首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the last decades the Mondego estuary has been under severe ecological stress mainly caused by eutrophication. In this salt march system, Spartina maritima covers about 10.5 ha of the intertidal areas. The objective of the present study was to evaluate the effect of Spartina maritima marshes on the dynamics of phosphorus (P) binding in the surface sediment. We compare phosphate and oxygen fluxes, P-adsorption capacity, phosphate concentrations and total amount, and the extractable P forms in the upper 20 cm of sediment in vegetated sediment with adjacent mudflats without vegetation. Sediment pore-water profiles followed a clear trend, with lower P concentrations in more superficial layers, and increasing with depth. The vegetated mudflats presented lower concentrations of dissolved inorganic phosphorus than adjacent bare bottom mudflats, lower phosphate total amount, as well as higher P-adsorption capacity. Results from the extraction procedure show that the superficial layers are the most important for estuarine phosphorus dynamics, since maximum concentrations of labile P pools are present here. In contrast, higher proportions of refractory P pool are found in deeper layers. Spartina marsh sediments had less total P, less iron bound P, and less exchangeable P than adjacent bare bottom mudflats. Also the pool of loosely sorbed P is lower in the Spartina marsh. Phosphate regeneration from the sediment to the overlying water was only 11.8 kg ha−1 year−1 in vegetated sediment while 25.8 kg ha−1 year−1 in the bare mud flat. Plant uptake for growth combined with an enhanced P-adsorption capacity of the sediment, may explain these differences. Therefore, Spartina marshes are very important agents in the sedimentary P cycle worldwide, and can be considered a useful management tool in estuarine ecosystem recovery efforts.  相似文献   

2.
We examined polycyclic aromatic hydrocarbon (PAH) attenuation in contaminated field sediments after only 2 years of plant growth. We collected sediments from vegetated and non-vegetated areas at the Indiana Harbor Canal (IHC), an industrialized area with historic petroleum contamination of soils and sediments. PAH concentrations, PAH weathering indices, and organic matter composition in sediments colonized by Phragmites, cattails, or willow trees were compared to the same indices for non-vegetated sediments. We hypothesized that bulk sediment and humin fractions with measurable increases in plant organic matter content would show measurable changes to PAH attenuation as indicated by more weathered PAH diagnostic ratios or reduced PAH concentrations. Carbon-normalized PAH concentrations were lower in vegetated bulk sediments but higher in vegetated humin fractions relative to non-vegetated sediment fractions. Total organic carbon content was not indicative of more weathered N3/P2 ratios or reduced PAH concentrations in vegetated sediment fractions. More weathered N3/P2 ratios were observed with increased modern carbon (plant carbon) content of vegetated sediment fractions. Phragmites sediments contained more modern carbon (plant carbon) and more weathered PAH ratios [C3-naphthalenes and C2-phenanthrenes (N3/P2)] than willow, cattail, and non-vegetated sediments.  相似文献   

3.
Although the impact of plant invasions on benthic communities, especially burrowing crabs, has received increasing attention, the results from past studies are mixed. The exotic plant Spartina alterniflora has become the most abundant species in the salt marshes of the Yangtze River estuary since it was first found just over a decade ago, but its effects on crabs in the salt marshes is largely unknown. To examine whether the invasions of this exotic plant affected native crabs, we compared the biomass and abundance of the dominant burrowing crab Sesarma dehaani in an exotic Spartina marsh, native Phragmites australis marsh and mudflats of the Yangtze River estuary, China. To explain the differences of S. dehaani populations between different habitats, feeding preference of S. dehaani for Spartina and Phragmites was investigated. Results showed crab abundance and biomass in the Spartina marsh were significantly greater than those in the Phragmites marsh and mudflats. Soil water content and plant community characteristics in the Spartina marsh also significantly differed in the Phragmites marsh and mudflats. Moreover, the feeding preference experiment showed that crabs consumed Spartina more than twice as much as Phragmites. In summary, this study showed that Spartina provided compatible habitats for native crab S. dehaani through offering suitable food source and moderate environmental conditions.  相似文献   

