共查询到20条相似文献,搜索用时 0 毫秒
1.
E Bianchi S Orrù F Dal Piaz R Ingenito A Casbarra G Biasiol U Koch P Pucci A Pessi 《Biochemistry》1999,38(42):13844-13852
One of the most promising approaches to anti-hepatitis C virus drug discovery is the development of inhibitors of the virally encoded protease NS3. This chymotrypsin-like serine protease is essential for the maturation of the viral polyprotein, and processing requires complex formation between NS3 and its cofactor NS4A. Recently, we reported on the discovery of potent cleavage product-derived inhibitors [Ingallinella et al. (1998) Biochemistry 37, 8906-8914]. Here we study the interaction of these inhibitors with NS3 and the NS3/cofactor complex. Inhibitors bind NS3 according to an induced-fit mechanism. In the absence of cofactor different binding modes are apparent, while in the presence of cofactor all inhibitors show the same binding mode with a small rearrangement in the NS3 structure, as suggested by circular dichroism spectroscopy. These data are consistent with the hypothesis that NS4A complexation induces an NS3 structure that is already (but not entirely) preorganized for substrate binding not only for what concerns the S' site, as already suggested, but also for the S site. Inhibitor binding to the NS3/cofactor complex induces the stabilization of the enzyme structure as highlighted by limited proteolysis experiments. We envisage that this may occur through stabilization of the individual N-terminal and C-terminal domains where the cofactor and inhibitor, respectively, bind and subsequent tightening of the interdomain interaction in the ternary complex. 相似文献
2.
Truncation and substitution SAR studies of azapeptide-based inhibitors of the Hepatitis C virus (HCV) NS3 serine protease have been performed. These azapeptides were designed from the HCV polyprotein's NS5A-NS5B trans cleavage junction and contained an azaamino acid residue at the P1 position. These azapeptides exhibited predominantly non-acylating, competitive inhibition, contrary to classical azapeptides. 相似文献
3.
《Bioorganic & medicinal chemistry letters》2014,24(3):969-972
A sulfonamide replacement of the P2–P3 amide bond in the context of macrocyclic HCV NS3 protease inhibitors was investigated. These analogs displayed good inhibitory potency in the absence of any P3 capping group. The synthesis and preliminary SAR are described. 相似文献
4.
Poliakov A Johansson A Akerblom E Oscarsson K Samuelsson B Hallberg A Danielson UH 《Biochimica et biophysica acta》2004,1672(1):51-59
The selectivity of hepatitis C virus (HCV) non-structural protein 3 (NS3) protease inhibitors was determined by evaluating their inhibitory effect on other serine proteases (human leukocyte elastase (HLE), porcine pancreatic elastase (PPE), bovine pancreatic chymotrypsin (BPC)) and a cysteine protease (cathepsin B). For these peptide inhibitors, the P1-side chain and the C-terminal group were the major determinants of selectivity. Inhibitors with electrophilic C-terminal residues were generally non-selective while compounds with non-electrophilic C-terminal residues were more selective. Furthermore, compounds with P1 aminobutyric acid residues were non-selective, while 1-aminocyclopropane-1-carboxylic acid (ACPC) and norvaline-based inhibitors were generally selective. The most potent and selective inhibitors of NS3 protease tested contained a non-electrophilic phenyl acyl sulfonamide C-terminal residue. HLE was most likely to be inhibited by the HCV protease inhibitors, in agreement with similar substrate specificities for these enzymes. The identified structure-activity relationships for selectivity are of significance for design of selective HCV NS3 protease inhibitors. 相似文献
5.
X. Christopher Sheng Hyung-Jung Pyun Kleem Chaudhary Jianying Wang Edward Doerffler Melissa Fleury Darren McMurtrie Xiaowu Chen William E. Delaney Choung U. Kim 《Bioorganic & medicinal chemistry letters》2009,19(13):3453-3457
A novel class of phosphonate derivatives was designed to mimic the interaction of product-like carboxylate based inhibitors of HCV NS3 protease. A phosphonic acid (compound 2) was demonstrated to be a potent HCV NS3 protease inhibitor, and a potential candidate for treating HCV infection. The syntheses and preliminary biological evaluation of this phosphonate class of inhibitor are described. 相似文献
6.
