首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mouse lung epithelial cell strain NAL 1A has been confirmed as type 2 pneumocyte-related by immunostaining with a type 2 pneumocyte-specific antiserum. Cytoplasmic immunoreactivity with the antiserum paralleled the appearance of phospholipid-containing osmiophilic cytoplasmic inclusions, which were much more abundant in confluent cell cultures at low passage number than in exponentially growing cultures. However, phospholipid analysis indicated that NAL 1A cells were impoverished in phosphatidylglycerol as compared to lung type 2 pneumocytes. Confluent cultures of the neoplastic cell lines NAL 1AM and NUL 1 did not reveal any reactivity with the specific antiserum.  相似文献   

2.
NAL1A is a murine type 2 pneumocyte-related cell line cultured from normal BALB/c adult mouse lung. In vitro spontaneous transformation of 3 out of 7 clones of NAL1A has led to the isolation and establishment in continuous cell culture of sibling-related non-neoplastic (NAL1A) and spontaneously arising neoplastic (NAL1As) cell strains. NAL1As cells exhibited a similar phenotype to cloned NUL1 cells cultured from urethane-induced mouse lung adenomas. All NAL1As and NUL1 clones grew vigorously in 0.3% agar and formed invasive, poorly differentiated carcinomas following subcutaneous inoculation into immunesuppressed mice. Several subcutaneous nodules metastasised preferentially to the lung. All spontaneous and chemically-derived malignant clones were less differentiated than the non-malignant clones as assessed by staining with a type 2 pneumocyte-specific polyclonal antiserum. The clones described in this report form a useful model in the study of spontaneous and chemically-induced neoplastic transformation in mouse epithelial lung cells.  相似文献   

3.
Malignant cell lines related to mouse lung alveologenic carcinoma have been established from urethane-induced tumors and after in vitro spontaneous transformation of preneoplastic cell lines. Both the chemically and spontaneously transformed cell lines formed invasive, poorly differentiated carcinomas with secondary lung deposits when implanted subcutaneously in immune-suppressed mice. They differed from the related preneoplastic cell line in coordinately exhibiting anchorage-independent growth, reduced epidermal growth factor receptor activity and absence of pericellular fibronectin. These data suggest that similar molecular events may occur in type 2 pneumocyte-related cells in order to generate mouse lung alveologenic adenomas and carcinomas by both spontaneous and chemical carcinogen induction mechanisms. A reduced level of pericellular fibronectin was also demonstrated in an in situ compressive urethane-induced mouse lung adenoma. Loss of pericellular fibronectin may therefore be an early and persistent phenotypic alteration during transformation to the alveologenic adenoma and carcinoma.Abbreviations EGF epidermal growth factor - TGF transforming growth factor  相似文献   

4.
Summary Previous papers reported on a specific antigenic marker for the great alveolar (type-II) cell of the mouse lung and described its recognition by a specific rabbit antiadult mouse lung serum. In the present study light- and electron-microscopical immunohistochemistry on fixed mouse lung sections showed the presence of the marker on the alveolar surface. The antigenic determinants recognized by the antibody were further characterized by immunoblotting and immunoprecipitation studies after in vitro translation of mouse lung messenger RNA.Immunoblots of a surfactant-enriched pellet of a bronchoalveolar lavage fraction of mouse lung showed that the antibody reacted with surfactant-associated proteins having apparent molecular weights of about 27,000, 32,000, and 38,000 daltons in SDS gels. Immunoblots of mouse-lung homogenate revealed the presence of 27,000, 30,000, 39,000, and 41,000 dalton proteins, presumably also surfactant-associated proteins. Immunoprecipitation after in vitro translation of mouse-lung mRNA showed specific reactivity only with a 12,000 dalton polypeptide, a component of the cell marker we were unable to relate to surfactant. Our findings indicate that the 12,000 dalton component of the antigenic marker for the great alveolar cell is a polypeptide whose synthesis is a lung-specific process and that the immunoreaction of the larger and surfactant-associated components is due to post-translational modifications.  相似文献   