4.
Sediment cores were collected from two sites of the Tagus estuary salt marshes which differed in degree of metal contamination. At each site, six 60-cm-long cores were taken, three from a non-vegetated intertidal zone, and one from each of areas colonized by salt marsh plants, Spartina maritima, Halimione portulacoides and Arthrocnemum fruticosum, respectively. Total concentrations and concentrations in sequential extractions of Zn, Pb, and Cu were determined in several sediment layers. Sediment slices containing most of the roots (5–15-cm depth) were enriched in metals in comparison with other depths in the core and with non-vegetated cores. Additionally, metals in sediment slices with roots were preferentially linked to the residual fraction. These results are evidence that aquatic plant roots can have a strong influence on metal concentration and speciation in sediments. Since metals become immobilized in vegetated sediments, the preservation of salt marshes or the creation of artificial wetlands could be considered as an efficient natural means for maintaining ecosystem health or restoring ecosystem quality.  相似文献   

5.
Marsh vegetation plays an important role in trophic ecology of estuaries. Once broken down to detritus, it is an important food source for manyorganisms. In Atlantic Coast marshes, the reed Phragmites australis hasbeen invading many areas once dominated by smooth cordgrass, Spartina alterniflora. In this study we evaluated the growth of and trophictransfer of metals to estuarine invertebrates when fed diets of detritus fromthese different plant species. Decaying leaves from populations of Phragmites, natural Spartina, and restored Spartina from boththe Hackensack Meadowlands, New Jersey, and the more pristineAccabonac Harbor of East Hampton, New York, were collected from themarsh surface in the spring. Decaying leaves were pureed and fed to thefiddler crabs Uca pugnax and U. pugilator, and to the grassshrimp Palaemonetes pugio. In fiddler crabs we monitored limbregeneration, molting and weight. U. pugilator regenerated limbs andmolted equally well on all six diets. Most of the U. pugnax arrestedgrowth midway through regeneration on all 6 diets. A repeat experimentwith smaller crabs, which did complete the process, found no consistentdifferences among the six diets and control food, although control food andPhragmites detritus had higher N concentrations than the Spartinadetritus. Grass shrimp fed all six diets did not survive beyond 3 weeks. Inanother experiment using HM sediments from each vegetation type(containing detritus, meiofauna, and microflora), survival was equally highamong treatments and the shrimp fed sediments from the restored Spartina site or control food grew better than those fed sediments fromthe Phragmites or natural Spartina sites. Although metalconcentrations in detritus varied between sites and plant species, the crabsof each group did not differ in metal concentrations after the feedingexperiment. Our data do not support the general assumption that Phragmites leaf detritus is of poorer nutritional quality than Spartinaalterniflora leaf detritus to estuarine consumers.  相似文献   

6.
Narrow fringing salt marshes dominated by Spartina alterniflora occur naturally along estuarine shorelines and provide many of the same ecological functions as more extensive marshes. These fringing salt marshes are sometimes incorporated into shoreline stabilization efforts. We obtained data on elevation, salinity, sediment characteristics, vegetation and fish utilization at three study sites containing both natural fringing marshes and nearby restored marshes located landward of a stone sill constructed for shoreline stabilization. During the study, sediment accretion rates in the restored marshes were approximately 1.5- to 2-fold greater than those recorded in the natural marshes. Natural fringing marsh sediments were predominantly sandy with a mean organic matter content ranging between 1.5 and 6.0%. Average S. alterniflora stem density in natural marshes ranged between 130 and 222 stems m−2, while mean maximum stem height exceeded 64 cm. After 3 years, one of the three restored marshes (NCMM) achieved S. alterniflora stem densities equivalent to that of the natural fringing marshes, while percentage cover and maximum stem heights were significantly greater in the natural than in the restored marshes at all sites. There was no significant difference in the mean number of fish, crabs or shrimp captured with fyke nets between the natural and restored marshes, and only the abundance of Palaemonetes vulgaris (grass shrimp) was significantly greater in the natural marshes than in the restored ones. Mean numbers of fish caught per 5 m of marsh front were similar to those reported in the literature from marshes adjacent to tidal creeks and channels, and ranged between 509 and 634 fish net−1. Most of the field data and some of the sample analyses were obtained by volunteers as they contributed 223 h of the total 300 h spent collecting data from three sites in one season. The use of fyke nets required twice as many man-hours as any other single task. Vegetation and sediment parameters were sensitive indicators of marsh restoration success, and volunteers were capable of contributing a significant portion of the labor needed to collect these parameters. The U.S. Government's right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   

