首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pathogenicity of mycobacteria is closely associated with their ability to export virulence factors. For this purpose, mycobacteria possess different protein secretion systems, including the accessory Sec translocation pathway, SecA2. Although this pathway is associated with intracellular survival and virulence, the SecA2‐dependent effector proteins remain largely undefined. In this work, we studied a Mycobacterium marinum secA2 mutant with an impaired capacity to initiate granuloma formation in zebrafish embryos. By comparing the proteomic profile of cell envelope fractions from the secA2 mutant with wild type M. marinum, we identified putative SecA2‐dependent substrates. Immunoblotting procedures confirmed SecA2‐dependent membrane localization for several of these proteins, including the virulence factor protein kinase G (PknG). Interestingly, phenotypical defects of the secA2 mutant are similar to those described for ΔpknG, including phagosomal maturation. Overexpression of PknG in the secA2 mutant restored its localization to the cell envelope. Importantly, PknG‐overexpression also partially restored the virulence of the secA2 mutant, as indicated by enhanced infectivity in zebrafish embryos and restored inhibition of phagosomal maturation. These results suggest that SecA2‐dependent membrane localization of PknG is an important determinant for M. marinum virulence.  相似文献   

2.
The majority of proteins that are secreted across the bacterial cytoplasmic membrane leave the cell via the Sec pathway, which in its minimal form consists of the dimeric ATP-driven motor protein SecA that associates with the protein-conducting membrane pore SecYEG. Some Gram-positive bacteria contain two homologues of SecA, termed SecA1 and SecA2. SecA1 is the essential housekeeping protein, whereas SecA2 is not essential but is involved in the translocation of a subset of proteins, including various virulence factors. Some SecA2 containing bacteria also harbor a homologous SecY2 protein that may form a separate translocase. Interestingly, mycobacteria contain only one SecY protein and thus both SecA1 and SecA2 are required to interact with SecYEG, either individually or together as a heterodimer. In order to address whether SecA1 and SecA2 cooperate during secretion of SecA2 dependent proteins, we examined the oligomeric state of SecA1 and SecA2 of Mycobacterium tuberculosis and their interactions with SecA2 and the cognate SecA1, respectively. We conclude that both SecA1 and SecA2 individually form homodimers in solution but when both proteins are present simultaneously, they form dissociable heterodimers.  相似文献   

3.
The SecA2 protein is part of a specialized protein export system of mycobacteria. We set out to identify proteins exported to the bacterial cell envelope by the mycobacterial SecA2 system. By comparing the protein profiles of cell wall and membrane fractions from wild-type and DeltasecA2 mutant Mycobacterium smegmatis, we identified the Msmeg1712 and Msmeg1704 proteins as SecA2-dependent cell envelope proteins. These are the first endogenous M. smegmatis proteins identified as dependent on SecA2 for export. Both proteins are homologous to periplasmic sugar-binding proteins of other bacteria, and both contain functional amino-terminal signal sequences with lipobox motifs. These two proteins appeared to be genuine lipoproteins as shown by Triton X-114 fractionation and sensitivity to globomycin, an inhibitor of lipoprotein signal peptidase. The role of SecA2 in the export of these proteins was specific; not all mycobacterial lipoproteins required SecA2 for efficient localization or processing. Finally, Msmeg1704 was recognized by the SecA2 pathway of Mycobacterium tuberculosis, as indicated by the appearance of an export intermediate when the protein was expressed in a DeltasecA2 mutant of M. tuberculosis. Taken together, these results indicate that a select subset of envelope proteins containing amino-terminal signal sequences can be substrates of the mycobacterial SecA2 pathway and that some determinants for SecA2-dependent export are conserved between M. smegmatis and M. tuberculosis.  相似文献   

4.
A secA2 gene is present in the genomes of a wide variety of Gram-positive bacteria. In Streptococcus parasanguis, a primary colonizer of the tooth surface, secA2 is involved in the secretion of a small group of proteins including the fimbrial adhesin, Fap1. Although the substrate specificity is different, SecA2 is predicted to be similar to SecA in structure and function based on the homology between these two proteins. In this study, polyclonal antibodies against SecA2 and SecA did not cross-react with each other, indicating that these two proteins possessed distinct immunogenic epitopes. Fractionation analysis demonstrated that SecA2 was not evenly distributed between the cytoplasmic membrane and the cytoplasm as was noted for SecA. SecA2 was associated with the membrane in the wild type and in secA2 mutants with different regions deleted. The subcellular distribution of SecA2 was not dependent on secY2, suggesting that the membrane association is not through SecY2. These data suggested that SecA2 is distinct from SecA in many respects such as substrate specificity, immunogenic specificity, subcellular distribution and requirement for membrane anchoring.  相似文献   

