首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of wood ash on the growth of Norway spruce seedlings and grasses, nitrogen and phosphorus leaching, and soil fauna were investigated at two levels of carbon availability in a greenhouse experiment simulating harvested boreal forest. While sucrose-C amendment reduced grass biomass regardless of wood ash by 88%, the shoot and root biomass of spruce seedlings increased by 38% and 370%, respectively. Despite the large variation in above-ground biomass, C addition did not alter the concentration of water extractable ammonium nitrogen in humus, but it counteracted the ash-induced increase in soil phosphate concentration. C addition reduced the proportion of bacterial-feeding nematodes in the nematode community. Wood ash reduced enchytraeid size, but their biomass was not affected. Carbon treatment was crucial for enchytraeids probably because amended pots were moister than controls. Small compensatory grass growth following harvest implied that soil fauna made little nitrogen available to plants in one growing season. The results support the hypothesis that C availability may be an important determinant of nutrient retention, and has the potential to control plant competition in intensively harvested forests.  相似文献   

2.
Saplings of one clone of Norway spruce, Picea abies (L.) Karst, were planted in 120 l pots in 1991 and exposed to three levels of ozone, two levels of phosphorus and two levels of water supply in 42 open-top chambers (OTCs), during 1992–1996. The effects of pots and OTCs were also tested. Nutrient concentrations of the needles were not affected by ozone, while the low phosphorus supply (LP) and drought stress (D) treatments had significant effects on several mineral nutrients, e.g. phosphorus, calcium, magnesium, manganese, sulphur and boron. Ozone reduced the chlorophyll concentration in the 2- and 3-year-old needles in 1994 and 1995. The highest ozone concentration reduced the stem volumes (− 8%), as well as the stem lengths (− 5%), of the saplings in 1993 and 1994, after two and three years of exposure. After the fourth growing season this ozone-induced reduction in stem volume disappeared which might be caused by pot limitation. LP supply and D both caused large decreases in the stem volume and length. The needles from LP treatment had as high P concentration as 1.2–1.5 mg g−1, implying a need for increasing the critical value for phosphorus. The OTC enclosure stimulated the stem volume growth significantly compared to saplings growing in ambient plots. This was suggested to be attributed to the slightly higher temperature in the OTCs. The overall result is that ozone in southern Sweden is likely to have negative effects on Norway spruce trees, although much less than other environmental factors, e.g. water and phosphorus.  相似文献   

3.
Studying intra-annual wood formation dynamics provides valuable information on how tree growth and forests are affected by environmental changes and climatic extreme events. This study has the aim to evaluate and to quantify synergetic potentials emerging from a combination of current state of the art techniques used to monitor intra-annual wood formation processes. Norway spruce trees were studied in detail during the growing season 2009 with weekly sampling of microcores, high resolution point-dendrometers and wood anatomical analysis. The combination of the applied techniques allowed us to convert the spatial scales of radial tracheid diameter profiles to seasonal time scales and to synchronize fluctuations in intra-annual cell diameter profiles. This spatiotemporal information was used to validate the recently introduced software MICA (Multiple interval-based curve alignment). In comparison to the conventional approach of averaging profiles of tree ring variables, the MICA aligned profiles exhibit a significantly higher synchronicity of the averaged data points. We also demonstrate two new features in the MICA application that enable to extrapolate spatiotemporal information between intra-annual profiles for the construction of robust mean (consensus) profiles that are representative for the population dynamics. By using a set of complementary techniques in an integrated approach, this study highlights a new methodological framework that can contribute to a better understanding of the environmental control of wood formation during the growing season.  相似文献   