5.
Previous papers reported on a specific antigenic marker for the great alveolar (type-II) cell of the mouse lung and described its recognition by a specific rabbit anti-adult mouse lung serum. In the present study light- and electron-microscopical immunohistochemistry on fixed mouse lung sections showed the presence of the marker on the alveolar surface. The antigenic determinants recognized by the antibody were further characterized by immunoblotting and immunoprecipitation studies after in vitro translation of mouse lung messenger RNA. Immunoblots of a surfactant-enriched pellet of a bronchoalveolar lavage fraction of mouse lung showed that the antibody reacted with surfactant-associated proteins having apparent molecular weights of about 27,000, 32,000, and 38,000 daltons in SDS gels. Immunoblots of mouse-lung homogenate revealed the presence of 27,000, 30,000, 39,000, and 41,000 daltons proteins, presumably also surfactant-associated proteins. Immunoprecipitation after in vitro translation of mouse-lung mRNA showed specific reactivity only with a 12,000 dalton polypeptide, a component of the cell marker we were unable to relate to surfactant. Our findings indicate that the 12,000 dalton component of the antigenic marker for the great alveolar cell is a polypeptide whose synthesis is a lung-specific process and that the immunoreaction of the larger and surfactant-associated components is due to post-translational modifications.  相似文献   

6.
7.
Summary Proliferating cell nuclear antigen is expressed in cells from late G1 through the S-phase of the cell cycle. Therefore, antibodies directed against this molecule should provide a probe for labeling immunocytochemically the nuclei of proliferating cells. Herein we demonstrate the feasibility and reliability of this technique by quantifying immunostained pulmonary nuclei. We applied polyclonal and monoclonal antisera to alveolar and bronchiolar pulmonary epithelial cells in various proliferative states in tissue-sections and in vitro. A/J mice had a slightly higher labeling index than C57BL/6J mice, and proliferation in both strains increased dramatically after butylated hydroxytoluene treatment produced compensatory hyperplasia of Type-II pneumocytes. Immunostaining in fetal and neonatal lung samples from mice was higher than in adults. Spontaneous lung adenomas had a higher labeling index than the surrounding normal lung tissue. In addition, new data contained herein demonstrate a strain difference in proliferation of bronchiolar epithelial cells, and quantify the extent to which BHT-induced lung damage increases these proliferative rates. This mammalian nuclear antigen did not cross-react with antiserum to a functionally related bacterial protein, the beta subunit of E. coli DNA polymerase-III holoenzyme.  相似文献   

8.
The Clara cell is believed to be the progenitor of the peripheral airway epithelium, and it produces the surfactant proteins SP-A and SP-B, in addition to the 10-kDa Clara cell secretory protein (CCSP or CC10). To date, attempts to develop Clara cell lines have been unsuccessful. Most such attempts have involved the in vitro insertion of a transforming viral oncogene. We have reported previously the characterization of a differentiated conditionally immortalized murine lung Type II epithelial cell line, T7, from the H-2Kb-tsA58 transgenic mouse. We have also used this mouse model to derive Clara cell lines. In this model, the need for in vitro gene insertion is circumvented by the creation of a transgene, in which the large tumor antigen of a temperature-sensitive strain (tsA58) of the simian virus 40 (SV40) is fused with the major histocompatibility complex promoter H-2Kb. The promoter is active in a wide range of tissues and is induced by interferons (IFN). From the lungs of animals harboring the hybrid construct, we isolated and characterized Clara cells. The cells contain dense secretory granules and mitochondria typical of Clara cells, and express SP-A, SP-B, SP-D, and the Clara cell secretory protein, CC10. Withdrawal of the IFN and elevation of the incubation temperature permit normal cell differentiation similar to that of Clara cells in vivo. This cell line should be very useful for the investigation of normal Clara cell function and gene expression.  相似文献   

