首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Role of mitochondria in ethanol tolerance of Saccharomyces cerevisiae   总被引:7,自引:0,他引:7  
The presence of active mitochondria and oxidative metabolism is shown to be essential to maintain low inhibition levels by ethanol of the growth rate (), fermentation rate (v) or respiration rate () of Saccharomyces cerevisiae wild type strain S288C. Cells which have respiratory metabolism show K i (ethanol inhibition constant) values for , v and , higher (K i>1 M) than those of petite mutants or grande strains grown in anaerobiosis (K i=0.7 M). In addition, the relationship between or v and ethanol concentration is linear in cells with respiratory metabolism and exponential in cells lacking respiration. When functional mitochondria are transferred to petite mutants, the resulting strain shows K i values similar to those of the grande strain and the inhibition of and v by increasing ethanol concentrations becomes linear.  相似文献   

2.
The activities and kinetics of the enzymes G6PDH (glucose-6-phosphate dehydrogenase) and 6PGDH (6-phosphogluconate dehydrogenase) from the mesophilic cyanobacterium Synechococcus 6307 and the thermophilic cyanobacterium Synechococcus 6716 are studied in relation to temperature. In Synechococcus 6307 the apparent K m's are for G6PDH: 80M (substrate) and 20M (NADP+); for 6PGDH: 90M (substrate) and 25M (NADP+). In Synechococcus 6716 the apparent K m's are for G6PDH: 550M (substrate) and 30M (NADP+); for 6PGDH: 40M (substrate) and 10M (NADP+). None of the K m's is influenced by the growth temperature and only the K m's of G6PDH for G6P are influenced by the assay temperature in both organisms. The idea that, in general, thermophilic enzymes possess a lower affinity for their substrates and co-enzymes than mesophilic enzymes is challenged.Although ATP, ribulose-1,5-bisphosphate, NADPH and pH can all influence the activities of G6PDH and 6PGDH to a certain extent (without any difference between the mesophilic and the thermophilic strain), they cannot be responsible for the total deactivation of the enzyme activities observed in the light, thus blocking the pentose phosphate pathway.Abbreviations G6PDH glucose-6-phosphate, dehydrogenase - 6PGDH 6-phosphogluconate dehydrogenase - G6P glucose-6-phosphate - 6PG 6-phosphogluconate - RUDP ribulose-1,5-bisphosphate - Tricine N-Tris (hydroxymethyl)-methylglycine  相似文献   

3.
In Fuji, the production of ethylene was increased with the addition of AgNO3 and inhibited with the addition of 10 M aminoethoxyvinylglycine (AVG). The addition of 80 M AgNO3 to transformed explants of Fuji cultured on selection medium resulted in increased ethylene production (20 l l–1) at 3 weeks. Under examining the effect of AgNO3 in Fuji, the 40 M AgNO3 showed with higher 33.8% and 6.5% in the efficiency of regeneration and transformation. However, ethylene production in Gala explants treated with 10M AgNO3 (3 l l–1) decreased after 2 weeks compared with the control (5 l l–1). Although the regeneration efficiency of Gala with 10 M AgNO3 was higher (41.1%) than the control (20.1%), there was no significant difference in the transformation efficiency at the same concentration. Shoot regeneration of Fuji and Gala was completely inhibited with 10 M AVG. These results suggest that the addition of AgNO3 affects the efficiency of Agrobacterium-mediated gene transfer in Fuji.Eun Soo Seong, Ill Min Chung- These two Authors Contributed equally to this work  相似文献   

4.
Acetate uptake by strains of Synechococcus and Aphanocapsa in short experiments required light, and was strongly inhibited by m-dichlorocarbonyl cyanide phenylhydrazone and dichlorophenyl dimethyl urea. Acetate carbon was distributed in amino acids and in the acyl portion of lipids in the same way as during growth experiments when CO2 was available, but the reduced incorporation in the absence of CO2 was primarily into the lipid fraction. An apparent K m for uptake by Synechococcus and for Aphanocapsa 6308 of 20 and 180 M at pH 7.4 was obtained; corresponding V max values were 6 and 11 nmol x min-1 x mg protein-1. Uptake with Synechococcus was affected by pH, with affinity decreased and maximal rate increase with rising pH. Acetate uptake was not affected by propionate or butyrate when both were added at the same time, but a light and concentration dependent inhibition developed if suspensions were preincubated with propionate. Acetate carbon moved rapidly into acid insoluble material, but after 10–15 s 75% or more of the recovered intracellular counts were in acetyl CoA. Counts in this compound were reduced by preincubation with propionate.Kinetic measurements of acetyl CoA synthetase in fractionated cell extracts gave values for K m of about 50 M for acetate, 5 mM for propionate, 100 M for CoA and 0.38 mM for ATP. The internal pool of free CoA was measured to be about 20 M, and was reduced by preincubation with propionate. This suggests that the activity of CoA-mediated reactions may be regulated by the availability of this cofactor.Abbreviations Used CCCP m-Dichlorocarbonyl cyanide phenyl hydrazone - DCMU dichlorophenyl dimethyl urea - TCA trichloroacetic acid - Tris trishydroxymethyl amino methane - HEPES N-2-hydroxyethylpiperazine-N-2-ethane-sulfonic acid  相似文献   