4.
Abstract 1. We monitored three different‐sized wood ant (Formica aquilonia Yarrow) mounds over a 3‐year period in Finnish boreal forests dominated by Norway spruce (Picea abies Karst.), to assess the seasonal temperature dependency of ant activity. Additionally, we also monitored Norway spruce trees around the mounds for descending honeydew foragers. 2. The amount of collected honeydew and prey and its composition, as well as the carbon (C), nitrogen (N), and phosphorus (P) in honeydew and invertebrate prey was also investigated. 3. The number of warm days (average temperature above 20 °C) and the amount of precipitation differed among the years. Ant activity at the mounds (but not on the trees) was highly correlated with air temperature throughout the ant‐active season (May–September), but ant activity in spring and autumn was lower than in summer at similar temperatures. During all 3 years, honeydew played a major role in wood ant nutrition (78–92% of dry mass). Invertebrate prey was mainly Diptera (on average 26.2%), Coleoptera (12.5%), Aphidina (9.3%), and Arachnoida (8.5%). 4. The total amounts of C, N, and P input brought into the ant mounds in the form of food (both honeydew and prey) on the stand level were 12.6–39.0, 1.6–4.6 and 0.1–0.4 kg ha?1 year?1, respectively, which is equivalent to 2–6%, 12–33% and 27–58% of the fluxes in annual needle litterfall in typical boreal Norway spruce forests. Thus, wood ants can play a significant role in short term and local N and P cycling of boreal forest ecosystems.  相似文献   

5.
6.
Foliar elements were analysed in Scots pine, Sitka spruce and Norway spruce over a 6 year period before and during continuous exposure to SO2 and O3 in an open-air fumigation experiment. Sulphur dioxide treatment elevated foliar sulphur concentration in all species, and there were increases in foliar nitrogen in the two spruce species but not in pine. The concentrations of cations were frequently increased by SO2 treatment, but there was no correlation between the sulphur concentration of needles and their total cation charge. SO2-related elevations of foliar magnesium were correlated with the concentration of this element in soil solution, but the mechanism by which other cations were enhanced remains unclear. The only consistent effects on nutrient ratios were for SO2 treatments to increase sulphur/cation ratios.  相似文献   

7.
Adequate boron (B) nutrition may decrease concentrations of phenolic compounds and enhance structural integrity and lignification in plants, compared with suboptimal B. This could affect decomposition in areas where B deficiencies are common. The mass loss and changes in element concentrations in Norway spruce needle litter were studied with combinations of litter from high-B and low-B trees, incubated for 29 months, in either B fertilised or control plots without B addition. The litter originated from the same Norway spruce field experiments. Additionally, the field experiments included long-term N and P treatments. Initially, lowest lignin concentrations were found in Norway spruce litter from the treatment P and particularly in the combination B?+?P, and highest in the B?+?N fertilised plots. The mass loss of Norway spruce litter was not affected by the treatments. However, Blitter increased Cu accumulation. The litter from the B?+?P fertilised plots accumulated considerably more Al, Ca, S and Zn than the other treatments, whereas B together with N reduced the remaining amounts of these elements. Reduced nutrient release from litter may have far-reaching consequences on nutrient cycles in forests.  相似文献   

8.
Violins produced by Antonio Stradivari during the late 17th and early 18th centuries are reputed to have superior tonal qualities. Dendrochronological studies show that Stradivari used Norway spruce that had grown mostly during the Maunder Minimum, a period of reduced solar activity when relatively low temperatures caused trees to lay down wood with narrow annual rings, resulting in a high modulus of elasticity and low density. The main objective was to determine whether wood can be processed using selected decay fungi so that it becomes acoustically similar to the wood of trees that have grown in a cold climate (i.e. reduced density and unchanged modulus of elasticity). This was investigated by incubating resonance wood specimens of Norway spruce (Picea abies) and sycamore (Acer pseudoplatanus) with fungal species that can reduce wood density, but lack the ability to degrade the compound middle lamellae, at least in the earlier stages of decay. Microscopic assessment of the incubated specimens and measurement of five physical properties (density, modulus of elasticity, speed of sound, radiation ratio, and the damping factor) using resonance frequency revealed that in the wood of both species there was a reduction in density, accompanied by relatively little change in the speed of sound. Thus, radiation ratio was increased from 'poor' to 'good', on a par with 'superior' resonance wood grown in a cold climate.  相似文献   

