首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Myeloid cells are critical for innate immunity and the initiation of adaptive immunity. Strict regulation of the adhesive and migratory behavior is essential for proper functioning of these cells. Rho GTPases are important regulators of adhesion and migration; however, it is unknown which Rho GTPases are expressed in different myeloid cells. Here, we use a qPCR-based approach to investigate Rho GTPase expression in myeloid cells.We found that the mRNAs encoding Cdc42, RhoQ, Rac1, Rac2, RhoA and RhoC are the most abundant. In addition, RhoG, RhoB, RhoF and RhoV are expressed at low levels or only in specific cell types. More differentiated cells along the monocyte-lineage display lower levels of Cdc42 and RhoV, while RhoC mRNA is more abundant. In addition, the Rho GTPase expression profile changes during dendritic cell maturation with Rac1 being upregulated and Rac2 downregulated. Finally, GM-CSF stimulation, during macrophage and osteoclast differentiation, leads to high expression of Rac2, while M-CSF induces high levels of RhoA, showing that these cytokines induce a distinct pattern. Our data uncover cell type specific modulation of the Rho GTPase expression profile in hematopoietic stem cells and in more differentiated cells of the myeloid lineage.  相似文献   

7.
8.
9.
10.
11.
12.
The Rho family of small GTPases plays a central role in intracellular signal transduction, particularly in reorganization of the actin cytoskeleton. Rho activity induces cell contractility, whereas Rac promotes cellular protrusion, which counteracts Rho signaling. In this regard, the reciprocal balance between these GTPases determines cell morphology and migratory behavior. Here we demonstrate that Tiam1/Rac1 signaling is able to antagonize Rho activity directly at the GTPase level in COS-7 cells. p190-RhoGAP plays a central regulatory role in this signaling pathway. Interfering with its activation by Src-kinase-dependent tyrosine phosphorylation or its recruitment to the membrane through interaction with the SH2 domains of p120-RasGAP blocks the Tiam1-mediated rapid downregulation of Rho. This process is mediated by Rac1, but not by Rac2 or Rac3 isoforms. Our data provide evidence for a biochemical pathway of the reciprocal regulation of two related small GTPases, which are key elements in cell migration.  相似文献   

13.
14.
15.
16.
17.
18.
19.
The role of protein-tyrosine phosphatase alpha (PTPalpha) in mast cell function was investigated in tissues and cells from PTPalpha-deficient mice. Bone marrow-derived mast cells (BMMCs) lacking PTPalpha exhibit defective stem cell factor (SCF)-dependent polarization and migration. Investigation of the molecular basis for this reveals that SCF/c-Kit-stimulated activation of the Fyn tyrosine kinase is impaired in PTPalpha(-/-) BMMCs, with a consequent inhibition of site-specific c-Kit phosphorylation at tyrosines 567/569 and 719. Although c-Kit-mediated activation of phosphatidylinositol 3-kinase and Akt is unaffected, profound defects occur in the activation of downstream signaling proteins, including mitogen-activated protein kinases and Rho GTPases. Phosphorylation and interaction of Fyn effectors Gab2 and Shp2, which are linked to Rac/JNK activation in mast cells, are impaired in PTPalpha(-/-) BMMCs. Thus, PTPalpha is required for SCF-induced c-Kit and Fyn activation, and in this way regulates a Fyn-based c-Kit signaling axis (Fyn/Gab2/Shp2/Vav/PAK/Rac/JNK) that mediates mast cell migration. These defective signaling events may underlie the altered tissue-resident mast cell populations found in PTPalpha(-/-) mice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号