首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Endogenous type-C RNA viruses of mammalian cells.   总被引:32,自引:0,他引:32  
  相似文献   

4.
The ordered structure of 5S RNA   总被引:9,自引:0,他引:9  
  相似文献   

5.
RNA viruses: genome structure and evolution   总被引:3,自引:0,他引:3  
The explosive pace of sequencing of RNA viruses is leading to rapid advances in our understanding of the evolution of these viruses and of the ways in which their genomes are organized and expressed. New insights are coming not only from genomic nucleotide sequence comparisons, but also from direct sequencing of transcribed mRNAs and of RNAs that serve as intermediates in replication.  相似文献   

6.
Traditional methods that rely on viral isolation and culture techniques continue to be the gold standards used for detection of infectious viral particles. However, new techniques that rely on visualization of live cells can shed light on understanding virus-host interaction for early stage detection and potential drug discovery. Live-cell imaging techniques that incorporate fluorescent probes into viral components provide opportunities for understanding mRNA expression, interaction, and virus movement and localization. Other viral replication events inside a host cell can be exploited for non-invasive detection, such as single-virus tracking, which does not inhibit viral infectivity or cellular function. This review highlights some of the recent advances made using these novel approaches for visualization of viral entry and replication in live cells.  相似文献   

7.
The nucleotide sequences in viral RNA from purified murine sarcoma and hamster leukemia viruses (S+H+) from HTG-1 cells and Rauscher leukemia virus (RLV) from JLS-V 9 cells have been examined by polynucleotide agarose affinity chromatography. There is at least one copy of poly(A) sequences per genomic viral RNA molecule. After heat denaturation of genomic viral RNA (S+H+), there are two types of viral subunits for 34S and 28S species: one that contains poly(A) sequences and one that does not. There are no detectable poly(U) tracts in the viral RNA. However, poly(C) sequences and poly(G) tracts were detected in viral RNA, although less poly(G) than poly(C) tracts were observed. In addition, heat-denatured genomic viral RNA has a greater affinity for poly(G) agarose column than native genomic viral RNA.  相似文献   

8.
DNA polymerases purified by the same procedure from four mammalian RNA viruses, simian sarcoma virus type 1, gibbon ape lymphoma virus, Mason-Pfizer monkey virus, and Rauscher murine leukemia virus are capable of transcribing heteropolymeric regions of viral 70S RNA without any other primer. In this reconstituted system the enzymes from simian sarcoma virus type 1, Mason-Pfizer monkey virus, and Rauscher murine leukemia virus transcribe viral 70S RNA almost as efficiently as the DNA polymerase from the avian myeloblastosis virus, but gibbon ape lymphoma virus DNA polymerase is approximately three-to fivefold less efficient. Although there is a substantial difference among the sizes of these DNA polymerases (160,000 daltons for the avian myeloblastosis virus enzyme, 110,000 daltons for the Mason-Pfizer monkey virus enzyme, and 70,000 daltons for the mammalian type C viral polymerases), the ability to transcribe viral 70S RNA is a characteristic common to these enzymes.  相似文献   

9.
10.
Pseudotypes of vesicular stomatitis virus were prepared with avian sarcoma viruses and avian leukemia viruses representing five different subgroups. These pseudotypes display a host range restricted to that of the avian tumor virus when assayed on avian cells and are neutralized by subgroup-specific antisera. The efficiency of penetration of mammalian cells was assayed by using these vesicular stomatitis virus pseudotypes. Pseudotypes of avian tumor viruses belonging to subgroup D and of B77 virus were able to plate on mammalian cells with a high efficiency, whereas pseudotypes of other strains were not. The efficiency of penetration of the vesicular stomatitis virus pseudotypes was 10-2-to 10-3-fold higher than the efficiency of transformation of the corresponding avian tumor virus strain assayed on mammalian cells, suggesting that there are postpenetration blocks to the expression of transformation in these cells.  相似文献   

11.
12.
Viruses are divided into seven classes on the basis of differing strategies for storing and replicating their genomes through RNA and/or DNA intermediates. Despite major differences among these classes, recent results reveal that the non-virion, intracellular RNA-replication complexes of some positive-strand RNA viruses share parallels with the structure, assembly and function of the replicative cores of extracellular virions of reverse-transcribing viruses and double-stranded RNA viruses. Therefore, at least four of seven principal virus classes share several underlying features in genome replication and might have emerged from common ancestors. This has implications for virus function, evolution and control.  相似文献   