7.
The role of salt marshes as nitrogen sink is examined taking into consideration the seasonal variation of above and belowground biomass of Spartina martima and Halimione portulacoides in two marshes from Tagus estuary, Pancas and Corroios, and the degradation rates of belowground litter. Total nitrogen was determined in plant components, decomposing litter and sediment. Biomass was higher in Corroios, the saltier marsh, with 7190 g m−2 y−1 dw of S. maritima and 6593 g m−2 y−1 dw of H. portulacoides and the belowground component contributed to 96% and 90% of total biomass, respectively. In the other marsh, Pancas, belowground biomass contributed to 56% and 76% of total biomass for S. maritima and H. portulacoides, respectively. Litterbag experiment showed that between 25% and 50% of nitrogen is lost within the first month and remained relatively constant in the next four months. Slower decomposition is observed in sediments with higher nitrogen concentration (max. 0.7% N in the saltier marsh). Higher concentrations of N were found in the sediment upper layers. Considering the sediment-root system, most of the nitrogen is stored in the sediment compartment and only about 1–4% of the total N was found in the roots. Considering these results, Tagus salt marshes act as a sink for nitrogen.  相似文献   

8.
We assessed the desorption behavior of pyrene, chrysene, phenanthrene, and tri-alkylated (C3) phenanthrene/anthracenes for non-vegetated and recently vegetated (< 2 yrs) fuel-oiled sediments collected from the Indiana Harbor Canal (IHC), Gary, IN. Bulk sediment and humin were analyzed for PAH concentrations, organic matter composition, and PAH desorption behavior. PAH desorption isotherms and kinetics were determined using batch aqueous extractions and a two compartment, first-order kinetic model. Vegetated sediments contained more plant carbon and were more nonpolar and less oxidized than non-vegetated sediments. Desorption kinetics indicated that PAH desorption was primarily controlled by a slow PAH-desorbing fraction (F2) of IHC sediments. However, in vegetated sediments, particularly humin, PAH release from a faster PAH-desorbing fraction (F1) increased as did the rates (k2) of PAH desorption from the dominant slow PAH-desorbing fraction (F2). We propose that vegetation provides aliphatic, nonpolar carbon to IHC sediments that facilitates more rapid PAH desorption from bulk sediment and humin.  相似文献   

9.
Short-term sediment deposition was studied at four salt marsh areas in the Tagus estuary. In areas covered with Sarcocornia perennis, Sarcocornia fruticosa, Halimione portulacoides and Spartina maritima and also in the non-vegetated areas, sedimentation was measured as the monthly accumulation of sediments on nylon filters anchored on the soil surface, from August 2000 to May 2001. Our experiments were used also to determine the influence of the different plant species in vertical accretion rates. Short-term sedimentation rates (from 2.8 to 272.3 g m−2 d−1) did show significant differences when the four salt marshes studied in the Tagus estuary were compared to each others. Salt marshes closer to the sediment sources had higher sedimentation rates. Our results suggest that the salt marsh type and surface cover may provide small-scale variations in sedimentation and also that sediment deposition values do change according to the position of the different plant species within the salt marsh. Sedimentation is an essential factor in salt marsh vertical accretion studies and our investigation may provide support to help forecast the adaptative response of the Tagus estuary wetlands to future sea level rise.  相似文献   

