首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
植物谷胱甘肽过氧化物酶研究进展   总被引:2,自引:0,他引:2  
苗雨晨  白玲  苗琛  陈珈  宋纯鹏 《植物学报》2005,22(3):350-356
氧化胁迫可诱导植物多种防御酶的产生, 其中包括超氧化物歧化酶(SOD, EC1.15.1.1)、抗坏血酸过氧化物酶(APX, EC1.11.1.11)、过氧化氢酶(CAT, E.C.1.11.1.6 )和谷胱甘肽过氧化物酶(GPXs,EC1.11.1.9)。它们在清除活性氧过程中起着不同的作用。GPXs是动物体内清除氧自由基的主要酶类,但它在植物中的功能报道甚少。最近几年研究表明, 植物体内也存在类似于哺乳动物的GPXs家族, 并对其功能研究已初见端倪。本文综述了有关GPXs的结构以及植物GPXs功能的研究进展。  相似文献   

2.
Mammalian thioredoxin reductases (TrxR) are dimers homologous to glutathione reductase with a selenocysteine (SeCys) residue in the conserved C-terminal sequence -Gly-Cys-SeCys-Gly. We removed the selenocysteine insertion sequence in the rat gene, and we changed the SeCys(498) encoded by TGA to Cys or Ser by mutagenesis. The truncated protein having the C-terminal SeCys-Gly dipeptide deleted, expected in selenium deficiency, was also engineered. All three mutant enzymes were overexpressed in Escherichia coli and purified to homogeneity with 1 mol of FAD per monomeric subunit. Anaerobic titrations with NADPH rapidly generated the A(540 nm) absorbance resulting from the thiolate-flavin charge transfer complex characteristic of mammalian TrxR. However, only the SeCys(498) --> Cys enzyme showed catalytic activity in reduction of thioredoxin, with a 100-fold lower k(cat) and a 10-fold lower K(m) compared with the wild type rat enzyme. The pH optimum of the SeCys(498) --> Cys mutant enzyme was 9 as opposed to 7 for the wild type TrxR, strongly suggesting involvement of the low pK(a) SeCys selenol in the enzyme mechanism. Whereas H(2)O(2) was a substrate for the wild type enzyme, all mutant enzymes lacked hydroperoxidase activity. Thus selenium is required for the catalytic activities of TrxR explaining the essential role of this trace element in cell growth.  相似文献   

3.
植物谷胱甘肽过氧化物酶研究进展   总被引:18,自引:1,他引:18  
氧化胁迫可诱导植物多种防御酶的产生,其中包括超氧化物歧化酶(SOD,EC1.15.L1)、抗坏血酸过氧化物酶(APX,EC1.11.1.11)、过氧化氢酶(CAT,E.C.1.11.1.6)和谷胱甘肽过氧化物酶(GPXs,EC1.11.1.9).它们在清除活性氧过程中起着不同的作用.GPXs是动物体内清除氧自由基的主要酶类,但它在植物中的功能报道甚少.最近几年研究表明,植物体内也存在类似于哺乳动物的GPXs家族,并对其功能研究已初见端倪.本文综述了有关GPXs的结构以及植物GPXs功能的研究进展.  相似文献   

4.
Because the seleno-l-cysteine (SeCys or Sec) insertion into selenoproteins occurs by a specific translational control process, it is quite difficult to express the SeCys-containing polypeptides even by the state-of-the-art genetic engineering techniques. In this paper, we describe a convenient synthetic method for the selective introduction of a SeCys derivative to polypeptides under physiological conditions. One SeCys residue in the seleno-l-cystine (SeCys-Se-Se-SeCys) methyl ester was first substituted with the Boc-protected penicillamine (Pen) methyl ester to form selenenylsulfide (SeCys-Se-S-Pen), an intermediate in the cellular glutathione peroxidase (GPx) catalytic cycle. Subsequently, the SeCys-Pen was coupled with the thiol-specific N-carboxymethylmaleimide through the α-amino group of the SeCys {[2-(N-maleimidyl)-1-oxo-ethyl-SeCys-methyl-Se-yl]-S-Pen methyl ester, MOE-SeCys-Pen}. The use of the MOE-SeCys-Pen allowed the selective introduction of the SeCys moiety to human serum albumin by alkylation of the thiol at its cysteine34, which generated the GPx-like activity responsible for the selenium atom in the MOE-SeCys-Pen. Consequently, this synthetic method will allow generating SeCys-containing artificial polypeptides with a GPx-like activity.  相似文献   