9.
Sulphate uptake and its distribution within plants depend on the activity of different sulphate transporters (SULTR). In long‐living deciduous plants such as trees, seasonal changes of spatial patterns add another layer of complexity to the question of how the interplay of different transporters adjusts S distribution within the plant to environmental changes. Poplar is an excellent model to address this question because its S metabolism is already well characterized. In the present study, the importance of SULTRs for seasonal sulphate storage and mobilization was examined in the wood of poplar (Populus tremula × P. alba) by analysing their gene expression in relation to sulphate contents in wood and xylem sap. According to these results, possible functions of the respective SULTRs for seasonal sulphate storage and mobilization in the wood are suggested. Together, the present results complement the previously published model for seasonal sulphate circulation between leaves and bark and provide information for future mechanistic modelling of whole tree sulphate fluxes.  相似文献   

10.
Summary The relationship between proteins and the macroelements potassium, magnesium, calcium, sulphur and phosphorus was studied in homogenates of needles of different ages from Scots pine (Pinus sylvestris L.) and Norway spruce [Picea abies (L.) Karst.]. Complete extractions by acid digestion, protein extractions by a buffer-detergent and non-protein extractions by a buffer alone showed that most of the potassium and magnesium of the needles was soluble independent of the proteins. Only a minor part (50–60 ppm, dry weight) of the magnesium could be referred to the chlorophyll content of the needles. Both potassium and magnesium appeared independent of the protein gel filtration. This was also valid for the minor fraction of the total calcium content, which was extractable in a buffer. Heterogeneous calcium deposits are also suggested by extraction using a chelator (EGTA). Part of the buffer-soluble sulphur and phosphorus compounds occurred independently of solubilized proteins, and had complex distribution patterns after gel filtration, even outside the high molecular separation range. It is suggested that further analyses along the present lines, compared with conventional analyses on total extracts, may extend the usefulness of mineral nutrient analyses in plants.  相似文献   

11.
Summary Pool sizes of ATP and ADP were analysed in freeze-stopped, lyophilised homogenates of needles from Norway spruce [Picea abies (L.) Karst.]. Control experiments in which possible changes in adenylate pools during sample acquisition were investigated did not reveal significant differences between needles taken from branches in situ or within a 30-min period after cutting off a branch. In addition, pool sizes of ADP and ATP were not affected by changes in light intensity (between 60 and 1500 E*-m-2*s-1), which inevitably occur when samples have to be taken from the upper region of older trees. Levels of ATP and ADP showed considerable seasonal changes (May through October) with the highest ratios of ATP/ADP in developing needles. In general, there was a tendency towards increased ratios of ATP/ADP with increasing needle age. This observation was corroborated by analyses of needles from spruce trees of different age and growing under different conditions. Needles from declining trees or from trees specifically fumigated with low concentrations of ozone and sulphur dioxide had significantly increased ratios of ATP/ADP compared to controls. The results are discussed with respect to physiological responses connected with natural senescence and induced ageing.  相似文献   

12.
The activity of cellulase, peroxidase, phosphatase and dehydrogenase enzymes, together with the content of protocatechuic and vanillic acids, in samples of Norway spruce wood inoculated with 17 different isolates of Phlebiopsis gigantea was measured. The same isolates were used to compare decay activity in samples of Norway spruce wood after incubation for 3 and 6 months. Significant differences in enzyme activity and phenol production were found between aerial mycelium overgrowing the wood sample and the underlying wood. These differences indicated that the nature of the fungal mycelium appears to change depending on whether it is in contact with wood. After 6 months, highly extensive decomposition of the wood was shown by two British isolates. The results confirm a large difference in P. gigantea inoculum among isolates in natural conditions and reinforce the need for constant evaluation of the most active isolates to use in preparations for biocontrol: a problem for both users and registration bodies.  相似文献   