5.
Summary Isolated and homogenised Deiters' neurons from the lateral vestibular nucleus of rabbit in a Krebs-Ringer solution containing no added Mg++, 1.3 moles/ ml and 5 moles/ml Mg++, broke down ATP at the maximal rate of 0.29+-0.20, 2.40+–0.20, and 5.95+–0.63 moles/cell/hr. In 1.3 mM Mg++ solution the single cell homogenates took up phosphate at the mean rate of 2.6+–0.2 moles/cell/hr. If the rabbits were injected 1 hour before with 20 mg/kg body weight of 2-amino-1-propene-1,1,3, tricarbonitrile (triap), the breakdown of ATP in these latter media was 0.82+–0.44, 2,5+–0.60, and 6.7+– 1.1 moles/cell/hr, respectively, and the quantity of inorganic liberated did not decrease.  相似文献   

6.
One way to study low-abundance mammalian mitochondrial carriers is by ectopically expressing them as bacterial inclusion bodies. Problems encountered with this approach include protein refolding, homogeneity, and stability. In this study, we investigated protein refolding and homogeneity properties of inclusion body human uncoupling protein 2 (UCP2). N-methylanthraniloyl-tagged ATP (Mant-ATP) experiments indicated two independent inclusion body UCP2 binding sites with dissociation constants (K d) of 0.3–0.5 and 23–92 M. Dimethylanthranilate, the fluorescent tag without nucleotide, bound with a K d of greater than 100 M, suggesting that the low affinity site reflected binding of the tag. By direct titration, UCP2 bound [8-14C] ATP and [8-14C] ADP with K ds of 4–5 and 16–18 M, respectively. Mg2+ (2 mM) reduced the apparent ATP affinity to 53 M, an effect entirely explained by chelation of ATP; with Mg2+, K d using calculated free ATP was 3 M. A combination of gel filtration, Cu2+-phenanthroline cross-linking, and ultracentrifugation indicated that 75–80% of UCP2 was in a monodisperse, 197 kDa form while the remainder was aggregated. We conclude that (a) Mant-tagged nucleotides are useful fluorescent probes with isolated UCP2 when used with dimethylanthranilate controls; (b) UCP2 binds Mg2+-free nucleotides: the K d for ATP is about 3–5 M and for Mant-ATP it is about 10 times lower; and (c) in C12E9 detergent, the monodisperse protein may be in dimeric form.  相似文献   

7.
Endogenous and xenobiotic sulphur-containing convulsant and non-convulsant compounds containing structural moieties of, or bearing a structural resemblance to, GABA and homocysteine were tested in binding studies for their potency in displacing the GABA-mimetic [3H]muscimol from specific, high-affinity sites (K d=3.6 nM;B max=3.94 pmol/mg protein) on freeze-thawed, Triton-treated calf-brain synaptic membranes. The xenobiotic convulsants, 4-mercaptobutyric acid (MBA), 3-mercaptopropionic acid (3-MPA) and 2-mercaptopropionic acid (2-MPA) were found to be two-site competitive inhibitors exhibiting apparent inhibition affinity constants (K i app ) of 5000 M, 3750 M, and 4800 M, respectively; while homocysteic acid (K i app =4800 M) was shown to be a one-site partial competitive inhibitor. Intermediary metabolites of methionine: S-adenosyl-l-homocysteine,l-cysteine, the convulsantl-homocysteine, and its non-convulsant disulphide oxidation product, homocystine, were found to be one-site partial competitive inhibitors exhibitingK i app values of 5750 M, 8350 M, 5000 M, and 510 M, respectively. The endogenous anticonvulsant neuroeffector, taurine, and the tripeptide, reduced glutathione (GSH) were shown to be, respectively, one-site (K i=20 M) and two-site (K i app =4300 M) competitive inhibitors of [3H]muscimol binding. These findings are discussed with regard to a previously proposed mechanism for the convulsant action of homocysteine.  相似文献   