10.
Many authors have referred to the important role of vegetation in the consolidation of salt marsh sediments, but experiments previously carried out by us have shown results that do not always agree with these statements. In other words, the type of salt marsh surface coverage is not the main factor that contributes to the consolidation of sediments. To test this hypothesis different Portuguese salt marsh stations (species/unvegetated areas) from two sites, Tagus estuary (Corroios and Pancas) and Ria de Aveiro (Barra and Verdemilho), were compared to evaluate their influence on suspended matter deposition on the salt marsh surface. A short-term sedimentation study was performed within stands of Spartina maritima, Halimione portulacoides, Sarcocornia perennis subsp. perennis and unvegetated areas, by analysing the deposition of sediment material on nylon filters anchored to the marsh surface. Numerical results obtained from hydrodynamic models coupled to a Lagrangean module implemented for the Ria de Aveiro and the Tagus Estuary, namely the root-mean square velocity (V rms) and residual velocity of tides, were also used. Average sedimentation rates (mean value between the different surface cover in a salt marsh) showed a seasonal trend more or less defined but with significantly different values between sites and salt marshes. Sedimentation rates varied between marshes: there are significant differences between Pancas and the other three marshes, but only significant differences in sedimentation rates between Spartina and Sarcocornia. Despite the important role of vegetation in the consolidation of salt marsh sediments, our results suggest that, the position of stations and related abiotic conditions in the salt marshes are determining factors of variation to take into account in the studies related with the stabilization and survival of salt marshes facing sea level rise. Handling editor: P. Viaroli  相似文献   

11.
Treatment of dredged sediments contaminated by polyaromatic hydrocarbons (PAHs) is a significant problem in the New York/New Jersey (NY/NJ) Harbor. 0.5 m3-scale slurry-phase bioreactors were used to determine whether bioaugmentation with a PAH-degradative bacterial consortium, or with the salt marsh grass S. alterniflora, could enhance the biodegradation of PAHs added to dredged estuarine sediments from the NY/NJ Harbor. The results were compared to biodegradation effected by the indigenous sediment microbial community. Sediments were diluted 1:1 in tap water and spiked to a final concentration of 20 mg/kg dry weight sediment of phenanthrene, anthracene, acenaphthene, fluorene, fluoranthene, and pyrene. The sediment slurry was then continuously sparged with air over 3 months. In all bioreactors a rapid reduction of greater than 95% of the initial phenanthrene, acenaphthene, and fluorene occurred within 14 days. Pyrene and fluoranthene reductions of 70 to 90% were achieved by day 77 of treatment. Anthracene was more recalcitrant and reductions ranged from 30 to 85%. Separate experiments showed that the sediment microbial communities mineralized 14C-pyrene and 14C-phenanthrene. PAH degradation, and the number of phenanthrene-degrading bacteria, were not enhanced by microbial or plant bioaugmentation. These data demonstrate that bioaugmentation is not required to effect efficient remediation of PAH-contaminated dredged sediments in slurry-phase bioreactors.  相似文献   

12.
Ecological functions of bioturbation in ecosystems have received increasing attention over the recent decades, and crab burrowing has been considered as one of the major bioturbations affecting the physical and chemical processes in salt marshes. This study assessed the integrated effects of crab excavating and burrow mimic trapping on sediment turnover and vertical C and N distributions in a Chinese salt marsh in the Yangtze River estuary. Crab burrowing increased soil water content and the turnover of carbon and nitrogen and decreased bulk soil density. Vertical movement of materials, nutrient cycling and reuse driven by crab burrowing might be obstructed by vegetation (Phragmites australis and Spartina alterniflora communities). The amount of soil excavated by crab burrowing was higher than that deposited into burrow mimics. In Phragmites marshes, Spartina marshes and unvegetated mudflats, net transport of soil to the marsh surface was 171.73, 109.54, and 374.95 g m−2 d−1, respectively; and the corresponding estimated soil turnover time was 2.89, 4.07 and 1.83 years, respectively. Crab burrowing in salt marshes can mix surface and deeper soil over a period of years, accelerating litter decomposition and promoting the efficient reuse of nutrients by plants. Therefore, bioturbation affects soil physical processes and functioning of ecosystems, and needs to be addressed in ecosystem management.  相似文献   