9.
Recent human infections caused by the highly pathogenic avian influenza virus H5N1 strains emphasize an urgent need for assessment of factors that allow viral transmission, replication, and intra-airway spread. Important determinants for virus infection are epithelial cell receptors identified as glycans terminated by an alpha2,3-linked sialic acid (SA) that preferentially bind avian strains and glycans terminated by an alpha2,6-linked SA that bind human strains. The mouse is often used as a model for study of influenza viruses, including recent avian strains; however, the selectivity for infection of specific respiratory cell populations is not well described, and any relationship between receptors in the mouse and human lungs is incompletely understood. Here, using in vitro human and mouse airway epithelial cell models and in vivo mouse infection, we found that the alpha2,3-linked SA receptor was expressed in ciliated airway and type II alveolar epithelial cells and was targeted for cell-specific infection in both species. The alpha2,6-linked SA receptor was not expressed in the mouse, a factor that may contribute to the inability of some human strains to efficiently infect the mouse lung. In human airway epithelial cells, alpha2,6-linked SA was expressed and functional in both ciliated and goblet cells, providing expanded cellular tropism. Differences in receptor and cell-specific expression in these species suggest that differentiated human airway epithelial cell cultures may be superior for evaluation of some human strains, while the mouse can provide a model for studying avian strains that preferentially bind only the alpha2,3-linked SA receptor.  相似文献   

10.
Whole-thorax irradiation results in the development of the diffuse inflammatory response alveolitis in C3H/HeJ (C3H) mice and a milder alveolitis with fibrosis in C57BL/6J (B6) mice. In this study, we investigate if this mouse strain difference in response to radiation is due to differences in lung inflammatory cell apoptosis. Mice of the C3H and B6 strains were given a radiation dose of 18 Gy to the thorax and the animals were sacrificed at 11 or 18 weeks following exposure or when they were moribund. Active caspase-3 staining was used to identify apoptotic cells in the alveolar space of histological lung sections from the mice. The apoptotic index of B6 mice was greater than that of C3H mice at 11 weeks postirradiation (17.8% of airspace cells vs. 7.8%, p = 0.028) and in mice sacrificed because of illness (27.3% vs. 14.4%, p = 0.036). No C3H mice survived to the later time point. The inflammatory cells undergoing apoptosis in the mouse lungs were morphologically consistent with alveolar macrophages. We conclude that a difference in inflammatory cell apoptosis may contribute to the disparate pulmonary radiation response of these mouse strains.  相似文献   

11.
Dendritic Cells (DC) represent a key lung immune cell population, which play a critical role in the antigen presenting process and initiation of the adaptive immune response. The study of DCs has largely benefited from the joint development of fluorescence microscopy and knock-in technology, leading to several mouse strains with constitutively labeled DC subsets. However, in the lung most transgenic mice do express fluorescent protein not only in DCs, but also in closely related cell lineages such as monocytes and macrophages. As an example, in the lungs of CX(3)CR1(+/gfp) mice the green fluorescent protein is expressed mostly by both CD11b conventional DCs and resident monocytes. Despite this non-specific staining, we show that a shape criterion can discriminate these two particular subsets. Implemented in a cell tracking code, this quantified criterion allows us to analyze the specific behavior of DCs under inflammatory conditions mediated by lipopolysaccharide on lung explants. Compared to monocytes, we show that DCs move slower and are more confined, while both populations do not have any chemotactism-associated movement. We could generalize from these results that DCs can be automatically discriminated from other round-shaped cells expressing the same fluorescent protein in various lung inflammation models.  相似文献   