8.
Callus was initiated from immature leaf and stem segments of rose (Rosa hybrida cv. Landora) and subcultured every four weeks on a basal medium of half-strength Murashige & Skoog (1962) salts plus 30 g l-1 sucrose (1/2 MS) and supplemented with 2.2 M BA, 5.4 M NAA and 2.2–9.0 M 2,4-D. Embryogenic callus and subsequently somatic embryos were obtained from 8-week-old callus culture on 1/2 MS+2.2 M BA+0.05 M NAA+0.3 M GA3+200–800 mg l-1 L-proline. Long-term cultures were established and maintained for up to 16 months by repeated subculture of embryogenic callus on L-proline deficient medium. About 12% of cotyledonary stage embryos taken from cultures cold-stored at 8±1°C for 4 days germinated on 1/2 MS+2.2 M BA+0.3 M GA3+24.7 M adenine sulphate.Abbreviations BA benzyladenine - NAA -naphthaleneacetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - GA3 gibberellic acid  相似文献   

9.
Summary Ammonium (NH 4 + ) transport was investigated in Nostoc muscorum ISU (wild type) and spontaneous mutants resistant to cyanophage N-1 (Nm/N-1), streptomycin (Nm/Sm) and methylamine (Nm/MA). N2-fixing wild-type cells transported NH 4 + via two transport systems: the high-affinity (K m 11 M) and low-affinity (K m 66 M), which formed 10 and 50-fold concentration gradients, respectively. The high-affinity system of Nm/MA (K m 11 M) was similar to the wild type but the low-affinity system had reduced affinity for NH 4 + (K m 125 M), while Nm/N-1 and Nm/Sm mutants had only a high-affinity transport system (K m 20 and 28 M, respectively). The growth of mutant Nm/N-1 was more sensitive to 1 mM NH 4 + or methylamine than other strains, and also glutamine-synthetase activity was most reduced in NH 4 + -grown cells. l-methionine-d, l-sulfoximine (20 M) treatment of N2-grown Nm/N-1 cells resulted in a higher rate of NH 4 + efflux. The apparent alterations in kinetic constants of NH 4 + transport in mutants and glutamine synthetase activity suggested that NH 4 + in N. muscorum is transported by specific carrier(s) and the transport is genetically controlled.  相似文献   

10.
Micropropagation of mature Chinese tallow tree (Sapium sebiferum Roxb.)   总被引:1,自引:0,他引:1  
An in vitro propagation technique based on axillary bud proliferation has been developed for matureSapium sebiferum trees. Nodal segments cultured on Murashige and Skoog (MS) medium supplemented with benzyl adenine (1–10 m and -naphthaleneacetic acid (0–0.5 m showed axillary bud proliferation. Shoots proliferated in vitro were multiplied on Murashige and Skoog medium containing 2.5 m benzyl adenine and 0.25 m -naphthaleneacetic acid. Seasonal changes affected the shoot proliferation potential of the initial explant. Shoots were rooted on a half-strength, growth-regulator-free, agar-gelled, MS medium after a 48-h treatment on half-strength MS liquid medium with 10 m indole-3-butyric acid. Rooted plantlets were potted and acclimatized in a growth chamber and then moved to the greenhouse. Four-month-old plants were transplanted to the field.Abbreviations BA Benzyl adenine - IBA Indole-3-butyric acid - 2-ip N6-(-dimethylallylamino)purine - MS Murashige and Skoog (1962) medium - NAA -Naphthaleneacetic acid  相似文献   

11.
Four recently described species of new genera of sulfate-reducing bacteria, Desulfobulbus propionicus, Desulfobacter postgatei, Desulfococcus multivorans and Desulfosarcina variabilis were examined with respect to adenylylsulfate reductase. All of the species examined contained the enzyme in sufficient concentrations to account for dissimilatory sulfate reduction.Adenylylsulfate reductase was enriched 17.1-fold from Desulfobulbus propionicus by ammonium sulfate fractionation, ion exchange chromatography and gel filtration. The molecular weight was 175,000 and the enzyme contained 1 mol of flavin, 8 mol of non heme iron and 8 mol of labile sulfide per mol enzyme. Either ferricyanide or cytochrome c could be used as electron acceptors; the pH optimum was 7.7 with ferricyanide and 8.8 with cytochrome c. K m values for AMP and sulfite were 90 M and 1.3 M with ferricyanide and 91 M and 71 M with cytochrome c as electron acceptor. K m values for ferricyanide and cytochrome c were 89 M and 21 M, respectively. The properties of the enzyme were compared with those of purified adenylylsulfate reductases from other microorganisms.Non-common abbreviation APS adenylylsulfate  相似文献   

