首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two chemotaxis-defective mutants of Pseudomonas aeruginosa, designated PC3 and PC4, were selected by the swarm plate method after N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis. These mutants were not complemented by the P. aeruginosa cheY and cheZ genes, which had been previously cloned (Masduki et al., J. Bacteriol., 177, 948-952, 1995). DNA sequences downstream of the cheY and cheZ genes were able to complement PC3 but not PC4. Sequence analysis of a 9.7-kb region directly downstream of the cheZ gene found three chemotaxis genes, cheA, cheB, and cheW, and seven unknown open reading frames (ORFs). The predicted translation products of the cheA, cheB, and cheW genes showed 33, 36, and 31% amino acid identity with Escherichia coli CheA, CheB, and CheW, respectively. Two of the unknown ORFs, ORF1 and ORF2, encoded putative polypeptides that resembled Bacillus subtilis MotA (40% amino acid identity) and MotB (34% amino acid identity) proteins, respectively. Although P. aeruginosa was found to have proteins similar to the enteric chemotaxis proteins CheA, CheB, CheW, CheY, and CheZ, the gene encoding a CheR homologue did not reside in the chemotaxis gene cluster. The P. aeruginosa cheR gene could be cloned by phenotypic complementation of the PC4 mutant. This gene was located at least 1,800 kb away from the chemotaxis gene cluster and encoded a putative polypeptide that had 32% amino acid identity with E. coli CheR.  相似文献   

2.
A large chemotaxis operon was identified in Rhodobacter sphaeroides WS8-N using a probe based on the 3' terminal portion of the Rhizobium meliloti cheA gene. Two genes homologous to the enteric cheY were identified in an operon also containing cheA , cheW , and cheR homologues. The deduced protein sequences of che gene products were aligned with those from Escherichia coli and shown to be highly conserved. A mutant with an interrupted copy of cheA showed normal patterns of swimming, unlike the equivalent mutants in E. coli which are smooth swimming. Tethered cheA mutant cells showed normal responses to changes in organic acids, but increased, inverted responses to sugars. The unusual behaviour of the cheA mutant and the identification of two homologues of cheY suggests that R. sphaeroides has at least two pathways controlling motor activity. To identify functional similarity between the newly identified R. sphaeroides Che pathway and the methyl-accepting chemotaxis protein (MCP)-dependent pathway in enteric bacteria, the R. sphaeroides cheW gene was expressed in a cheW mutant strain of E. coli and found to complement, causing a partial return to a swarming phenotype. In addition, expression of the R. sphaeroides gene in wild-type E. coli resulted in the same increased tumbling and reduced swarming as seen when the native gene is over-expressed in E. coli . The identification of che homologues in R. sphaeroides and complementation by cheW suggests the presence of MCPs in an organism previously considered to use only MCP-independent sensing. The MCP-dependent pathway, appears conserved. In R. sphaeroides this pathway may mediate responses to sugars, while responses to organic acids may in involve a second system, possibly using the second CheY protein identified in this study.  相似文献   

3.
4.
It has previously been reported that the alpha-proteobacterium Azospirillum brasilense undergoes methylation-independent chemotaxis; however, a recent study revealed cheB and cheR genes in this organism. We have constructed cheB, cheR, and cheBR mutants of A. brasilense and determined that the CheB and CheR proteins under study significantly influence chemotaxis and aerotaxis but are not essential for these behaviors to occur. First, we found that although cells lacking CheB, CheR, or both were no longer capable of responding to the addition of most chemoattractants in a temporal gradient assay, they did show a chemotactic response (albeit reduced) in a spatial gradient assay. Second, in comparison to the wild type, cheB and cheR mutants under steady-state conditions exhibited an altered swimming bias, whereas the cheBR mutant and the che operon mutant did not. Third, cheB and cheR mutants were null for aerotaxis, whereas the cheBR mutant showed reduced aerotaxis. In contrast to the swimming bias for the model organism Escherichia coli, the swimming bias in A. brasilense cells was dependent on the carbon source present and cells released methanol upon addition of some attractants and upon removal of other attractants. In comparison to the wild type, the cheB, cheR, and cheBR mutants showed various altered patterns of methanol release upon exposure to attractants. This study reveals a significant difference between the chemotaxis adaptation system of A. brasilense and that of the model organism E. coli and suggests that multiple chemotaxis systems are present and contribute to chemotaxis and aerotaxis in A. brasilense.  相似文献   