The hepatitis C virus NS3 protease is responsible for the processing of the nonstructural region of viral precursor polyprotein in infected hepatic cells. NS3 has been considered a target for drug discovery for a long time. NS3 is a zinc-dependent serine protease. However, the zinc ion is not involved in the catalytic mechanism, because it is bound far away from the active site. Thus, zinc is essential for the structural integrity of the protein and it is considered to have a structural role. The first thermodynamic study on the conformational equilibrium and stability of NS3 and the effect of zinc on such equilibrium is presented here. In agreement with a previous calorimetric study on the binding of zinc to NS3, the global unfolding heat capacity is dominated by the zinc dissociation step, suggesting that the binding of zinc induces a significant structural rearrangement of the protein. In addition, contrary to other homologous zinc-dependent proteases, the zinc-free NS3 protease is not completely unstructured. It is apparent that the conformational landscape of hepatitis C virus NS3 protease is fairly complex due to its intrinsic plasticity, and to the interactions with its different effectors (zinc and the accessory viral protein NS4A) and their modulation of the population of the different conformational states. 相似文献
7.
Alpha-ketoacids are potent slow binding inhibitors of the hepatitis C virus NS3 protease 总被引:1,自引:0,他引:1
Narjes F Brunetti M Colarusso S Gerlach B Koch U Biasiol G Fattori D De Francesco R Matassa VG Steinkühler C 《Biochemistry》2000,39(7):1849-1861
The replication of the hepatitis C virus (HCV), an important human pathogen, crucially depends on the proteolytic maturation of a large viral polyprotein precursor. The viral nonstructural protein 3 (NS3) harbors a serine protease domain that plays a pivotal role in this process, being responsible for four out of the five cleavage events that occur in the nonstructural region of the HCV polyprotein. We here show that hexapeptide, tetrapeptide, and tripeptide alpha-ketoacids are potent, slow binding inhibitors of this enzyme. Their mechanism of inhibition involves the rapid formation of a noncovalent collision complex in a diffusion-limited, electrostatically driven association reaction followed by a slow isomerization step resulting in a very tight complex. pH dependence experiments point to the protonated catalytic His 57 as an important determinant for formation of the collision complex. K(i) values of the collision complexes vary between 3 nM and 18.5 microM and largely depend on contacts made by the peptide moiety of the inhibitors. Site-directed mutagenesis indicates that Lys 136 selectively participates in stabilization of the tight complex but not of the collision complex. A significant solvent isotope effect on the isomerization rate constant is suggestive of a chemical step being rate limiting for tight complex formation. The potency of these compounds is dominated by their slow dissociation rate constants, leading to complex half-lives of 11-48 h and overall K(i) values between 10 pM and 67 nM. The rate constants describing the formation and the dissociation of the tight complex are relatively independent of the peptide moiety and appear to predominantly reflect the intrinsic chemical reactivity of the ketoacid function. 相似文献
8.
An NS3 serine protease inhibitor abrogates replication of subgenomic hepatitis C virus RNA 总被引:6,自引:0,他引:6
Pause A Kukolj G Bailey M Brault M Dô F Halmos T Lagacé L Maurice R Marquis M McKercher G Pellerin C Pilote L Thibeault D Lamarre D 《The Journal of biological chemistry》2003,278(22):20374-20380
The hepatitis C virus (HCV) NS3 protease is essential for polyprotein maturation and viral propagation, and it has been proposed as a suitable target for antiviral drug discovery. An N-terminal hexapeptide cleavage product of a dodecapeptide substrate identified as a weak competitive inhibitor of the NS3 protease activity was optimized to a potent and highly specific inhibitor of the enzyme. The effect of this potent NS3 protease inhibitor was evaluated on replication of subgenomic HCV RNA and compared with interferon-alpha (IFN-alpha), which is currently used in the treatment of HCV-infected patients. Treatment of replicon-containing cells with the NS3 protease inhibitor or IFN-alpha showed a dose-dependent decrease in subgenomic HCV RNA that reached undetectable levels following a 14-day treatment. Kinetic studies in the presence of either NS3 protease inhibitor or IFN-alpha also revealed similar profiles in HCV RNA decay with half-lives of 11 and 14 h, respectively. The finding that an antiviral specifically targeting the NS3 protease activity inhibits HCV RNA replication further validates the NS3 enzyme as a prime target for drug discovery and supports the development of NS3 protease inhibitors as a novel therapeutic approach for HCV infection. 相似文献
9.