12.
Ebselen (2-phenyl- 1,2-benzisoselenazole-3 (2H)-one) is a seleno-organic compound with antioxidant properties, and anti-inflammatory actions. Recently, ebselen improved the outcome of acute ischemic stroke in humans. In the present study, the potential antioxidant capacity of organochalcogenide compounds diphenyl diselenide (PhSe)2, diphenyl ditelluride (PhTe)2, diphenyl disulfide (PhS)2, p-Cl-diphenyl diselenide (pCl-PhSe)2, bis-[S-4-isopropyl 2-phenyl oxazoline] diselenide (AA-Se)2, bis-[S-4-isopropyl 2-phenyl oxazoline] ditelluride (AA-Te)2 and bis-[S-4-isopropyl 2-phenyl oxazoline] disulfide (AA-S)2 was compared with that of ebselen (a classical antioxidant). Spontaneous and quinolinic acid (QA)- (2 mM) and sodium nitroprusside (SNP)- (5 M)-induced thiobarbituric reactive species (TBARS) production by rat brain homogenates was determined colorimetrically. TBARS formation was reduced by ebselen, (PhSe)2, (PhTe)2, (AA-Se)2, (AA-S)2 and (pCl- PhSe)2 to basal rates. The concentrations of these compounds needed to inhibit TBARS formation by 50% (lC50) are 1.71 M, 3.73 M, 1.63 M, 9.85 M, > 33.3 M, 23.2 M and 4.83 M, respectively for QA. For TBARS production induced by SNP the lC50 was 2.02 M, 12.5 M, 2.80 M, > 33.3 M, 24.5 M and 7.55 M, respectively. The compounds (AA-Te)2 and (PhS)2 have no antioxidant activity and pro-oxidant activity, respectively. These results suggest that (AA-Se)2 and (AA-S)2 can be considered as potential pharmaceutical antioxidant agents.  相似文献   

13.
Transitions in growth irradiance level from 92 to 7 Em-2 s-1 and vice versa caused changes in the pigment contents and photosynthesis of Oscillatoria agardhii. The changes in chlorophyll a and C-phycocyanin contents during the transition from high to low irradiance (HL) were reflected in photosynthetic parameters. In the LH transition light utilization efficiencies of the cells changed faster than pigment contents. This appeared to be related to the lowering of light utilization efficiencies of photosynthesis. As a possible explanation it was hypothesized that excess photosynthate production led to feed back inhibition of photosynthesis. Time-scales of changes in the maximal rate of O2 evolution were discussed as changes in the number of reaction centers of photosystem II in relation to photosynthetic electron transport. Parameters that were subject to change during irradiance transitions obeyed first order kinetics, but hysteresis occurred when comparing HL with LH transients. Interpretation of first order kinetic analysis was discussed in terms of adaptive response vs changes in growth rate.Non-standard abbreviations Chla chlorophyll a - CPC C-phycocyanin - PS II photosystem II - PS I photosystem I - RC II reaction center of photosystem II - P photosynthetic O2-evolution - I irradiance, Em-2 s-1 - light utilization efficiency of cells, mmol O2·mg dry wt-1·h-1/Em-2 s-1 - light utilization efficiency of photosynthetic apparatus, mol O2·mol Chla -1·h-1/Em-2 s-1 - Pmax maximal rate of O2 evolution by cells, mol O2·mg dry wt-1·h-1 - Pmax maximal rate of O2 evolution by photosynthetic apparatus, mol O2·mol·Chla -1·h-1 - LL low light, E m-2 s-1 - HL high light, E m-2 s-1 - LH low to high light transition - HL high to low light transition - k specific rate of adaptation, h-1 - specific growth rate, h-1 - Q pool size of cell constituent, mol·mg dry wt-1 - q net synthesis rate of cell constituent, mol·mg dry wt-1·h-1  相似文献   