5.
The Che1 chemotaxis-like pathway of Azospirillum brasilense contributes to chemotaxis and aerotaxis, and it has also been found to contribute to regulating changes in cell surface adhesive properties that affect the propensity of cells to clump and to flocculate. The exact contribution of Che1 to the control of chemotaxis and flocculation in A. brasilense remains poorly understood. Here, we show that Che1 affects reversible cell-to-cell clumping, a cellular behavior in which motile cells transiently interact by adhering to one another at their nonflagellated poles before swimming apart. Clumping precedes and is required for flocculation, and both processes appear to be independently regulated. The phenotypes of a ΔaerC receptor mutant and of mutant strains lacking cheA1, cheY1, cheB1, or cheR1 (alone or in combination) or with che1 deleted show that Che1 directly mediates changes in the flagellar swimming velocity and that this behavior directly modulates the transient nature of clumping. Our results also suggest that an additional receptor(s) and signaling pathway(s) are implicated in mediating other Che1-independent changes in clumping identified in the present study. Transient clumping precedes the transition to stable clump formation, which involves the production of specific extracellular polysaccharides (EPS); however, production of these clumping-specific EPS is not directly controlled by Che1 activity. Che1-dependent clumping may antagonize motility and prevent chemotaxis, thereby maintaining cells in a metabolically favorable niche.  相似文献   

6.
The nucleotide sequence of a region downstream of the Listeria monocytogenes flagellin gene, flaA, revealed two putative chemotaxis genes, cheY and cheA. These genes have been shown to be transcribed as a bicistronic unit. In this study Tn916 delta E mutagenesis was used to generate two mutants, PF10 and PF16, which contain transposon inserts in the promoter region of this operon. These mutants were motile in liquid, but had reduced flagellin expression and were unable to burrow or swarm on soft agar plates. Complementation of the single transposon-copy mutant PF16 with cloned cheY and cheA in trans partially restored microaerotaxis and swarming on soft agar. The complemented strain did not exhibit any increase in flagellin production. Both PF10 and PF16 appear deficient in their ability to attach to the mouse fibroblast cell line 3T3.  相似文献   

7.
Myxococcus xanthus co-ordinates cell movement during its complex life cycle using multiple chemotaxis-like signal transduction pathways. These pathways regulate both type IV pilus-mediated social (S) motility and adventurous (A) motility. During a search for new chemoreceptors, we identified the che4 operon, which encodes homologues to a MCP (methyl-accepting chemotaxis protein), two CheWs, a hybrid CheA-CheY, a response regulator and a CheR. Deletion of the che4 operon did not cause swarming or developmental defects in either the wild-type (A(+)S(+)) strain or in a strain sustaining only A motility (A(+)S(-)). However, in a strain displaying only S motility (A(-)S(+)), deletion of the che4 operon or the gene encoding the response regulator, cheY4, caused enhanced vegetative swarming and prevented aggregation and sporulation. In contrast, deletion of mcp4 caused reduced vegetative swarming and enhanced development compared with the parent strain. Single-cell analysis of the motility of the A(-)S(+) parent strain revealed a previously unknown inverse correlation between velocity and reversal frequency. Thus, cells that moved at higher velocities showed a reduced reversal frequency. This co-ordination of reversal frequency and velocity was lost in the mcp4 and cheY4 mutants. The structural components of the S motility apparatus were unaffected in the che4 mutants, suggesting that the Che4 system affects reversal frequency of cells by modulating the function of the type IV pilus.  相似文献   

8.
Homologues of the E. coli chemotaxis (Che) signal transduction pathway are present in nearly all motile bacteria. Although E. coli contains only one Che cascade, many other bacteria are known to possess multiple sets of che genes. The role of multiple che-like gene clusters could potentially code for parallel Che-like signal transduction pathways that have distinctly different input and output functions. In this study, we describe a che-like gene cluster in Rhodospirillum centenum that controls a developmental cycle. In-frame deletion mutants of homologues of CheW (DeltacheW(3a)and DeltacheW(3b)), CheR (DeltacheR(3)), CheA (DeltacheA(3)) and a methyl-accepting chemotaxis protein (Deltamcp(3)) are defective in starvation-induced formation of heat and desiccation resistant cyst cells. In contrast, mutants of homologues of CheY (DeltacheY(3)), CheB (DeltacheB(3)), and a second input kinase designated as CheS (DeltacheS(3)) result in cells that are derepressed in the formation of cysts. A model of signal transduction is presented in which there are three distinct Che-like signal transduction cascades; one that is involved in chemotaxis, one that is involved in flagella biosynthesis and the third that is involved in cyst development.  相似文献   