5.
During localization to the periplasmic space or to the outer membrane of Escherichia coli some proteins are dependent on binding to the cytosolic chaperone SecB, which in turn is targeted to the membrane by specific interaction with SecA, a peripheral component of the translocase. Five variant forms of SecB, previously demonstrated to be defective in mediating export in vivo (Gannon, P. M., and Kumamoto, C. A. (1993) J. Biol. Chem. 268, 1590-1595; Kimsey, H. K., Dagarag, M. D., and Kumamoto, C. A. (1995) J. Biol. Chem. 270, 22831-22835) were investigated with respect to their ability to bind SecA both in solution and at the membrane translocase. We present evidence that at least two regions of SecA are involved in the formation of active complexes with SecB. The variant forms of SecB were all capable of interacting with SecA in solution to form complexes with stability similar to that of complexes between SecA and wild-type SecB. However, the variant forms were defective in interaction with a separate region of SecA, which was shown to trigger a change that was correlated to activation of the complex. The region of SecA involved in activation of the complexes was defined as the extreme carboxyl-terminal 21 aminoacyl residues.  相似文献   

6.
Subcellular sites for bacterial protein export   总被引:8,自引:0,他引:8  
Most bacterial proteins destined to leave the cytoplasm are exported to extracellular compartments or imported into the cytoplasmic membrane via the highly conserved SecA‐YEG pathway. In the present studies, the subcellular distributions of core components of this pathway, SecA and SecY, and of the secretory protein pre‐AmyQ, were analysed using green fluorescent protein fusions, immunostaining and/or immunogold labelling techniques. It is shown that SecA, SecY and (pre‐)AmyQ are located at specific sites near and/or in the cytoplasmic membrane of Bacillus subtilis. The localization patterns of these proteins suggest that the Sec machinery is organized in spiral‐like structures along the cell, with most of the translocases organized in specific clusters along these structures. However, this localization appears to be independent of the helicoidal structures formed by the actin‐like cytoskeletal proteins, MreB or Mbl. Interestingly, the specific localization of SecA is dynamic, and depends on active translation. Moreover, reducing the phosphatidylglycerol phospholipids content in the bacterial membrane results in delocalization of SecA, suggesting the involvement of membrane phospholipids in the localization process. These data show for the first time that, in contrast to the recently reported uni‐ExPortal site in the coccoïd Streptococcus pyogenes, multiple sites dedicated to protein export are present in the cytoplasmic membrane of rod‐shaped B. subtilis.  相似文献   

7.
Translocation of proteins across the inner membrane of Escherichia coli normally requires the participation of the sec machinery. A number of proteins are known, however, where translocation can proceed unhindered even when the function of either SecA or SecY, central components of the sec machinery, is blocked. We now show that there is a linear correlation between the length of a translocated region and its degree of dependence on SecA and SecY for lengths between 25 and 55 residues. We also find that positively charged residues have distinctly different topological effects during SecA dependent and SecA independent membrane protein insertion, and that a short cytoplasmic segment in Lep can be converted to a translocated segment (with a concomitant inversion of the original topology of the whole molecule) by increasing its length into the SecA/Y dependent realm.  相似文献   

8.
Complex behavior in solution of homodimeric SecA   总被引:1,自引:0,他引:1  
SecA, a homodimeric protein involved in protein export in Escherichia coli, exists in the cell both associated with the membrane translocation apparatus and free in the cytosol. SecA is a multifunctional protein involved in protein localization and regulation of its own expression. To carry out these functions, SecA interacts with a variety of proteins, phospholipids, nucleotides, and nucleic acid and shows two enzymic activities. It is an ATPase and a helicase. Its role during protein localization involves interaction with the precursor polypeptides to be exported, the cytosolic chaperone SecB, and the SecY subunit of the membrane-associated translocase, as well as with acidic phospholipids. At the membrane, SecA undergoes a cycle of binding and hydrolysis of ATP coupled to conformational changes that result in translocation of precursors through the cytoplasmic membrane. The helicase activity of SecA and its affinity for its mRNA are involved in regulation of its own expression. SecA has been reported to exist in at least two conformational states during its functional cycle. Here we have used analytical centrifugation, as well as column chromatography coupled with multi-angle light scatter, to show that in solution SecA undergoes at least two monomer-dimer equilibrium reactions that are sensitive to temperature and to concentration of salt.  相似文献   