14.
Summary Suspensions of endocrine pancreas cells were prepared by shaking collagenase-isolated rat islets of Langerhans in calcium-free buffer. When incubated with 1.0 mM substrate at pH 7.4, the cells split,P i from 5-AMP at a rate of 87 nmol/h per g DNA, and from-glycerophosphate at a rate of 25 nmol/h per g DNAK m for 5 AMP was about 54 M. Adenosine or theophylline inhibited the 5-AMP hydrolysis. Homogenization of the cells increased the activity toward 5-AMP by 23% and that toward-glycerophosphate by 115%. Injecting rats with cortisone had no effect on the 5-AMP hydrolysis by whole cells but significantly increased the activity in cell homogenates; the intracellular activity toward 5-AMP was more than doubled by the cortisone treatment. Staining whole islet cells for 5-AMP-splitting activity resulted in a demarcation of the cell periphery in control rats. Cells from cortisone-treated rats showed heavier deposits of reaction product, and their cell periphery did not stand out as clearly. It is suggested that 5-nucleotidase is largely an ectoenzyme in normal rat islet cells. The cells also contain an as yet unidentified intracellular phosphatase that seems to be solely responsible for the increased hydrolysis of 5-AMP in cortisone-treated rats.  相似文献   

15.
Synaptosomal acetylcholine synthesis was found to be dependent on the presence of Na+-dependent HC-3 sensitive choline transport at low (5.5 mM) and high (35 mM) K+ concentrations. However, at 5, 20, and 100 M choline, choline phosphorylation was proportional to total choline uptake, in the presence or absence of high affinity transport. Only in the presence of eserine (50 M) did acetylcholine synthesis increase as the choline concentration was elevated from 20 M to 100 M, and this effect was observed at low and high K+ concentrations. Our results suggest that: 1) the synthesis of non-surplus synaptosomal ACh is dependent on high affinity choline transport; and 2) choline is equally likely to be phosphorylated after being taken up by low or high affinity transport.  相似文献   

16.
Summary A study has been made of the mineral requirements ofBacillus thuringiensis subsp.israelensis for production of the mosquitocide delta endotoxin. The optimum concentrations of K2HOP4, MgSO4.7H2O and CaCO3 for toxin production are 1g/l, 0.3g/l and 1g/l respectively while the elements Fe, Mn, Cu are required at levels of 2 g/ml, 5 g/ml and 0.25 g/ml respectively.  相似文献   

17.
In hippocampal neurons, 5-hydroxytryptamine (5-HT) activates an inwardly rectifying K+ current via G protein. We identified the K+ channel activated by 5-HT (K5-HT channel) and studied the effects of G protein subunits and nucleotides on the K+ channel kinetics in adult rat hippocampal neurons. In inside-out patches with 10 m 5-HT in the pipette, application of GTP (100 m) to the cytoplasmic side of the membrane activated an inwardly rectifying K+ channel with a slope conductance of 36±1 pS (symmetrical 140 mm K+) at –60 mV and a mean open time of 1.1±0.1 msec (n=5). Transducin activated the (K5-HT) channels and this was reversed by -GDP. Whether the K5-HT channel was activated endogenously (GTP, GTPS) or exogenously (), the presence of 1 mm ATP resulted in a 4-fold increase in channel activity due in large part to the prolongation of the open time duration. These effects of ATP were irreversible and not mimicked by AMPPMP, suggesting that phosphorylation might be involved. However, inhibitors of protein kinases A and C (H-7, staurosporine) and tyrosine kinase (tyrphostin 25) failed to block the effect of ATP. These results show that G activates the G protein-gated K+ channel in hippocampal neurons, and that ATP modifies the gating kinetics of the channel, resulting in increased open probability via as yet unknown pathways.  相似文献   