The hepatitis C virus NS2/3 protease 总被引:1,自引:0,他引:1
The hepatitis C virus NS2/3 protein is a highly hydrophobic protease responsible for the cleavage of the viral polypeptide between non-structural proteins NS2 and NS3. However, many aspects of the NS2/3 protease's role in the viral life cycle and mechanism of action remain unknown. Based on the recently elucidated crystal structure of NS2, NS2/3 has been proposed to function as a cysteine protease despite its lack of sequence homology to proteases of known function. In addition, although shown to be required for HCV genome replication and persistent infection in a chimpanzee, the role of NS2/3 cleavage in the viral life cycle has not yet been fully investigated. However, several recent studies are beginning to clarify possible roles of the cleaved NS2 protein in modulation of host cell gene expression and apoptosis. 相似文献
10.
Nurbo J Peterson SD Dahl G Helena Danielson U Karlén A Sandström A 《Bioorganic & medicinal chemistry》2008,16(10):5590-5605
In an effort to develop a new type of HCV NS3 peptidomimetic inhibitor, a series of tripeptide inhibitors incorporating a mix of alpha- and beta-amino acids has been synthesized. To understand the structural implications of beta-amino acid substitution, the P(1), P(2), and P(3) positions of a potent tripeptide scaffold were scanned and combined with carboxylic acid and acyl sulfonamide C-terminal groups. Inhibition was evaluated and revealed that the structural changes resulted in a loss in potency compared with the alpha-peptide analogues. However, several compounds exhibited muM potency. Inhibition data were compared with modeled ligand-protein binding poses to understand how changes in ligand structure affected inhibition potency. The P(3) position seemed to be the least sensitive position for beta-amino acid substitution. Moreover, the importance of a proper oxyanion hole interaction for good potency was suggested by both inhibition data and molecular modeling. To gain further insight into the structural requirements for potent inhibitors, a three-dimensional quantitative structure-activity relationship (3D-QSAR) model has been constructed using comparative molecular field analysis (CoMFA). The most predictive CoMFA model has q(2)=0.48 and r(pred)(2)=0.68. 相似文献
11.
N Kikuchi K Nagata M Shin K Mitsushima H Teraoka N Yoshida 《Journal of biochemistry》1989,106(6):1059-1063
Arg-42 or Lys-43 or Arg-44 of human pancreatic secretory trypsin inhibitor (PSTI) was replaced by Thr or Ser by site-directed mutagenesis, and the inactivation rates of the mutants after mixing with human trypsin were compared with that of the natural form. The inactivation rate decreased for one mutant (Arg-44----Ser), whereas no change was observed for another (Arg-42----Thr) and an increase was observed for a third (Lys-43----Thr). Kinetic studies on the interactions between human trypsin and synthetic peptides, comprising the regions of Phe39-Ser47 of the respective PSTI species, showed that human trypsin cleaved the Arg42-Lys43 bond preferentially to the Arg44-Gln45 bond. However, it is cleavage of the latter bond that is thought to cause inactivation of human PSTI. These results suggest that the Arg44-Gln45 bond of human PSTI is responsible for its inhibitory activity, and inactivation of human PSTI is probably caused by deletion of the dipeptide Lys43-Arg44. 相似文献
12.
The multiplicity of human pancreatic secretory trypsin inhibitor 总被引:1,自引:0,他引:1
Four forms of pancreatic secretory trypsin inhibitor (PSTI; A1, A2, B, and C) were purified from human pancreatic juice. According to sequence results, the primary structure of B was different from that reported earlier (Greene, L.J., et al. (1976) Method Enzymol. 45, 813-825) at two positions, i.e. Asn21----Asp21, Asp29----Asn29. A1 and A2 were deamidated forms of B judging from peptide mappings with Staphylococcus aureus V8 protease. Gln45 in B was replaced by Glu in A1 and Gln51 in B was replaced by Glu in A2. C was an inhibitor lacking five amino acid residues from the amino terminal of B. B and C inhibited human cationic trypsin activity stoichiometrically with similar dissociation constants, but A1 and A2 showed poorer trypsin inhibitory activity than B and C. 相似文献
13.