12.
Notch/Delta expression in the developing mouse lung   总被引:8,自引:0,他引:8  
  相似文献   

13.
The highly secretory Clara cells play a pivotal role in protecting the lung against inflammation and oxidative stress. This study reports the positional cloning of a novel protein required for Clara cell physiology in mouse lung development. The perinatal lethal N-ethyl-N-nitrosourea-induced l7Rn6(4234SB) allele contained a nonsense mutation in the previously hypothetical gene NM_026304 on chromosome 7. Whereas l7Rn6 mRNA levels were indistinguishable from wild type, l7Rn6(4234SB) homozygotes exhibited decreased expression of the truncated protein, suggesting protein instability. During late gestation, l7Rn6 was widely expressed in the cytoplasm of lung epithelial cells, whereas perinatal expression was restricted to the bronchiolar epithelium. Homozygosity for the l7Rn6(4234SB) allele did not affect early steps in lung patterning, growth, or cellular differentiation. Rather, mutant lungs demonstrated severe emphysematous enlargement of the distal respiratory sacs at birth. Clara cell pathophysiology was evident from decreased cytoplasmic CCSP and SP-B protein levels, enlargement and disorganization of the Golgi complex, and formation of aberrant vesicular structures. Additional support for a role in the secretory pathway derived from l7Rn6 localization to the endoplasmic reticulum. Thus, l7Rn6 represents a novel protein required for organization and/or function of the secretory apparatus in Clara cells in mouse lung.  相似文献   

14.
Strain differences in the intermediate and late phases of the radiation response of mouse lung were investigated histologically. The proportion of lung impairment in mice at 28 and 52 weeks postirradiation and in mice dying of respiratory insufficiency was assessed by scoring lung acini as nonfunctional due to lesions which obstructed airflow, or open and presumably functional. The nine strains tested were divided into three groups on the basis of the late fibrotic response. Group 1 mice, three C57 strains, developed extensive contracted fibrosis and usually showed enough damage to explain late deaths. Group 2, SWR, A, and BALB/c strains, developed foci of contracted fibrosis. Group 3, CBA and two C3H strains, did not form fibrotic scars. Mice in Groups 2 and 3 that died with no pleural effusions appeared to have insufficient late lung damage to account for respiratory distress. Problems with pulmonary blood flow were indicated by evidence of loss of fine vasculature and right ventricular hypertrophy. In nondistressed, late-stage mice in Groups 2 and 3, loss of capillary perfusion in lung parenchyma free of obvious lesions was demonstrated by infusion of colloidal carbon. In one strain, A, an estimate of the proportion of nonperfused lung was made on distressed late-stage mice. Almost 50% of lung acini were nonfunctional as a result of nonperfusion, and an additional 9% of acini were nonfunctional due to lesions obstructing ventilation. It is suggested that nonperfusion of apparently normal lung acini is a major factor in late-phase deaths in those mouse strains which show little or no fibrosis.  相似文献   

15.
Inherited predisposition to lung cancer is a phenotypic trait shared by different mouse inbred strains that show either a high or an intermediate predisposition. Other strains are instead genetically resistant. The Pas1 locus is the major determinant of lung cancer predisposition in the A/J strain (Gariboldi et al. 1993). To define the determinants of susceptibility to lung tumorigenesis in the highly susceptible SWR/J and in the intermediately susceptible BALB/c mice, we analyzed (BALB/c × SWR/J)F2 and (BALB/c × C3H/He)F2 crosses by genetic linkage experiments. The present results provide unequivocal evidence that the same Pas1/+ allele that leads to lung cancer predisposition is shared by A/J, SWR/J, and BALB/c strains. The intermediate susceptibility of the BALB/c strain would result by interaction of Pas1 locus with lung cancer resistance loci. Received: 18 April 1997 / Accepted: 15 June 1997  相似文献   