13.
Introduced populations of Guekensia demissa occur on the west coast of North America. They have been reported in San Francisco Bay, four southern California wetlands, and in Estero de Punta Banda (EPB), Baja California Norte, Mexico. We randomly sampled benthic invertebrates in four habitat types within EPB: marsh, channel, mudflat and pan. Geukensia demissa was the most abundant bivalve in the wetland at EPB. It was significantly associated with the native cordgrass, Spartina foliosa, and occurred at higher average densities in vegetated marsh sites (24/m2) and Spartina-dominated tidal channels (35/m2), compared to mudflat (0/m2), and pan (0/m2) sites. We estimated that the total biomass of this invader was over four times that of the next most abundant bivalve, Tagelus spp., in EPB. We examined G. demissa for parasites and found that only a few native parasites colonized this introduced host at very low prevalences and intensities. We performed bird surveys to determine the habitat overlap and potential impact of this mussel on the EPB population of light-footed clapper rails (Rallus longirostrus levipes), an endangered species in the United States. The high abundance of G. demissa in EPB, its presence in clapper rail habitat, and its known effects on salt marsh habitat in it’s native range, warrant further investigations of the impact of this invader in EPB and elsewhere.  相似文献   

14.
Cordgrasses in the genus Spartina are good examples of ecosystem engineers that modify habitat structure in estuaries throughout the world. In San Francisco Bay, California, USA, marshes containing native California cordgrass (Spartina foliosa) are being invaded by a hybrid (S. alterniflora × S. foliosa) formed after introduction of S. alterniflora. This study compared vegetation, sediment structure, and infaunal invertebrates in native and invaded marshes. We hypothesized that differences in the physical structure between S. foliosa and hybrid Spartina would be reflected in differences in density, biomass, diversity, and taxonomic composition of infauna. Hybrid Spartina modifies habitat structure more than S. foliosa by producing taller stems, and greater plant biomass both above- and belowground while occupying a much wider tidal range, thereby transforming open mudflats to a vegetated habitat. In general, S. foliosa areas contained significantly higher densities of benthic infauna than adjacent mudflats, while hybrid Spartina areas never contained greater infaunal densities than mudflats. This is because S. foliosa produces a moderate level of structure that can facilitate benthic invertebrates, whereas hybrid Spartina produces so much structure, particularly belowground, that it actually excludes invertebrates. Therefore, we suggest that these two closely related species both act as ecosystem engineers, but with opposing effects on invertebrate communities.  相似文献   

15.
Floating marshes occur over 70% of the western Terrebonne Basin, Louisiana, USA, freshwater coastal wetlands. They are of several types: A free-floating thick-mat (45–60 cm) marsh dominated by Panicum hemitomon and Sagittaria lancifolia; a thick mat marsh dominated by Panicum hemitomon and Sagittaria lancifolia that floats part of the year, but whose vertical floating range is damped compared to adjacent water; and an irregularly-floating thin mat (< 30 cm) dominated by Eleocharis spp. in the spring and Ludwigia leptocarpa and Bidens laevis in the summer and fall. Floating mats must be almost entirely organic in order to be buoyant enough to float. The western Terrebonne wetlands receive large winter/spring supplies of suspended sediments from the Atchafalaya River. Even though sediment concentrations in the adjacent bayou are as high as 100 mg l–1, the Panicum hemitomon/Sagittaria lancifolia free-floating marsh probably receives no over-surface sediments since it floats continuously. The bulk density data of the damped-floating marsh, however, suggest some mineral sediment input, probably during winter when this marsh is submerged. These two types of floating marsh could not have developed in the present sediment regime of the Atchafalaya River, but as long as they remain floating can continue to exist. Thin floating mats are found in areas receiving the least sediment (<20 mg 1–1 suspended sediment concentration in adjacent bayous). This low sediment environment probably made possible their formation within the past 20 years. They may represent a transitional stage in mat succession from (1) existing thick-mat floating marsh to a degrading floating marsh, or (2) a floating marsh developing in shallow open water.Corresponding editor: D. Whigham  相似文献   