Mechanistic and kinetic characterization of hepatitis C virus NS3 protein interactions with NS4A and protease inhibitors 总被引:1,自引:0,他引:1
The mechanism and kinetics of the interactions between ligands and immobilized full‐length hepatitis C virus (HCV) genotype 1a NS3 have been characterized by SPR biosensor technology. The NS3 interactions for a series of NS3 protease inhibitors as well as for the NS4A cofactor, represented by a peptide corresponding to the sequence interacting with the enzyme, were found to be heterogeneous. It may represent interactions with two stable conformations of the protein. The NS3–NS4A interaction consisted of a high‐affinity (KD = 50 nM) and a low‐affinity (KD = 2 µM) interaction, contributing equally to the overall binding. By immobilizing NS3 alone or together with NS4A it was shown that all inhibitors had a higher affinity for NS3 in the presence of NS4A. NS4A thus has a direct effect on the binding of inhibitors to NS3 and not only on catalysis. As predicted, the mechanism‐based inhibitor VX 950 exhibited a time‐dependent interaction with a slow formation of a stable complex. BILN 2061 or ITMN‐191 showed no signs of time‐dependent interactions, but ITMN‐191 had the highest affinity of the tested compounds, with both the slowest dissociation (koff) and fastest association rate, closely followed by BILN 2061. The koff for the inhibitors correlated strongly with their NS3 protease inhibitory effect as well as with their effect on replication of viral proteins in replicon cell cultures, confirming the relevance of the kinetic data. This approach for obtaining kinetic and mechanistic data for NS3 protease inhibitor and cofactor interactions is expected to be of importance for understanding the characteristics of HCV NS3 functionality as well as for anti‐HCV lead discovery and optimization. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
14.
Anna Lampa Angelica E. Ehrenberg Sofia S. Gustafsson Aparna Vema Eva Åkerblom Gunnar Lindeberg Anders Karlén U. Helena Danielson Anja Sandström 《Bioorganic & medicinal chemistry》2010,18(14):5413-5424
Phenylglycine has proved to be a useful P2 residue in HCV NS3 protease inhibitors. A novel π–π-interaction between the phenylglycine and the catalytic H57 residue of the protease is postulated. We hypothesized that the introduction of a vinyl on the phenylglycine might strengthen this π–π-interaction. Thus, herein is presented the synthesis and inhibitory potency of a series of acyclic vinylated phenylglycine-based HCV NS3 protease inhibitors. Surprisingly, inhibitors based on both d- and l-phenylglycine were found to be effective inhibitors, with a slight preference for the d-epimers. Furthermore, prime-side alkenylic extension of the C-terminal acylsulfonamide group gave significantly improved inhibitors with potencies in the nanomolar range (~35 nM), potencies which were retained on mutant variants of the protease. 相似文献
15.
Clarke MO Byun D Chen X Doerffler E Leavitt SA Sheng XC Yang CY Kim CU 《Bioorganic & medicinal chemistry letters》2012,22(2):1095-1098
A novel, potent, and orally bioavailable class of product-like inhibitors of the HCV NS3 protease was discovered by constraining the P2-P3 amide bond and the P3 hydrocarbon substituent to the protease-bound conformation. This preorganization was accomplished by incorporation of the P2-P3 amide into a six-membered ring attached to the P2-proline 5-position. Isothermal calorimetric characterization of the role of hydrocarbon substitution of this six-membered ring, upon binding the HCV NS3 protease, was found to be exclusively entropic in nature. The synthesis, preliminary SAR and pharmacokinetic profiling of this compact, indolizidinone-derived scaffold are described. 相似文献
16.
Ortqvist P Peterson SD Kerblom E Gossas T Sabnis YA Fransson R Lindeberg G Helena Danielson U Karlén A Sandström A 《Bioorganic & medicinal chemistry》2007,15(3):1448-1474
Molecular modeling and inhibitory potencies of tetrapeptide protease inhibitors of HCV NS3 proposed phenylglycine as a new promising P2 residue. The results suggest that phenylglycine might be capable of interacting with the NS3 (protease-helicase/NTPase) in ways not possible for the common P2 proline-based inhibitors. Thus, a series of tripeptides, both linear and macrocyclic, based on p-hydroxy-phenylglycine in the P2 position were prepared and their inhibitory effect determined. When the p-hydroxy group was replaced by methoxy, isoquinolin-, or quinolinyloxy functions, inhibitors with improved potencies were obtained. The P2 phenylglycine-based inhibitors were further optimized by C-terminal extension to acyl sulfonamides and by P1-P3 cyclization, which gave products with inhibition constants in the nanomolar range ( approximately 75nM). 相似文献
17.