18.
The magnitude of the proton motive force (p) and its constituents, the electrical () and chemical potential (-ZpH), were established for chemostat cultures of a protease-producing, relaxed (rel ) variant and a not protease-producing, stringent (rel +) variant of an industrial strain ofBacillus licheniformis (respectively referred to as the A- and the B-type). For both types, an inverse relation of p with the specific growth rate was found. The calculated intracellular pH (pHin) was not constant but inversely related to . This change in pHin might be related to regulatory functions of metabolism but a regulatory role for pHin itself could not be envisaged. Measurement of the adenylate energy charge (EC) showed a direct relation with for glucose-limited chemostat cultures; in nitrogen-limited chemostat cultures, the EC showed an approximately constant value at low and an increased value at higher . For both limitations, the ATP/ADP ratio was directly related to .The phosphorylation potential (G'p) was invariant with . From the values for G'p and p, a variable H+/ATP-stoichiometry was inferred: H+/ATP=1.83+0.52µ, so that at a given H+/O-ratio of four (4), the apparent P/O-ratio (inferred from regression analysis) showed a decline of 2.16 to 1.87 for =0 to max (we discuss how more than half of this decline will be independent of any change in internal cell-volume). We propose that the constancy of G'p and the decrease in the efficiency of energy-conservation (P/O-value) with increasing are a way in which the cells try to cope with an apparent less than perfect coordination between anabolism and catabolism to keep up the highest possible with a minimum loss of growth-efficiency. Protease production in nitrogen-limited cultures as compared to glucose-limited cultures, and the difference between the A- and B-type, could not be explained by a different energy-status of the cells.Abbreviations CCCP carbonylcyanide-p-trichloromethoxyphenylhydrazone - DW dry weight of biomass - F Faraday's constant, 96.6 J/(mV × mol) - Fo chemostat outflow-rate (ml/h) - FCCP carbonylcyanide-p-trifluoromethoxyphenylhydrazone - G'p phosphorylation potential, the Gibbs energy change for ATP-synthesis from ADP and Pi - G'0p standard Gibbs energy change at specified conditions - H+/ATP number of protons translocated through - ATP synthase in synthesis of one ATP - H+/O protons translocated during transfer of 2 electrons from substrate to oxygen - specific growth rate (1/h) - H+ transmembrane electrochemical proton potential, J/mol - Mb molar weight (147.6 g/mol) of bacteria with general cell formula C6.0H10.8O3.0N1.2 - pHout,in extracellular, intracellular pH - Pi (intracellular) inorganic phosphate - p proton motive force, mV - pH transmembrane pH-difference - transmembrane electrical potential, mV - P/O number of ADP phosphorylated to ATP upon reduction of one O2– to H2O by two electrons transferred through the electron transfer chain - P/O (H+/O) × (H+/ATP)–1 - P/OF, P/ON P/O with the two electrons donated by resp. (NADH + H+) and FADH - q specific rate of consumption or production (mol/g DW × h) - rel +,rel stringent, relaxed genotype - R universal gas constant, 8.36 J/(mol × degree) - T absolute temperature - TPMP+ triphenylmethylphosphonium ion - TPP+ tetraphenyl phosphonium ion - Y growth yield, g DW/mol - Z conversion constant=61.8 mV for 310 K (37 °C) - ZpH transmembrane proton potential or chemical potential, mV  相似文献   

19.
DOPA synthesis from phenylalanine was studied in PC12 cells incubated with m-hydroxybenzylhydrazine, to inhibit aromatic L-amino acid decarboxylase. DOPA synthesis rose with increasing concentrations of either phenylalanine or tyrosine; maximal rates (~55 pmol/min/mg protein for tyrosine; ~40 pmol/min/mg protein for phenylalanine) occurred at a medium concentration of ~10 M for either amino acid. The Km for either amino acid was about 1 M (medium concentration). At tyrosine concentrations above 30 M, DOPA synthesis declined; inhibition was observed at higher concentrations for phenylalanine (300 M). These effects were most notable in the presence of 56 mM potassium. Measurements of intracellular phenylalanine and tyrosine suggested the Km for either amino acid is 20–30 M; maximal synthesis occurred at 120–140 M. In the presence of both phenylalanine and tyrosine, DOPA synthesis was inhibited by phenylalanine only at a high medium concentration (1000 M), regardless of medium tyrosine concentration. The inhibition of DOPA synthesis by high medium tyrosine concentrations was antagonized by high medium phenylalanine concentrations (100, 1000 M). Together, the findings indicate that for PC12 cells, phenylalanine can be a significant substrate for tyrosine hydroxylase, is a relatively weak inhibitor of the enzyme, and at high concentrations can antagonize substrate inhibition by tyrosine.  相似文献   

20.
Two constitutive acetoacetyl-CoA (AcAc-CoA) reductases were purified from Methylobacterium rhodesianum MB 126, an NADPH-linked d(-)--hydroxybutyryl-CoA forming reductase (enzyme A) and an NADH-and NADPH-linked l(+)--hydroxybutyryl-CoA forming reductase (enzyme B). Enzyme A and B give apparent K m values of 15 M and 30 M for AcAc-CoA, 18 M for NADPH and 30 M for NADH, respectively. They are inhibited by AcAc-CoA at concentrations higher than 25 M and 50 M, respectively. The contribution of the two reductases to poly--hydroxybutyrate synthesis is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号