9.
To compete in complex microbial communities, bacteria must sense environmental changes and adjust cellular functions for optimal growth. Chemotaxis-like signal transduction pathways are implicated in the regulation of multiple behaviors in response to changes in the environment, including motility patterns, exopolysaccharide production, and cell-to-cell interactions. In Azospirillum brasilense, cell surface properties, including exopolysaccharide production, are thought to play a direct role in promoting flocculation. Recently, the Che1 chemotaxis-like pathway from A. brasilense was shown to modulate flocculation, suggesting an associated modulation of cell surface properties. Using atomic force microscopy, distinct changes in the surface morphology of flocculating A. brasilense Che1 mutant strains were detected. Whereas the wild-type strain produces a smooth mucosal extracellular matrix after 24 h, the flocculating Che1 mutant strains produce distinctive extracellular fibril structures. Further analyses using flocculation inhibition, lectin-binding assays, and comparison of lipopolysaccharides profiles suggest that the extracellular matrix differs between the cheA1 and the cheY1 mutants, despite an apparent similarity in the macroscopic floc structures. Collectively, these data indicate that disruption of the Che1 pathway is correlated with distinctive changes in the extracellular matrix, which likely result from changes in surface polysaccharides structure and/or composition.  相似文献   

10.
Pseudomonas aeruginosa, a gamma-proteobacterium, is motile by means of a single polar flagellum and is chemotactic to a variety of organic compounds and phosphate. P. aeruginosa has multiple homologues of Escherichia coli chemotaxis genes that are organized into five gene clusters. Previously, it was demonstrated that genes in cluster I and cluster V are essential for chemotaxis. A third cluster (cluster II) contains a complete set of che genes, as well as two genes, mcpA and mcpB, encoding methyl-accepting chemotaxis proteins. Mutations were constructed in several of the cluster II che genes and in the mcp genes to examine their possible contributions to P. aeruginosa chemotaxis. A cheB2 mutant was partially impaired in chemotaxis in soft-agar swarm plate assays. Providing cheB2 in trans complemented this defect. Further, overexpression of CheB2 restored chemotaxis to a completely nonchemotactic, cluster I, cheB-deficient strain to near wild-type levels. An mcpA mutant was defective in chemotaxis in media that were low in magnesium. The defect could be relieved by the addition of magnesium to the swarm plate medium. An mcpB mutant was defective in chemotaxis when assayed in dilute rich soft-agar swarm medium or in minimal-medium swarm plates containing any 1 of 60 chemoattractants. The mutant phenotype could be complemented by the addition of mcpB in trans. Overexpression of either McpA or McpB in P. aeruginosa or Escherichia coli resulted in impairment of chemotaxis, and these cells had smooth-swimming phenotypes when observed under the microscope. Expression of P. aeruginosa cheA2, cheB2, or cheW2 in E. coli K-12 completely disrupted wild-type chemotaxis, while expression of cheY2 had no effect. These results indicate that che cluster II genes are expressed in P. aeruginosa and are required for an optimal chemotactic response.  相似文献   

11.
Rhodobacter sphaeroides has multiple homologues of most of the Escherichia coli chemotaxis genes, organized in three major operons and other, unlinked, loci. These include cheA(1) and cheR(1) (che Op(1)) and cheA(2), cheR(2), and cheB(1) (che Op(2)). In-frame deletions of these cheR and cheB homologues were constructed and the chemosensory behaviour of the resultant mutants examined on swarm plates and in tethered cell assays. Under the conditions tested, CheR(2) and CheB(1) were essential for normal chemotaxis, whereas CheR(1) was not. cheR(2) and cheB(1), but not cheR(1), were also able to complement the equivalent E. coli mutants. However, none of the proteins were required for the correct polar localization of the chemoreceptor McpG in R. sphaeroides. In E. coli, CheR binds to the NWETF motif on the high-abundance receptors, allowing methylation of both high- and low-abundance receptors. This motif is not contained on any R. sphaeroides chemoreceptors thus far identified, although 2 of the 13 putative chemoreceptors, McpA and TlpT, do have similar sequences. This suggests that CheR(2) either interacts with the NWETF motif of E. coli methyl-accepting chemotaxis proteins (MCPs), even though its native motif may be slightly different, or with another conserved region of the MCPs. Methanol release measurements show that R. sphaeroides has an adaptation system that is different from that of Bacillus subtilis and E. coli, with methanol release measurable on the addition of attractant but not on its removal. Intriguingly, CheA(2), but not CheA(1), is able to phosphorylate CheB(1), suggesting that signaling through CheA(1) cannot initiate feedback receptor adaptation via CheB(1)-P.  相似文献   

