specific chromogenic peptide substrates S-2302 (KABI) and Chromozym PK (Boehringer) were used in the first analysis of a familial defect in the early stage of clotting. Slight to extensive prolongation of the activated partial thromboplastin time was seen in the affected persons. Using dextransulfate for activation of plasma marked deficiency in kallikrein activity was found in 3 persons. Using factor XIIa (activated Hageman factor) for activation normal prekallikrein levels were found in 2 of them whereas factor XII levels, however, were below normal. The third had a prekallikrein deficiency presumably caused by oral contraceptives. In a fourth member of the family factor XII deficiency was found with normal kallikrein activity. The application of chromogenic peptide substrates for analysing the early stage of clotting has to take into account the special mechanisms of activation.  相似文献   

18.
Activation of human factor V by factor Xa and thrombin   总被引:12,自引:0,他引:12  
D D Monkovic  P B Tracy 《Biochemistry》1990,29(5):1118-1128
The activation of human factor V by factor Xa and thrombin was studied by functional assessment of cofactor activity and sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by either autoradiography of 125I-labeled factor V activation products or Western blot analyses of unlabeled factor V activation products. Cofactor activity was measured by the ability of the factor V/Va peptides to support the activation of prothrombin. The factor Xa catalyzed cleavage of factor V was observed to be time, phospholipid, and calcium ion dependent, yielding a cofactor with activity equal to that of thrombin-activated factor V (factor Va). The cleavage pattern differed markedly from the one observed in the bovine system. The factor Xa activated factor V subunits expressing cofactor activity were isolated and found to consist of peptides of Mr 220,000 and 105,000. Although thrombin cleaved the Mr 220,000 peptide to yield peptides previously shown to be products of thrombin activation, cofactor activity did not increase. N-Terminal sequence analysis confirmed that both factor Xa and thrombin cleave factor V at the same bond to generate the Mr 220,000 peptide. The factor Xa dependent functional assessment of 125I-labeled factor V coupled with densitometric analyses of the cleavage products indicated that the cofactor activity of factor Xa activated factor V closely paralleled the appearance of the Mr 220,000 peptide. This observation facilitated the study of the kinetics of factor V activation by allowing the activation of factor V to be monitored by the appearance of the Mr 220,000 peptide (factor Xa activation) or the Mr 105,000 peptide (thrombin activation). Factor Xa catalyzed activation of factor V obeyed Michaelis-Menten kinetics and was characterized by a Km of 10.4 nM, a kcat of 2.6 min-1, and a catalytic efficiency (kcat/Km) of 4.14 X 10(6) M-1 s-1. The thrombin-catalyzed activation of factor V was characterized by a Km of 71.7 nM, a kcat of 14.0 min-1, and a catalytic efficiency of 3.26 X 10(6) M-1 s-1. This indicates that factor Xa is as efficient an enzyme toward factor V as thrombin.  相似文献   

19.
The concentration of bradykinin in human plasma depends on its relative rates of formation and destruction. Bradykinin is destroyed by two enzymes: a plasma carboxypeptidase (anaphylatoxin inactivator) removes the COOH-terminal arginine to yield an inactive octapeptide, and a dipeptidase (identical to the angiotensin-converting enzyme) removes the COOH-terminal Phe-Arg to yield a fragment of seven amino acids that is further fragmented to an end product of five amino acids. Formation of bradykinin is initiated on binding of Hageman factor (HF) to certain negatively charged surfaces on which it autoactivates by an autodigestion mechanism. Initiation appears to depend on a trace of intrinsic activity present in HF that is at most 1/4000 that of activated HF (HFa); alternatively traces of circulating HFa could subserve the same function. HFa then converts coagulation factor XI to activated factor XI (XIa) and prekallikrein to kallikrein. Kallikrein then digests high-molecular-weight kininogen (HMW-kininogen) to form bradykinin. Prekallikrein and factor XI circulate bound to HMW-kininogen and surface binding of these complexes is mediated via this kininogen. In the absence of HMW-kininogen, activation of prekallikrein and factor XI is much diminished; thus HMW-kininogen has a cofactor function in kinin formation and coagulation. Once a trace of kallikrein is generated, a positive feedback reaction occurs in which kallikrein rapidly activates HF. This is much faster than the HF autoactivation rate; thus most HFa is formed by a kallikrein-dependent mechanism. HMW-kininogen is also therefore a cofactor for HF activation, but its effect on HF activation is indirect because it occurs via kallikrein formation. HFa can be further digested by kallikrein to form an active fragment (HFf), which is not surface bound and acts in the fluid phase. The activity of HFf on factor XI is minimal, but it is a potent prekallikrein activator and can therefore perpetuate fluid phase bradykinin formation until it is inactivated by the C1 inhibitor. In the absence of C1 inhibitor (hereditary angioedema) HFf may also interact with C1 and activate it enzymatically. The resultant augmented bradykinin formation and complement activation may account for the pathogenesis of the swelling characteristic of hereditary angioedema and the serologic changes observed during acute attacks.  相似文献   

20.
Kinetic constants for the hydrolysis by porcine tissue beta-kallikrein B and by bovine trypsin of a number of peptides related to the sequence of kininogen (also one containing a P2 glycine residue instead of phenylalanine) and of a series of corresponding arginyl peptide esters with various apolar P2 residues have been determined under strictly comparative conditions. kcat and kcat/Km values for the hydrolysis of the Arg-Ser bonds of the peptides by trypsin are conspicuously high. kcat for the best of the peptide substrates, Ac-Phe-Arg-Ser-Val-NH2, even reaches kcat for the corresponding methyl ester, indicating rate-limiting deacylation also in the hydrolysis of a peptide bond by this enzyme. kcat/Km for the hydrolysis of the peptide esters with different nonpolar L-amino acids in P2 is remarkably constant (range 1.7), as it is for the pair of the above pentapeptides with P2 glycine or phenylalanine. kcat for the ester substrates varies fivefold, however, being greatest for the P2 glycine compounds. Obviously, an increased potential of a P2 residue for interactions with the enzyme lowers the rate of deacylation. In contrast to results obtained with chymotrypsin and pancreatic elastase, trypsin is well able to tolerate a P3 proline residue. In the hydrolysis of peptide esters, tissue kallikrein is definitely superior to trypsin. Conversely, peptide bonds are hydrolyzed less efficiently by tissue kallikrein and the acylation reaction is rate-limiting. The influence of the length of peptide substrates is similar in both enzymes and indicates an extension of the substrate recognition site from subsite S3 to at least S'3 of tissue kallikrein and the importance of a hydrogen bond between the P3 carbonyl group and Gly-216 of the enzymes. Tissue kallikrein also tolerates a P3 proline residue well. In sharp contrast to the behaviour of trypsin is the very strong influence of the P2 residue in tissue-kallikrein-catalyzed reactions. kcat/Km varies 75-fold in the series of the dipeptide esters with nonpolar L-amino acid residues in P2, a P2 glycine residue furnishing the worst and phenylalanine the best substrate, whereas this exchange in the pentapeptides changes kcat/Km as much as 730-fold. This behaviour, together with the high value of kcat/Km for Ac-Phe-Arg-OMe of 3.75 X 10(7) M-1 s-1, suggests rate-limiting binding (k1) in the hydrolysis of the best ester substrates.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号