5.
Journal of Plant Growth Regulation - Glutathione peroxidases (GPXs) are key reactive oxygen species (ROS) scavenging enzyme that catalyses the reduction of H2O2 to prevent the cellular machinery...  相似文献   

6.
Kim JR  Lee SM  Cho SH  Kim JH  Kim BH  Kwon J  Choi CY  Kim YD  Lee SR 《FEBS letters》2004,567(2-3):189-196
Stimulation of cells with tumor necrosis factor-alpha (TNF-alpha) results in the increase in generation of H(2)O(2) in mitochondria that leads to apoptosis. The effect of H(2)O(2) produced by TNF-alpha on the redox status of selenocysteine (SeCys) residue essential for mitochondrial thioredoxin reductase (TrxR2) was investigated in HeLa cells. TNF-alpha caused accumulation of oxidized TrxR2 with a thioselenide bond. The conditional induction of SeCys-deficient TrxR2 resulted in the increased production of H(2)O(2) and apoptosis. These results suggest that the SeCys residue of TrxR2 plays a critical role in cell survival by serving as an electron donor for Trx-II and subsequent peroxiredoxin-III, which is a primary line of defense against H(2)O(2) in mitochondria.  相似文献   

7.
Plant glutathione peroxidases   总被引:22,自引:0,他引:22  
Oxidative stress in plants causes the induction of several enzymes, including superoxide dismutase (EC 1.15.1.1), ascorbate peroxidase (EC 1.11.1.11) and glutathione reductase (EC 1.6.4.2). The first two are responsible for converting superoxide to H2O2 and its subsequent reduction to H2O, and the third is involved in recycling of ascorbate. Glutathione peroxidases (GPXs, EC 1.11.1.9) are a family of key enzymes involved in scavenging oxyradicals in animals. Only recently, indications for the existence of this enzyme in plants were reported. Genes with significant sequence homology to one member of the animal GPX family, namely phospholipid hydroperoxide glutathione peroxidase (PHGPX), were isolated from several plants. Cit-SAP, the protein product encoded by the citrus csa gene, which is induced by salt-stress, is so far the only plant PHGPX that has been isolated and characterized. This protein differs from the animal PHGPX in its rate of enzymatic activity and in containing a Cys instead of selenocysteine (Sec) as its presumed catalytic residue. The physiological role of Cit-SAP and its homologs in other plants is not yet known.  相似文献   

8.
Signal transduction during oxidative stress   总被引:55,自引:0,他引:55  
As an unfortunate consequence of aerobic life, active oxygen species (AOS) are formed by partial reduction of molecular oxygen. Plants possess a complex battery of enzymatic and non-enzymatic antioxidants that can protect cells from oxidative damage by scavenging AOS. It is becoming evident that AOS, which are generated during pathogen attack and abiotic stress situations, are recognized by plants as a signal for triggering defence responses. An overview of the literature is presented on the signalling role of AOS in plant defence responses, cell death, and development. Special attention is given to AOS and redox-regulated gene expression and the role of kinases and phosphatases in redox signal transduction.  相似文献   

9.
Selenoproteins that contain the rare amino acid selenocysteine in their primary structure have been identified in diverse organisms such as viruses, bacteria, archea, and mammals, but so far not in yeast or plants. Among the most thoroughly investigated families of selenoenzymes are the animal glutathione peroxidases (GPXs). In the last few years, genes encoding GPX-like homologues from Chlamydomonas and higher plants have been isolated, but, unlike the animal ones, all of them have cysteine (rather than selenocysteine) residues in their catalytic site. In all organisms investigated that contain selenoproteins, selenocysteine is encoded by a UGA opal codon, which is usually a stop codon. We report here that, in Chlamydomonas reinhardtii, the cDNA-cloned sequence of a GPX homologue contains an internal TGA codon in frame to the ATG. Specific mRNA expression, protein production, and enzyme activity are selenium-dependent. Sequence analysis of the peptides produced by proteolytic digestion, performed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), confirmed the presence of a selenocysteine residue at the predicted site and suggest its location in the mitochondria. Thus, our data present the first direct proof that a UGA opal codon is decoded in the plant kingdom to incorporate selenocysteine.  相似文献   