12.
Agrobacterium tumefaciens has a chemtaxis operon, which includes orf1, orf2, cheY1, cheA, cheR, cheB, cheY2, orf9, and orf10. In-frame deletions of cheY1 and cheY2 were constructed and the chemosensory behavior of the mutants was examined on swarm plates and in a chemotaxis assay toward acetosyringone. The cheY2 mutant (C1/delY2) showed impaired chemotactic capabilities in both swarming and chemotaxis assays. The effect of lacking CheY1 on chemotaxis is less severe than that of CheY2, under the conditions studied.  相似文献   

13.
Phosphorylation in halobacterial signal transduction.   总被引:11,自引:2,他引:9       下载免费PDF全文
Regulated phosphorylation of proteins has been shown to be a hallmark of signal transduction mechanisms in both Eubacteria and Eukarya. Here we demonstrate that phosphorylation and dephosphorylation are also the underlying mechanism of chemo- and phototactic signal transduction in Archaea, the third branch of the living world. Cloning and sequencing of the region upstream of the cheA gene, known to be required for chemo- and phototaxis in Halobacterium salinarium, has identified cheY and cheB analogs which appear to form part of an operon which also includes cheA and the following open reading frame of 585 nucleotides. The CheY and CheB proteins have 31.3 and 37.5% sequence identity compared with the known signal transduction proteins CheY and CheB from Escherichia coli, respectively. The biochemical activities of both CheA and CheY were investigated following their expression in E.coli, isolation and renaturation. Wild-type CheA could be phosphorylated in a time-dependent manner in the presence of [gamma-32P]ATP and Mg2+, whereas the mutant CheA(H44Q) remained unlabeled. Phosphorylated CheA was dephosphorylated rapidly by the addition of wild-type CheY. The mutant CheY(D53A) had no effect on phosphorylated CheA. The mechanism of chemo- and phototactic signal transduction in the Archaeon H.salinarium, therefore, is similar to the two-component signaling system known from chemotaxis in the eubacterium E.coli.  相似文献   

14.
The genome sequence of Campylobacter jejuni NCTC 11168 reveals the presence of orthologues of the chemotaxis genes cheA, cheW, cheV, cheY, cheR and cheB, ten chemoreceptor genes and two aerotaxis genes. The presence of cheV and a response regulator domain in CheA, combined with the absence of a cheZ gene and the lack of a response regulator domain in CheB, reveals significant differences in the C. jejuni chemotaxis system compared with that found in other bacteria.  相似文献   

15.
16.
Sensory adaptation by the chemotaxis system of Escherichia coli requires adjustments of the extent of methyl esterification of the chemotaxis receptor proteins. One mechanism utilized by E. coli to make such adjustments is to control the activity of CheB, the enzyme responsible for removing receptor methyl ester groups. Previous work has established the existence of a multicomponent signal transduction pathway that enables the chemotaxis receptor proteins to control the methylesterase activity in response to chemotactic stimuli. We isolated and characterized CheB mutants that do not respond normally to this control mechanism. In intact cells these CheB variants could not be activated in response to negative chemotaxis stimuli. Further characterization indicated that these CheB variants could not be phosphorylated by the chemotaxis protein kinase CheA. Disruption of the mechanism responsible for regulating methylesterase activity was also observed in cells carrying chromosomal deletions of either cheA or cheW as well as in cells expressing mutant versions of CheA that lacked kinase activity. These results provide further support for recent proposals that activation of the methylesterase activity of CheB involves phosphorylation of CheB by CheA. Furthermore, our findings suggest that CheW plays an essential role in enabling the chemotaxis receptor proteins to control the methylesterase activity, possibly by controlling the CheA-CheB phosphotransfer reaction.  相似文献   