Luciana Bonome Zeminian Juliana Lara Padovani Sílvia Maria Corvino Giovanni Faria Silva Maria Inês de Moura Campos Pardini Rejane Maria Tommasini Grotto 《Memórias do Instituto Oswaldo Cruz》2013,108(1):13-17
The goal of treatment of chronic hepatitis C is to achieve a sustained virological response, which is defined as exhibiting undetectable hepatitis C virus (HCV) RNA levels in serum following therapy for at least six months. However, the current treatment is only effective in 50% of patients infected with HCV genotype 1, the most prevalent genotype in Brazil. Inhibitors of the serine protease non-structural protein 3 (NS3) have therefore been developed to improve the responses of HCV-infected patients. However, the emergence of drug-resistant variants has been the major obstacle to therapeutic success. The goal of this study was to evaluate the presence of resistance mutations and genetic polymorphisms in the NS3 genomic region of HCV from 37 patients infected with HCV genotype 1 had not been treated with protease inhibitors. Plasma viral RNA was used to amplify and sequence the HCV NS3 gene. The results indicate that the catalytic triad is conserved. A large number of substitutions were observed in codons 153, 40 and 91; the resistant variants T54A, T54S, V55A, R155K and A156T were also detected. This study shows that resistance mutations and genetic polymorphisms are present in the NS3 region of HCV in patients who have not been treated with protease inhibitors, data that are important in determining the efficiency of this new class of drugs in Brazil. 相似文献
18.
Activity of purified hepatitis C virus protease NS3 on peptide substrates. 总被引:5,自引:9,他引:5 下载免费PDF全文
C Steinkühler A Urbani L Tomei G Biasiol M Sardana E Bianchi A Pessi R De Francesco 《Journal of virology》1996,70(10):6694-6700
The protease domain of the hepatitis C virus (HCV) protein NS3 was expressed in Escherichia coli, purified to homogeneity, and shown to be active on peptides derived from the sequence of the NS4A-NS4B junction. Experiments were carried out to optimize protease activity. Buffer requirements included the presence of detergent, glycerol, and dithiothreitol, pH between 7.5 and 8.5, and low ionic strength. C- and N-terminal deletion experiments defined a peptide spanning from the P6 to the P4' residue as a suitable substrate. Cleavage kinetics were subsequently measured by using decamer P6-P4' peptides corresponding to all intermolecular cleavage sites of the HCV polyprotein. The following order of cleavage efficiency, in terms of kcat/Km, was determined: NS5A-NS5B > NS4A-NS4B >> NS4B-NS5A. A 14-mer peptide containing residues 21 to 34 of the protease cofactor NS4A (Pep4A 21-34), when added in stoichiometric amounts, was shown to increase cleavage rates of all peptides, the largest effect (100-fold) being observed on the hydrolysis of the NS4B-NS5A decamer. From the kinetic analysis of cleavage data, we conclude that (i) primary structure is an important determinant of the efficiency with which each site is cleaved during polyprotein processing, (ii) slow cleavage of the NS4B-NS5A site in the absence of NS4A is due to low binding affinity of the enzyme for this site, and (iii) formation of a 1:1 complex between the protease and Pep4A 21-34 is sufficient and required for maximum activation. 相似文献
19.
Malancona S Colarusso S Ontoria JM Marchetti A Poma M Stansfield I Laufer R Di Marco A Taliani M Verdirame M Gonzalez-Paz O Matassa VG Narjes F 《Bioorganic & medicinal chemistry letters》2004,14(17):4575-4579
SAR on the phenethylamide 1 (Ki 1.2 microM) in the P2- and the P'-position led to potent inhibitors, one of which showed good exposure and low clearance when administered intramuscularly to rat. 相似文献
20.
Chen KX Njoroge FG Prongay A Pichardo J Madison V Girijavallabhan V 《Bioorganic & medicinal chemistry letters》2005,15(20):4475-4478
The 17-membered phenylalanine-based macrocycle 6 was prepared starting from 3-iodo-phenylalanine. Macrocyclization of alkene phenyl iodide 5 was effected through a palladium-catalyzed Heck reaction. The macrocyclic alpha-ketoamides were active inhibitors of the HCV NS3 protease, with the C-terminal acids and amides being more potent than tert-butyl esters. 相似文献