9.
The accessory Sec system of Streptococcus gordonii is comprised of SecY2, SecA2, and five proteins (Asp1 through -5) that are required for the export of a serine-rich glycoprotein, GspB. We have previously shown that a number of the Asps interact with GspB, SecA2, or each other. To further define the roles of these Asps in export, we examined their subcellular localization in S. gordonii and in Escherichia coli expressing the streptococcal accessory Sec system. In particular, we assessed how the locations of these accessory Sec proteins were altered by the presence of other components. Using fluorescence microscopy, we found in E. coli that SecA2 localized within multiple foci at the cell membrane, regardless of whether other accessory Sec proteins were expressed. Asp2 alone localized to the cell poles but formed a similar punctate pattern at the membrane when SecA2 was present. Asp1 and Asp3 localized diffusely in the cytosol when expressed alone or with SecA2. However, these proteins redistributed to the membrane in a punctate arrangement when all of the accessory Sec components were present. Cell fractionation studies with S. gordonii further corroborated these microscopy results. Collectively, these findings indicate that Asp1 to -3 are not integral membrane proteins that form structural parts of the translocation channel. Instead, SecA2 serves as a docking site for Asp2, which in turn attracts a complex of Asp1 and Asp3 to the membrane. These protein interactions may be important for the trafficking of GspB to the cell membrane and its subsequent translocation.  相似文献   

10.
Recent evidence suggests that in Escherichia coli, SecA/SecB and signal recognition particle (SRP) are constituents of two different pathways targeting secretory and inner membrane proteins to the SecYEG translocon of the plasma membrane. We now show that a secY mutation, which compromises a functional SecY-SecA interaction, does not impair the SRP-mediated integration of polytopic inner membrane proteins. Furthermore, under conditions in which the translocation of secretory proteins is strictly dependent on SecG for assisting SecA, the absence of SecG still allows polytopic membrane proteins to integrate at the wild-type level. These results indicate that SRP-dependent integration and SecA/SecB-mediated translocation do not only represent two independent protein delivery systems, but also remain mechanistically distinct processes even at the level of the membrane where they engage different domains of SecY and different components of the translocon. In addition, the experimental setup used here enabled us to demonstrate that SRP-dependent integration of a multispanning protein into membrane vesicles leads to a biologically active enzyme.  相似文献   

11.
The proper extracytoplasmic localization of proteins is an important aspect of mycobacterial physiology and the pathogenesis of Mycobacterium tuberculosis. The protein export systems of mycobacteria have remained unexplored. The Sec-dependent protein export pathway has been well characterized in Escherichia coli and is responsible for transport across the cytoplasmic membrane of proteins containing signal sequences at their amino termini. SecA is a central component of this pathway, and it is highly conserved throughout bacteria. Here we report on an unusual property of mycobacterial protein export--the presence of two homologues of SecA (SecA1 and SecA2). Using an allelic-exchange strategy in Mycobacterium smegmatis, we demonstrate that secA1 is an essential gene. In contrast, secA2 can be deleted and is the first example of a nonessential secA homologue. The essential nature of secA1, which is consistent with the conserved Sec pathway, leads us to believe that secA1 represents the equivalent of E. coli secA. The results of a phenotypic analysis of a Delta secA2 mutant of M. smegmatis are presented here and also indicate a role for SecA2 in protein export. Based on our study, it appears that SecA2 can assist SecA1 in the export of some proteins via the Sec pathway. However, SecA2 is not the functional equivalent of SecA1. This finding, in combination with the fact that SecA2 is highly conserved throughout mycobacteria, suggests a second role for SecA2. The possibility exists that another role for SecA2 is to export a specific subset of proteins.  相似文献   

12.
SecA ATPase is critical for protein translocation across the Escherichia coli inner membrane. To understand this activity further, the high affinity nucleotide binding activity of SecA was characterized. We found that at 4 degrees C SecA homodimer binds one ADP molecule with high affinity. This nucleotide binding activity was conformationally regulated by temperature: at low temperature SecA affinity for ADP was high with a slow exchange rate, whereas at high temperature the converse was true. Azi- and PrlD-SecA proteins that confer azide-resistant and signal sequence suppressor phenotypes were found to have reduced affinity for ADP and accelerated exchange rates compared with wild type SecA. Consistent with this observation, fluorescence and proteolysis studies indicated that these proteins had a conformationally relaxed state at a reduced temperature compared with SecA. The level of Azi- and PrlD-SecA protein was also elevated in inverted membrane vesicles where it displayed higher membrane ATPase activity. These results provide the first direct evidence for conformational regulation of the SecA-dependent nucleotide cycle, its alteration in azi and prlD mutants, and its relevance to in vivo protein export.  相似文献   