17.
Chemosensory pathways are a major signal transduction mechanism in bacteria. CheR methyltransferases catalyze the methylation of the cytosolic signaling domain of chemoreceptors and are among the core proteins of chemosensory cascades. These enzymes have primarily been studied Escherichia coli and Salmonella typhimurium, which possess a single CheR involved in chemotaxis. Many other bacteria possess multiple cheR genes. Because the sequences of chemoreceptor signaling domains are highly conserved, it remains to be established with what degree of specificity CheR paralogues exert their activity. We report here a comparative analysis of the three CheR paralogues of Pseudomonas putida. Isothermal titration calorimetry studies show that these paralogues bind the product of the methylation reaction, S-adenosylhomocysteine, with much higher affinity (KD of 0.14–2.2 μm) than the substrate S-adenosylmethionine (KD of 22–43 μm), which indicates product feedback inhibition. Product binding was particularly tight for CheR2. Analytical ultracentrifugation experiments demonstrate that CheR2 is monomeric in the absence and presence of S-adenosylmethionine or S-adenosylhomocysteine. Methylation assays show that CheR2, but not the other paralogues, methylates the McpS and McpT chemotaxis receptors. The mutant in CheR2 was deficient in chemotaxis, whereas mutation of CheR1 and CheR3 had either no or little effect on chemotaxis. In contrast, biofilm formation of the CheR1 mutant was largely impaired but not affected in the other mutants. We conclude that CheR2 forms part of a chemotaxis pathway, and CheR1 forms part of a chemosensory route that controls biofilm formation. Data suggest that CheR methyltransferases act with high specificity on their cognate chemoreceptors.  相似文献   

18.
Two chemotaxis-defective mutants of Pseudomonas aeruginosa, designated PC1 and PC2, were selected by the swarm plate method after N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis. These mutants were fully motile but incapable of swarming, suggesting that they had a defect in the intracellular signalling pathway. Computer-assisted capillary assays confirmed that they failed to show behavioral responses to chemical stimuli, including peptone, methyl thiocyanate, and phosphate. Two chemotaxis genes were cloned by phenotypic complementation of PC1 and PC2. From nucleotide sequence analysis, one gene was found to encode a putative polypeptide that was homologous to the enteric CheZ protein, while the other gene was cheY, which had been previously reported (M. N. Starnbach and S. Lory, Mol. Microbiol. 6:459-469, 1992). Deletion and complementation analysis showed that PC1 was a cheY mutant, whereas PC2 had a double mutation in the cheY and cheZ genes. A chromosomal cheZ mutant, constructed by inserting a kanamycin resistance gene cassette into the wild-type gene, changed its swimming direction much more frequently than did wild-type strain PAO1. In contrast, cheY mutants were found to rarely reverse their swimming directions.  相似文献   

19.
In contrast to the situation in enteric bacteria, chemotaxis in Rhodobacter sphaeroides requires transport and partial metabolism of chemoattractants. A chemotaxis operon has been identified containing homologues of the enteric cheA , cheW , cheR genes and two homologues of the cheY gene. However, mutations in these genes have only minor effects on chemotaxis. In enteric species, CheW transmits sensory information from the chemoreceptors to the histidine protein kinase, CheA. Expression of R. sphaeroides cheW in Escherichia coli showed concentration-dependent inhibition of wild-type behaviour, increasing counter-clockwise rotation and thus smooth swimming — a phenotype also seen when E. coli cheW is overexpressed in E. coli . In contrast, overexpression of R. sphaeroides cheW in wild-type R. sphaeroides inhibited motility completely, the equivalent of inducing tumbly motility in E. coli . Expression of R. sphaeroides cheW in an E. coli Δ cheW chemotaxis mutant complemented this mutation, confirming that CheW is involved in chemosensory signal transduction. However, unlike E. coli Δ cheW mutants, in-frame deletion of R. sphaeroides cheW did not affect either swimming behaviour or chemotaxis to weak organic acids, although the responses to sugars were enhanced. Therefore, although CheW may act as a signal-transduction protein in R. sphaeroides , it may have an unusual role in controlling the rotation of the flagellar motor. Furthermore, the ability of a Δ cheW mutant to swim normally and show wild-type responses to weak acids supports the existence of additional chemosensory signal-transduction pathways.  相似文献   

20.
During bacterial chemotaxis in Escherichia coli, adaptation is accomplished by reversible methylation of the transmembrane signal transducers. Methyl groups are added by the CheR protein in a slow response to attractants and removed by the CheB protein in response to repellents. The methylesterase activity of the CheB protein is modulated by a factor that is controlled in a global fashion throughout the cell. By controlling the level of expression of the cheR, cheB, and transducer genes with exogenous promoters on multicopy plasmids, we demonstrate that the modulating factor exists in stoichiometric concentrations relative to CheB protein and that the generation or efficacy of this factor requires the cheA and/or cheW gene products, suggesting that phosphorylation of the methylesterase by CheA may be involved in its global activation. We show that in the absence of any modulation of the CheB activity, the CheR methyltransferase activity is modulated in a local fashion at the transducers, most likely as a result of a conformational change in the transducer protein brought about by the binding of ligand, and does not require CheA or CheW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号