10.
TbTDPX (Trypanosoma brucei tryparedoxin-dependent peroxidase) is a genetically validated drug target in the fight against African sleeping sickness. Despite its similarity to members of the GPX (glutathione peroxidase) family, TbTDPX2 is functional as a monomer, lacks a selenocysteine residue and relies instead on peroxidatic and resolving cysteine residues for catalysis and uses tryparedoxin rather than glutathione as electron donor. Kinetic studies indicate a saturable Ping Pong mechanism, unlike selenium-dependent GPXs, which display infinite K(m) and V(max) values. The structure of the reduced enzyme at 2.1 A (0.21 nm) resolution reveals that the catalytic thiol groups are widely separated [19 A (0.19 nm)] and thus unable to form a disulphide bond without a large conformational change in the secondary-structure architecture, as reported for certain plant GPXs. A model of the oxidized enzyme structure is presented and the implications for small-molecule inhibition are discussed.  相似文献   

11.
Adequate responses to environmental changes are crucial for plant growth and survival. However, the molecular and biochemical mechanisms involved are poorly understood and the signaling networks remain elusive. The accumulation of active oxygen species (AOS) is a central theme during plant responses to both biotic and abiotic stresses. In both situations, AOS can play two divergent roles: either exacerbating damage or activating multiple defense responses, thereby acting as signal molecules. Such a dual function was first described in pathogenesis, but also recently has been demonstrated during several abiotic stress responses. To allow for these different roles, cellular levels of AOS must be tightly controlled. This control can be attained through a diverse battery of oxidant scavengers. Perturbation of this scavenging capacity can lead to dramatic imbalances of AOS concentrations, leading to a modified redox status. Here, we summarize mainly the work done on plants that are deficient in catalase activity. These plants not only revealed the importance of catalase in coping with environmental stress but also provided us with a powerful tool to investigate the (multiple) roles of H2O2 in an intact plant system.  相似文献   

12.
Mechanical wounding and jasmonic acid (JA) treatment have been shown to be important factors in controlling laticifer differentiation in Hevea brasiliensis (rubber tree). With the long-term aim of potentially modifying the endogenous levels of JA in H. brasiliensis by gene transfer, we describe in this paper the molecular cloning of a H. brasiliensis allene oxide synthase (AOS) cDNA and biochemical characterisation of the recombinant AOS (His(6)-HbAOS) enzyme. The AOS cDNA encodes a protein with the expected motifs present in CYP74A sub-group of the cytochrome P450 super-family of enzymes that metabolise 13-hydroperoxylinolenic acid (13-HPOT), the intermediate involved in JA synthesis. The recombinant H. brasiliensis AOS enzyme was estimated to have a high binding affinity for 13-HPOT with a K(m) value of 4.02+/-0.64 microM. Consistent with previous studies, mammalian cycloxygenase (COX) and lipoxygenase (LOX) inhibitors were shown to significantly reduce His(6)-HbAOS enzyme activity. Although JA had no effect on His(6)-HbAOS, salicylic acid (SA) was shown to significantly inhibit the recombinant AOS enzyme activity in a dose dependent manner. Moreover, it was demonstrated that SA, and various analogues of SA, acted as competitive inhibitors of His(6)-HbAOS when 13-HPOT was used as substrate. We speculate that this effect of salicylates on AOS activity may be important in cross-talking between the SA and JA signalling pathways in plants during biotic/abiotic stress.  相似文献   

13.
We have previously characterized and cloned a secreted sperm-bound selenium-independent glutathione peroxidase protein (GPX5), the expression of which was found to be restricted to the mouse caput epididymidis. Because of the lack of selenium (Se) in the active site of this enzyme, unlike the other animal GPXs characterized to date, it was suspected that GPX5 does not function in the epididymis as a true glutathione peroxidase in vivo. In the present report, following dietary selenium deprivation which is known to reduce antioxidant defenses and favor oxidative stress in relation with depressed Se-dependent GPX activities, we show that the epididymis is still efficiently protected against increasing peroxidative conditions. In this model, the caput epididymides of selenium-deficient animals showed a limited production of lipid peroxides, a total GPX activity which was not dramatically affected by the shortage in selenium availability and an increase in GPX5 mRNA and protein levels. Altogether, these data strongly suggest that the selenium-independent GPX5 could function as a back-up system for Se-dependent GPXs.  相似文献   