16.
The current expansion of Phragmites australis into the high marsh shortgrass (Spartina patens, Distichlis spicata) communities of eastern U.S. salt marshes provided an opportunity to identify the influence of vegetation types on pools and fluxes of dissolved inorganic nitrogen (DIN). Two brackish tidal marshes of the National Estuarine Research Reserve system were examined, Piermont Marsh of the Hudson River NERR in New York and Hog Island in the Jacques Coustaeu NERR of New Jersey. Pools of DIN in porewater and rates of DIN surface flux were compared in replicated pairs of recently-expanded P. australis and neighboring S. patens-dominated patches on the high marsh surface. Both marshes generally imported nitrate (NO3) and exported ammonium (NH4+), such that overall DIN was exported. No differences in surface exchange of NO3 or NH4+ were observed between vegetation types. Depth-averaged porewater NH4+ concentrations over the entire growing season were 56% lower under P. australis than under S. patens (average 1.4 vs. 3.2 mg NH4+ L−1) with the most profound differences in November. Porewater profiles showed an accumulation of NH4+ at depth in S. patens and constant low concentrations in P. australis from the soil surface to 50 cm depth, with no significant differences in porewater salinity. Despite these profound differences in porewater, NH4+ diffusion from soils of P. australis and S. patens were not measurably different, were similar to other published rates, and were well below estimated rates based on passive diffusion alone. Rapid adsorption and uptake by litter and microbes in surface soils of both communities may buffer NH4+ loss to flooding tides in both communities, thereby reducing the impact of P. australis invasion on NH4+ flux to flooding waters.  相似文献   

17.
Summary Tidal flooding is widely believed to be an important determinant of marsh plant distributions but has rarely been tested in the field. In New England the marsh elder Iva frutescens often dominates the terrestrial border of salt marshes and we examined its flood tolerance and distribution patterns. Marsh elders only occur at elevations where their roots are not subject to prolonged water table flooding. Consequently they are found on the terrestrial border of marshes and at lower elevations associated with drainage ditches and locally elevated surfaces. Marsh elders transplanted to elevations lower than they normally occur died within a year with or without neighbors and greenhouse tests revealed that I. frutescens is much less tolerant of flooded soil conditions than plants found at lower marsh elevations. We also manipulated the water table level of field plots and found that increasing or decreasing water table drainage led to enhanced and diminished I. frutescens performance, respectively. Our results demonstrate the importance of water table dynamics in generating spatial patterns in marsh plant communities and provide further evidence that supports the hypothesis that the seaward distributional limits of marsh plant populations are generally dictated by physical processes.  相似文献   