13.
14.
Arup Sen  George J. Todaro 《Cell》1977,10(1):91-99
A structural protein purified from the Rous sarcoma virus (RSV) can specifically bind in vitro to purified avian, but not mammalian, type C viral RNA. Following ultraviolet irradiation of viral particles under conditions which stabilize the polyploid 70S viral RNA, the same polypeptide can be directly purified from the RSV genome. Based on its electrophoretic mobility in polyacrylamide gels containing sodium dodecylsulfate, the RNA binding protein has been identified as the major phosphoprotein (p19) of avian type C viruses. Similar experiments show that the major phosphoproteins of mammalian type C viruses (p12 for murine viruses and p16 for endogenous primate viruses) are also the specific RNA binding proteins and, similarly, are found closely associated with the 70S RNA genomes in the intact viral particles.  相似文献   

15.
16.
Double-stranded RNA (dsRNA) longer than 30 bp is a key activator of the innate immune response against viral infections. It is widely assumed that the generation of dsRNA during genome replication is a trait shared by all viruses. However, to our knowledge, no study exists in which the production of dsRNA by different viruses is systematically investigated. Here, we investigated the presence and localization of dsRNA in cells infected with a range of viruses, employing a dsRNA-specific antibody for immunofluorescence analysis. Our data revealed that, as predicted, significant amounts of dsRNA can be detected for viruses with a genome consisting of positive-strand RNA, dsRNA, or DNA. Surprisingly, however, no dsRNA signals were detected for negative-strand RNA viruses. Thus, dsRNA is indeed a general feature of most virus groups, but negative-strand RNA viruses appear to be an exception to that rule.  相似文献   

17.
Priore SF  Moss WN  Turner DH 《PloS one》2012,7(4):e35989
Influenza A is a significant public health threat, partially because of its capacity to readily exchange gene segments between different host species to form novel pandemic strains. An understanding of the fundamental factors providing species barriers between different influenza hosts would facilitate identification of strains capable of leading to pandemic outbreaks and could also inform vaccine development. Here, we describe the difference in predicted RNA secondary structure stability that exists between avian, swine and human coding regions. The results predict that global ordered RNA structure exists in influenza A segments 1, 5, 7 and 8, and that ranges of free energies for secondary structure formation differ between host strains. The predicted free energy distributions for strains from avian, swine, and human species suggest criteria for segment reassortment and strains that might be ideal candidates for viral attenuation and vaccine development.  相似文献   

18.
The in vitro synthesis of RNA catalyzed by the Qβ RNA polymerase has been studied using a single-stranded 6 s RNA template. Whereas Qβ RNA replication results in the synthesis predominantly of single-stranded Qβ RNA, the predominant reaction product of 6 s RNA replication was found to be double stranded. When treated with formaldehyde to dissociate complementary base pairs, 6 s RNA exhibited a decrease in molecular weight as indicated by its slower sedimentation rate and faster electrophoretic mobility. 6 s RNA also exhibited a hyperchromic thermal transition indicative of double-stranded RNA and differing markedly from that of single-stranded RNA. The Tm of this transition increased linearly with the logarithm of ionic strength. Renaturation of 6 s RNA below the Tm occurred slowly and was also dependent upon ionic strength.  相似文献   

19.
The specificity and quantitation of the rescue of RNA sequences by mammalian type C viruses has been investigated. Type C virus can package with specificity only type C viral RNA. Type C viruses do not encapsidate with comparable efficiency either type B viral or cellular globin mRNA. Conversely, a non-type C mammalian retravirus, MP-MV, cannot encapsidate type C RNA. A revertant of Kirsten sarcoma virus (Ki-SV)-transformed nonproducer cells which fails to rescue biologically active Ki-SV after superinfection with helper virus had no detectable intracellular Ki-SV-specific RNA. The results suggest specific mechanisms by which type C viral proteins can package type C viral RNA and provide an approach to classifying RNA of potentially defective endogenous retraviruses as type C in origin.  相似文献   

20.
RNA viruses exist as complex mixtures of genotypes, known as quasispecies, where the evolution potential resides in the whole community of related genotypes. Quasispecies structure and dynamics have been studied in detail for virus infecting animals and plants but remain unexplored for those infecting micro‐organisms in environmental samples. We report the first metagenomic study of RNA viruses in an Antarctic lake (Lake Limnopolar, Livingston Island). Similar to low‐latitude aquatic environments, this lake harbours an RNA virome dominated by positive single‐strand RNA viruses from the order Picornavirales probably infecting micro‐organisms. Antarctic picorna‐like virus 1 (APLV1), one of the most abundant viruses in the lake, does not incorporate any mutation in the consensus sequence from 2006 to 2010 and shows stable quasispecies with low‐complexity indexes. By contrast, APLV2‐APLV3 are detected in the lake water exclusively in summer samples and are major constituents of surrounding cyanobacterial mats. Their quasispecies exhibit low complexity in cyanobacterial mat, but their run‐off‐mediated transfer to the lake results in a remarkable increase of complexity that may reflect the convergence of different viral quasispecies from the catchment area or replication in a more diverse host community. This is the first example of viral quasispecies from natural aquatic ecosystems and points to ecological connectivity as a modulating factor of quasispecies complexity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号