14.
Glutathione peroxidases (GPXs) are a group of enzymes that regulate the levels of reactive oxygen species in cells and tissues, and protect them against oxidative damage. Contrary to most of their counterparts in animal cells, the higher plant GPX homologues identified so far possess cysteine instead of selenocysteine in their active site. Interestingly, the plant GPXs are not dependent on glutathione but rather on thioredoxin as their in vitro electron donor. We have determined the crystal structures of the reduced and oxidized form of Populus trichocarpaxdeltoides GPX5 (PtGPX5), using a selenomethionine derivative. PtGPX5 exhibits an overall structure similar to that of the known animal GPXs. PtGPX5 crystallized in the assumed physiological dimeric form, displaying a pseudo ten-stranded beta sheet core. Comparison of both redox structures indicates that a drastic conformational change is necessary to bring the two distant cysteine residues together to form an intramolecular disulfide bond. In addition, a computer model of a complex of PtGPX5 and its in vitro recycling partner thioredoxin h1 is proposed on the basis of the crystal packing of the oxidized form enzyme. A possible role of PtGPX5 as a heavy-metal sink is also discussed.  相似文献   

15.
To characterize heme oxygenase with a selenocysteine (SeCys) as the proximal iron ligand, we have expressed truncated human heme oxygenase-1 (hHO-1) His25Cys, in which Cys-25 is the only cysteine, in the Escherichia coli cysteine auxotroph strain BL21(DE3)cys. Selenocysteine incorporation into the protein was demonstrated by both intact protein mass measurement and mass spectrometric identification of the selenocysteine-containing tryptic peptide. One selenocysteine was incorporated into approximately 95% of the expressed protein. Formation of an adduct with Ellman’s reagent (DTNB) indicated that the selenocysteine in the expressed protein was in the reduced state. The heme-His25SeCys hHO-1 complex could be prepared by either (a) supplementing the overexpression medium with heme, or (b) reconstituting the purified apoprotein with heme. Under reducing conditions in the presence of imidazole, a covalent bond is formed by addition of the selenocysteine residue to one of the heme vinyl groups. No covalent bond is formed when the heme is replaced by mesoheme, in which the vinyls are replaced by ethyl groups. These results, together with our earlier demonstration that external selenolate ligands can transfer an electron to the iron [Y. Jiang, P.R. Ortiz de Montellano, Inorg. Chem. 47 (2008) 3480-3482 ], indicate that a selenyl radical is formed in the hHO-1 His25SeCys mutant that adds to a heme vinyl group.  相似文献   

16.
The objective of this study was to determine the concentration of total selenium (Se) and proportions of total Se comprised as selenomethionine (SeMet) and selenocysteine (SeCys) in the tissues of female turkeys offered diets containing graded additions of selenized-enriched yeast (SY), or sodium selenite (SS). Oxidative stability and tissue glutathione peroxidase (GSH-Px) activity of breast and thigh muscle were assessed at 0 and 10 days post mortem. A total of 216 female turkey poults were enrolled in the study. A total of 24 birds were euthanized at the start of the study and samples of blood, breast, thigh, heart, liver, kidney and gizzard were collected for determination of total Se. Remaining birds were blocked by live weight and randomly allocated to one of four dietary treatments (n = 48 birds/treatment) that differed either in Se source (SY v. SS) or dose (Con [0.2 mg/kg total Se], SY-L and SS-L [0.3 mg/kg total Se as SY and SS, respectively] and SY-H [0.45 mg total Se/kg]). Following 42 and 84 days of treatment 24 birds per treatment were euthanized and samples of blood, breast, thigh, heart, liver, kidney and gizzard were retained for determination of total Se and the proportion of total Se comprised as SeMet or SeCys. Whole blood GSH-Px activity was determined at each time point. Tissue GSH-Px activity and thiobarbituric acid reactive substances were determined in breast and thigh tissue at the end of the study. There were responses (P < 0.001) in all tissues to the graded addition of dietary Se, although rates of accumulation were highest in birds offered SY. There were notable differences between tissue types and treatments in the distribution of SeMet and SeCys, and the activity of tissue and erythrocyte GSH-Px (P < 0.05). SeCys was the predominant form of Se in visceral tissue and SeMet the predominant form in breast tissue. SeCys contents were greater in thigh when compared with breast tissue. Muscle tissue GSH-Px activities mirrored SeCys contents. Despite treatment differences in tissue GSH-Px activity, there were no effects of treatment on any meat quality parameter.  相似文献   