13.
In Gram-negative bacteria, two distinct targeting routes assist in the proper localization of secreted and membrane proteins. Signal recognition particle (SRP) mainly targets ribosome-bound nascent membrane proteins, whereas SecB facilitates the targeting of periplasmic and outer membrane proteins. These routes converge at the translocase, a protein-conducting pore in the membrane that consists of the SecYEG complex associated with the peripheral ATPase, SecA. Recent structural studies of the targeting and the translocating components provide insights into how substrates are recognized and suggest a mechanism by which proteins are transported through an aqueous pore in the cytoplasmic membrane.  相似文献   

14.
Bacterial protein export requires two forms of energy input, ATP and the membrane electrochemical potential. Using an in vitro reaction reconstituted with purified soluble and peripheral membrane components, we can now directly measure the translocation-coupled hydrolysis of ATP. This translocation ATPase requires inner membrane vesicles, SecA protein and translocation-competent proOmpA. The stimulatory activity of membrane vesicles can be blocked by either antibody to the SecY protein or by preparing the membranes from a secY-thermosensitive strain which had been incubated at the non-permissive temperature in vivo. The SecA protein itself has more than one ATP binding site. 8-azido-ATP inactivates SecA for proOmpA translocation and for translocation ATPase, yet does not inhibit a low level of ATP hydrolysis inherent in the isolated SecA protein. These data show that the SecA protein has a central role in coupling the hydrolysis of ATP to the transfer of pre-secretory proteins across the membrane.  相似文献   

15.
Protein translocation across the cytoplasmic membrane is an essential process in all bacteria. The Sec system, comprising at its core an ATPase, SecA, and a membrane channel, SecYEG, is responsible for the majority of this protein transport. Recently, a second parallel Sec system has been described in a number of gram-positive species. This accessory Sec system is characterized by the presence of a second copy of the energizing ATPase, SecA2; where it has been studied, SecA2 is responsible for the translocation of a subset of Sec substrates. In common with many pathogenic gram-positive species, Clostridium difficile possesses two copies of SecA. Here, we describe the first characterization of the C. difficile accessory Sec system and the identification of its major substrates. Using inducible antisense RNA expression and dominant-negative alleles of secA1 and secA2, we demonstrate that export of the S-layer proteins (SLPs) and an additional cell wall protein (CwpV) is dependent on SecA2. Accumulation of the cytoplasmic precursor of the SLPs SlpA and other cell wall proteins was observed in cells expressing dominant-negative secA1 or secA2 alleles, concomitant with a decrease in the levels of mature SLPs in the cell wall. Furthermore, expression of either dominant-negative allele or antisense RNA knockdown of SecA1 or SecA2 dramatically impaired growth, indicating that both Sec systems are essential in C. difficile.  相似文献   

16.
SecA is the precursor protein binding subunit of the bacterial precursor protein translocase, which consists of the SecY/E protein as integral membrane domain. SecA is an ATPase, and couples the hydrolysis of ATP to the release of bound precursor proteins to allow their proton-motive-force-driven translocation across the cytoplasmic membrane. A putative ATP-binding motif can be predicted from the amino acid sequence of SecA with homology to the consensus Walker A-type motif. The role of this domain is not known. A lysine residue at position 106 at the end of the glycine-rich loop in the A motif of the Bacillus subtilis SecA was replaced by an asparagine through site-directed mutagenesis (K106N SecA). A similar replacement was introduced at an adjacent lysine residue at position 101 (K101N SecA). Wild-type and mutant SecA proteins were expressed to a high level and purified to homogeneity. The catalytic efficacy (kcat/km) of the K106N SecA for lipid-stimulated ATP hydrolysis was only 1% of that of the wild-type and K101N SecA. K106N SecA retained the ability to bind ATP, but its ATPase activity was not stimulated by precursor proteins. Mutant and wild-type SecA bind with similar affinity to Escherichia coli inner membrane vesicles and insert into a phospholipid mono-layer, in contrast to the wild type, membrane insertion of the K106N SecA was not prevented by ATP. K106N SecA blocks the ATP and proton-motive-force-dependent chase of a translocation intermediate to fully translocated proOmpA. It is concluded that the GKT motif in the amino-terminal domain of SecA is part of the catalytic ATP-binding site. This site may be involved in the ATP-driven protein recycling function of SecA which allows the release of SecA from its association with precursor proteins, and the phospholipid bilayer.  相似文献   