13.
Growth in perennial plants possesses an annual cycle of active growth and dormancy that is controlled by environmental factors, mainly photoperiod and temperature. In conifers and other nonangiosperm species, the molecular mechanisms behind these responses are currently unknown. In Norway spruce (Picea abies L. Karst.) seedlings, growth cessation and bud set are induced by short days and plants from southern latitudes require at least 7 to 10 h of darkness, whereas plants from northern latitudes need only 2 to 3 h of darkness. Bud burst, on the other hand, is almost exclusively controlled by temperature. To test the possible role of Norway spruce FLOWERING LOCUS T (FT)-like genes in growth rhythm, we have studied expression patterns of four Norway spruce FT family genes in two populations with a divergent bud set response under various photoperiodic conditions. Our data show a significant and tight correlation between growth rhythm (both bud set and bud burst), and expression pattern of one of the four Norway spruce phosphatidylethanolamine-binding protein gene family members (PaFT4) over a variety of experimental conditions. This study strongly suggests that one Norway spruce homolog to the FT gene, which controls flowering in angiosperms, is also a key integrator of photoperiodic and thermal signals in the control of growth rhythms in gymnosperms. The data also indicate that the divergent adaptive bud set responses of northern and southern Norway spruce populations, both to photoperiod and light quality, are mediated through PaFT4. These results provide a major advance in our understanding of the molecular control of a major adaptive trait in conifers and a tool for further molecular studies of adaptive variation in plants.  相似文献   

14.
The aim of this study was to investigate differences in the mechanical and fungicidal properties of three different wood species (English oak (Quercus sp.), common beech (Fagus sylvatica) and Norway spruce (Picea abies)) that had been in indoor use for several decades, compared to control specimens of freshly cut timber. The collected material was cut into smaller samples prior to further analysis. Extractive content, mechanical, fungicidal and sorption properties were determined according to standard procedures. The obtained results showed that the mechanical properties of oak wood do not deteriorate over the investigated time frame. On the other hand, the resistance of oak wood against fungi decreases over time. The reason for this is yet to be confirmed; it may be due to degradation of secondary metabolites. Similar results have been reported for spruce wood. There were no statistically significant differences in the mechanical properties of old and new spruce wood. In contrast to oak wood, there were also no significant differences in fungicidal properties, bearing in mind that spruce wood has lower durability than oak wood. Aging of beech wood resulted in a considerable decrease in the tested mechanical properties but showed no significant differences in fungicidal properties. Old beech wood specimens were moderately deteriorated by insects and fungi, which was the reason for the loss of bending and compressive strength. Our results confirm that most of the relevant properties do not deteriorate with time and that wood can be reused for a variety of other applications even after decades in service.  相似文献   

15.
Bark necrosis and resin flows in Norway spruce have increased in southern Sweden over the last few decades. Frost damage late in spring has been suggested as a possible cause, but other factors besides the climate may have contributed to the damage. The nutrient status influences the hardening processes and plants with poor nutritional conditions have an increased sensitivity to frost. In this study the sensitivity to frost of bark and the hardiness status of needles of Norway spruce were compared with the nutrient status at two sites with different soil fertility. The trees were 30-40 years old. The hardiness status of the bark and needles was negatively affected by low concentrations of P and Mg.  相似文献   

16.
Summary In a forest decline area (Fichtelgebirge, N.E. Bavaria, FRG), annual time courses of chloroplast pigments in both healthy and chlorotic Norway spruce were studied. The seasonal time courses of green and apparently healthy trees did not generally differ from those reported in the literature for spruce trees of other regions. Chlorophyll content increased from May to October, remained relatively constant or declined slightly during the fall and early winter, and finally decreased markedly from March to early May when pigment is at its minimum before bud break. The annual maximal chlorophyll content increased with needle age from the current year's needles to 4-yearold needles. While carotene content reached its highest concentration in August, the xanthophylls did not peak until February or March. Pigment dynamics of chlorotic trees with lower concentrations, corresponded to those of undamaged trees. Chlorophyll deficits resulted from less pigment formation as well as pigment loss during the growing period. Even when the content of total chlorophyll was low, the ratio of chlorophyll a/chlorophyll b remained almost unchanged. In conjunction with the chlorophyll reductions, a decrease in the chlorophyll/carotenoid ratio and an increase in the xanthophyll/carotene ratio occurred. The periods of needle-chlorophyll reduction did not correlate with those periods of highest concentrations of atmospheric sulphur dioxide, the main air pollutant at the stand. However, chlorophyll formation ceased in the older needle age classes of chlorotic trees when the new flush was sprouting, indicating that nutritional deficiencies affect needle yellowing more than possible direct needle damage by air pollutants.  相似文献   