17.
The induction of a chloroplast-localized 13-lipoxygenase (13-LOX) in passion fruit leaves in response to methyl jasmonate (MeJa) was previously reported. Since allene oxide synthase (AOS) is a key cytochrome P450 enzyme in the oxylipin pathway leading to AOS-derived jasmonates, the results above led in turn to an investigation of AOS in our model plant. Spectrophotometric assays showed that 24 h exposure of MeJa caused a high increase in 13-hydroperoxy linolenic acid (13-HPOT) metabolizing activity in leaf tissue. Western analysis using polyclonal antibodies against tomato AOS strongly indicate that, at least a part of the 13-HPOT metabolizing capacity can be attributed to AOS activity. We cloned the cDNA from a novel AOS encoding gene from passion fruit, named PfAOS. The 1,512 bp open reading frame of the AOS–cDNA codes a putative protein of 504 amino acid residues containing a chloroplast target sequence. Database comparisons of the deduced amino acid sequence showed highest similarity with dicot AOSs. Immunocytochemistry analysis showed the compartmentalization of AOS in chloroplasts of MeJa treated leaves, corroborating the predicted subcellular localization. Northern analysis showed that AOS gene expression is induced in leaf tissue in response to mechanical wounding and exposure to MeJa. In addition, such treatments caused an increase in papain inhibitor(s) in leaf tissue. Taken together, these results indicate that PfAOS may play an important role in systemic wound response against chewing insect attack. Furthermore, it can be useful as a tool for understanding the regulation of jasmonates biosynthesis in passion fruit.  相似文献   

18.
We have sequenced the first fish (zebrafish,Brachydanio rerio) lipoprotein lipase (LPL) cDNA clone. Similarities were found in mammalian LPL cDNA, but the codon spanning the last two exons (which is thus split by the last intron) is AGA (Arg) as opposed to TGA in mammals. Exon 10 is thus partially translated. These results were confirmed with rainbow trout (Oncorhynchus mykiss). We also investigated whether mammal TGA coded for selenocystein (SeCys), the 21st amino acid, but found that this was not the case: TGA does not encode SeCys but is a stop codon. It thus appears that the sense codon AGA (fish) has been transformed into a stop codon TGA (human) during the course of evolution. It remains to be determined if the “loss” of the C-terminal end of mammalian LPL protein has conferred an advantage in terms of LPL activity or, on the contrary, a disadvantage (e.g., susceptibility to diabetes or atherosclerosis). Correspondence to: J. Etienne  相似文献   

19.
Since differences have been found in animals, the efficacies of selenomethionine (SeMet), selenite, and selenocystine (SeCys) for glutathione peroxidase (GPx) induction and cellular incorporation were compared and some effects of interacting nutrients on SeMet utilization were examined in tissue cultures. In three cell lines, Chang liver cells, mouse myoblasts and human fibroblasts, selenite was more effective than SeMet for GPx induction. However, radiotracer studies showed that SeMet was more rapidly incorporated into all cells than either selenite or SeCys. Chromatography of acid hydrolysates of Chang liver cells grown with 75Se-labeled SeMet indicated that approximately 90% of incorporated 75Se remained as SeMet, and less than 10% was as SeCys, the form of Se in GPx. Selenite supplementation slightly reduced both the incorporation of 75SeMet and the proportion of cellular 75Se recoverable as SeCys in Chang liver cells. Supplementation with L-methionine, however, significantly reduced 75SeMet incorporation, but significantly increased the proportion of cellular 75Se recovered as SeCys. L-cystine supplementation had no effect on either the cellular incorporation of 75SeMet or the proportion of cellular 75Se recovered as SeCys. These studies of SeMet utilization and effects of interacting nutrients are reflective of observations on SeMet metabolism in whole animals and humans.  相似文献   

20.
Glutathione peroxidase (GPx) of mammalian cells and Escherichia coli formate dehydrogenase both contain a selenocysteine (SeCys) in their amino acid (aa) sequence. In these two enzymes, this aa is encoded by a UGA codon, which is usually a stop codon for protein synthesis. We constructed plasmids to test the synthesis of GPx in E. coli. These constructions permitted high-level production of GPx mutants, where the SeCys codon was replaced by cysteine (UGC, UGU) or serine (UCA) codons, but synthesis of selenoprotein could not be detected: our data suggest that signals used for the recognition of the UGA codon as a SeCys codon are not conserved between E. coli and mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号