17.
SecA protein, the ATPase promoting translocation of proteins across the Escherichia coli inner membrane, contains two ATP-binding domains that differ greatly in their affinity for bound nucleotide. In order to define more precisely the location of the high-affinity nucleotide-binding site, oligonucleotide-directed mutagenesis was used to introduce cysteine residues into the SecA sequence, and a cysteine-specific cleavage reagent was employed to generate defined peptides of SecA protein after photocross-linking with [α-32P]-ATP. This analysis revealed that the nucleotide was cross-linked between amino acid residues 75 and 97 of SecA protein. The biochemical function of the high affinity ATP-binding domain was explored by subcellular fractionation studies which demonstrated that SecA proteins defective in this region were found almost exclusively in their integral membrane form, while SecA proteins with defects in the low-affinity ATP-domain showed a normal distribution of cytosolic, peripheral and integral membrane forms. Interestingly, the SecA51(Ts) protein that has a Leu to Pro substitution at amino acid residue 43 bound ATP with high affinity, but its fractionation pattern and translocation ATPase activity were similar to those of proteins with defects in the high-affinity ATP-binding site. These results delimit more precisely the high-affinity ATP-binding domain of SecA, indicate the importance of the early amino-terminal region of SecA protein in the functioning of this domain, and demonstrate the role of this domain in regulating penetration of SecA protein into the inner membrane. Our results lead to a simple model for the regulation of a cycle of SecA insertion into, and de-insertion from, the inner membrane by the activity of the high-affinity ATP-binding domain.  相似文献   

18.
SecA protein, a cytoplasmic ATPase, plays a central role in the secretion of signal peptide-containing proteins. Here, we examined effects of signal peptide and ATP on the oligomerization, conformational change, and membrane binding of SecA. The wild-type (WT) signal peptide from the ribose-binding protein inhibited ATP binding to soluble SecA and stimulated release of ATP already bound to the protein. The signal peptide enhanced the oligomerization of soluble SecA, while ATP induced dissociation of SecA oligomer. Analysis of SecA unfolding with urea or heat revealed that the WT signal peptide induces an open conformation of soluble SecA, while ATP increased the compactness of SecA. We further obtained evidences that the signal peptide-induced oligomerization and the formation of open structure enhance the membrane binding of SecA, whereas ATP inhibits the interaction of soluble SecA with membranes. On the other hand, the complex of membrane-bound SecA and signal peptide was shown to resume nucleotide-binding activity. From these results, we propose that the translocation components affect the degree of oligomerization of soluble SecA, thereby modulating the membrane binding of SecA in early translocation pathway. A possible sequential interaction of SecA with signal peptide, ATP, and cytoplasmic membrane is discussed.  相似文献   

19.
The Bacillus subtilis secA homolog, div, was cloned and expressed at a variety of different levels in wild-type and secA mutant strains of Escherichia coli. Analysis of Div function showed that it could not substitute for SecA despite being present at a wide range of concentrations at or above the physiological level. Location of regions of functional similarity between the two proteins using div-secA chimeras revealed that only the amino-terminal ATP-binding domain of Div could functionally substitute for the corresponding region of SecA. The role of this domain was revealed by subcellular localization experiments that demonstrated that in both B. subtilis and E. coli Div had cytoplasmic, peripheral, and integral membrane distributions similar to those of its SecA homolog and that an intact ATP-binding domain was essential for regulating integration of this protein into the plasma membrane. These results suggest strongly that the previously observed cycle of membrane binding, insertion, and deinsertion of SecA protein (A. Economou and W. Wickner, Cell 78:835-843, 1994) is common to these two bacteria, and they demonstrate the importance of the conserved ATP-binding domain in promoting this cycle.  相似文献   

20.
Precursor protein translocation across the Escherichia coli inner membrane is mediated by the translocase, which is composed of a heterotrimeric integral membrane protein complex with SecY, SecE, and SecG as subunits and peripherally bound SecA. Cross-linking experiments were conducted to study which proteins are associated with SecA in vivo. Formaldehyde treatment of intact cells results in the specific cross-linking of SecA to SecY. Concurrently with the increased membrane association of SecA, an elevated amount of cross-linked product was obtained in cells harboring overproduced SecYEG complex. Cross-linked SecA copurified with hexahistidine-tagged SecY and not with SecE. The data indicate that SecA and SecY coexist as a stable complex in the cytoplasmic membrane in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号