16.
Pulmonary gas exchange relies on a rich capillary network, which, together with alveolar epithelial type I and II cells, form alveolar septa, the functional units in the lung. Alveolar capillary endothelial cells are critical in maintaining alveolar structure, because disruption of endothelial cell integrity underlies several lung diseases. Here we show that targeted ablation of lung capillary endothelial cells recapitulates the cellular events involved in cigarette smoke-induced emphysema, one of the most prevalent nonneoplastic lung diseases. Based on phage library screening on an immortalized lung endothelial cell line, we identified a lung endothelial cell-binding peptide, which preferentially homes to lung blood vessels. This peptide fused to a proapoptotic motif specifically induced programmed cell death of lung endothelial cells in vitro as well as targeted apoptosis of the lung microcirculation in vivo. As early as 4 days following peptide administration, mice developed air space enlargement associated with enhanced oxidative stress, influx of macrophages, and up-regulation of ceramide. Given that these are all critical elements of the corresponding human emphysema caused by cigarette smoke, these data provide evidence for a central role for the alveolar endothelial cells in the maintenance of lung structure and of endothelial cell apoptosis in the pathogenesis of emphysema-like changes. Thus, our data enable the generation of a convenient mouse model of human emphysema. Finally, combinatorial screenings on immortalized cells followed by in vivo targeting establishes an experimental framework for discovery and validation of additional ligand-directed pharmacodelivery systems.  相似文献   

17.
Maximal lung volume or total lung capacity in experimental animals is dependent on the pressure to which the lungs are inflated. Although 25-30 cm H2O are nominally used for such inflations, mouse pressure-volume (P-V) curves show little flattening on inflation to those pressures. In the present study, we examined P-V relations and mean alveolar chord length in three strains (C3H/HeJ, A/J, and C57BL/6J) at multiple inflation pressures. Mice were anesthetized, and their lungs were degassed in vivo by absorption of 100% O2. P-V curves were then recorded in situ with increasing peak inflation pressure in 10-cm H2O increments up to 90 cm H2O. Lungs were quickly frozen at specific pressures for morphometric analysis. The inflation limbs never showed the appearance of a plateau, with lung volume increasing 40-60% as inflation pressure was increased from 30 to 60 cm H2O. In contrast, parallel flat deflation limbs were always observed, regardless of the inflation pressure, indicating that the presence of a flat deflation curve cannot be used to justify measurement of total lung capacity in mice. Alveolar size increased monotonically with increasing pressure in all strains, and there was no evidence of irreversible lung damage from these inflations to high pressures. These results suggest that the mouse lung never reaches a maximal volume, even up to nonphysiological pressures >80 cm H2O.  相似文献   

18.
After preparation of an antiserum specifically recognizing the antigenic determinants of adult mouse lung tissue, the existence of a lung-specific antigen could be demonstrated by immunodiffusion studies in agar. This specific anti-adult lung serum was used in immunofluorescence studies to localize the corresponding antigen in adult mouse lung tissue. Comparison of the results of immunofluorescent staining with those of histochemical enzyme staining showed that the lung-specific antigen is localized in the great alveolar cell.Subsequently, the same antiserum was used in immunodiffusion studies to follow the development of the lung-specific antigen in the mouse embryo. The results indicate that the lung-specific antigen first appears in embryos with a weight of between 760 and 900 mg, which corresponds with a developmental age of between 16.76 and 17.23 days.  相似文献   

19.
R F Bauer  L O Arthur  D L Fine 《In vitro》1976,12(8):558-563
Five different mouse mammary tumor cell lines were propagated in a serum free medium. Evaluation of growth characteristics, including logarithmic growth, cell population increase, protein production and days to confluency, showed serum-free medium comparable to serum-containing medium. Mouse mammary tumor virus expression and production, in C3H and GR tumor cell lines, as determined by virus particle counting and RNA dependent DNA polymerase assays, subsequent to dexamethasone stimulation revealed equivalent to higher levels of virus in serum-free medium as compared to serum-containing medium.  相似文献   

20.
Summary Five different mouse mammary tumor cell lines were propagated in a serum free medium. Evaluation of growth characteristics, including logarithmic growth, cell population increase, protein production and days to confluency, showed serum-free medium comparable to serum-containing medium. Mouse mammary tumor virus expression and production, in C3H and GR tumor cell lines, as determined by virus particle counting and RNA dependent DNA polymerase assays, subsequent to dexamethasone stimulation revealed equivalent to higher levels of virus in serum-free medium as compared to serum-containing medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号