17.
Norway spruce (Picea abies L. Karst) produces an oleoresin characterized by a diverse array of terpenoids, monoterpenoids, sesquiterpenoids, and diterpene resin acids that can protect conifers against potential herbivores and pathogens. Oleoresin accumulates constitutively in resin ducts in the cortex and phloem (bark) of Norway spruce stems. De novo formation of traumatic resin ducts (TDs) is observed in the developing secondary xylem (wood) after insect attack, fungal elicitation, and mechanical wounding. Here, we characterize the methyl jasmonate-induced formation of TDs in Norway spruce by microscopy, chemical analyses of resin composition, and assays of terpenoid biosynthetic enzymes. The response involves tissue-specific differentiation of TDs, terpenoid accumulation, and induction of enzyme activities of both prenyltransferases and terpene synthases in the developing xylem, a tissue that constitutively lacks axial resin ducts in spruce. The induction of a complex defense response in Norway spruce by methyl jasmonate application provides new avenues to evaluate the role of resin defenses for protection of conifers against destructive pests such as white pine weevils (Pissodes strobi), bark beetles (Coleoptera, Scolytidae), and insect-associated tree pathogens.  相似文献   

18.
19.
Summary We investigated abscisic acid (ABA) metabolism among Norway and white spruce somatic embryo cultures which exhibited differences in maturation response when placed on racemic abscisic acid [(±)-ABA]. Differences in metabolic rate among the spruce genotypes could affect the ABA pool available for the maturation process, and might therefore be responsible for the differences in maturation response. The production of cotyledonary (stage 3) somatic embryos in cultures (genotypes) of Norway spruce (PA86:26A and PA88:25B) and of white spruce (WS1F cryoD and WS46) was compared. In each species pair one of the two genotypes failed to show stage 3 embryo development (respectively, PA88:25B and WS46). The investigation of ABA metabolism of each species pair showed that no substantial differences in ABA consumption or in the production of metabolites occurred. In each case ABA was metabolized to phaseic acid and dihydrophaseic acid over the 42-day culture period, metabolites were recoverable from the agar-solidified medium, and the sum of residual ABA and metabolites were equivalent to the ABA initially supplied. The results indicate that the process of ABA metabolism occurs essentially independently of somatic embryo maturation. NRCC no. 37345.  相似文献   

20.
The aim of the present study was to determine how long-term nutrient optimisation of Norway spruce stands affects the chemical composition of stem wood. Material for the study was collected from Flakaliden (Sweden) where Norway spruce [Picea abies (L.) Karst.] stands have been grown either without fertilisation or under nutrient optimisation treatment, by supplying a complete nutrient mix in the irrigation water every 2nd day during the growing season. The experiment was established in 1987 and in the autumn of 1998, 12 trees were harvested both in control (no fertilisation) and irrigated-fertilised (IL) stands. The increased growth rate caused by the IL treatment affected the chemical composition of the stem wood. The most pronounced effect was a 7% increase in lignin concentration caused by the IL treatment. Increases in concentrations of acid-soluble lignin (1.1-fold), extractives (1.2-fold), soluble sugars (1.3-fold), sterols (1.3-fold) and dehydroabietic acid (1.6-fold) as well as a decrease in the proportional quantity of terpinolene were also found. These results demonstrate that nutrient optimisation affected the chemical composition of Norway spruce wood, which may influence the suitability of such wood for specific end-use purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号