18.
A growing number of studies have assessed the functional equivalency of restored and natural salt marshes. Several of these have explored the use of functional trajectories to track the increase in restored marsh function over time; however, these studies have disagreed as to the usefulness of such models in long‐term predictions of restored marsh development. We compared indicators of four marsh functions (primary production, soil organic matter accumulation, sediment trapping, and maintenance of plant communities) in 6 restored and 11 reference (matched to restored marshes using principal components analysis) salt marshes in the Great Bay Estuary. The restored marshes were all constructed and planted on imported substrate and ranged in age from 1 to 14 years. We used marsh age in a space‐for‐time substitution to track constructed salt marsh development and explore the use of trajectories. A high degree of variability was observed among natural salt marsh sites, displaying the importance of carefully chosen reference sites. As expected, mean values for constructed site (n = 6) and reference site (n = 11) functions were significantly different. Using constructed marsh age as the independent variable and functional indicator values as dependent variables, nonlinear regression analyses produced several ecologically meaningful trajectories (r 2> 0.9), demonstrating that the use of different‐aged marshes can be a viable approach to developing functional trajectories. The trajectories illustrated that although indicators of some functions (primary production, sediment deposition, and plant species richness) may reach natural site values relatively quickly (<10 years), others (soil organic matter content) will take longer.  相似文献   

19.
Brewer  J. Stephen 《Plant Ecology》2003,168(1):93-106
Previous studies have suggested that belowground competition for nutrients influences plant zonation in salt marshes. In this study, I tested the hypothesis that competition for nitrogen structured a clonal plant community in a nitrogen-limited salt marsh in coastal Mississippi, USA. In contrast to most previous field studies that have investigated mechanisms of competition, I examined clonal growth responses of established genets of a nitrogen-demanding low-intertidal species (Spartina alterniflora) to nitrogen addition and the removal of a nitrogen-conserving high-intertidal species (Juncus roemerianus). Nitrogen addition stimulated clonal invasion of the Juncus zone by Spartina but did not reduce the significant competitive effects of Juncus on Spartina. Simulated Juncus shade did not reduce invasion of the Juncus zone by Spartina, indicating that belowground competition reduced clonal invasion. In the last year of the study, the border shifted unexpectedly towards the Spartina zone, resulting in competitive displacement of Spartina by Juncus. Nitrogen addition did not prevent or slow this displacement, further contradicting the nitrogen competition hypothesis. Although growth rates were much more strongly limited by nitrogen in Spartina than in Juncus, nitrogen addition did not cause the displacement of Juncus by Spartina after three growing seasons. I conclude that zonation of Spartina and Juncus is maintained by preemption of space and greater tolerance of low nitrogen supplies by Juncus in the high marsh. These results contrast sharply with findings of reduced belowground competition with nutrient addition in previous studies and highlight the important role of nutrient-mediated competition for space between clonal plants.  相似文献   

20.
This paper compares the available North Americanliterature and data concerning several ecologicalfactors affecting Phragmites australisin inlandfreshwater, tidal fresh, and tidal brackish marshsystems. We compare aboveground productivity, plantspecies diversity, and sediment biogeochemistry; andwe summarize Phragmiteseffects on faunalpopulations in these habitats. These data suggest thatPhragmitesaboveground biomass is higher thanthat of other plant species occurring in the samemarsh system. Available data do not indicate anysignificant difference in the aboveground Phragmitesbiomass between marsh types, nor doesthere appear to be an effect of salinity on height.However, Phragmitesstem density wassignificantly lower in inland non-tidal freshwatermarshes than in tidal marshes, whether fresh orbrackish. Studies of the effects of Phragmiteson plant species richness suggest that Phragmitesdominated sites have lower diversity.Furthermore, Phragmiteseradication infreshwater sites increased plant diversity in allcases. Phragmitesdominated communities appearto have different patterns of nitrogen cyclingcompared to adjacent plant communities. Abovegroundstanding stocks of nitrogen (N) were found to behigher in Phragmitessites compared to thosewithout Phragmites. Porewater ammonium(NH4 +) did not differ among plant covertypes in the freshwater tidal wetlands, but inbrackish marshes NH4 +was much higher inSpartinaspp. than in neighboring Phragmitesstands. Faunal uses of Phragmitesdominated sites in North America were found to vary bytaxa and in some cases equaled or exceeded use ofother robust emergent plant communities. In light ofthese findings, we make recommendations for futureresearch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号