首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The irradiance reaching Nitella at 11.5 m depths was almost the same during three years: 1000 cal cm−2 year−1 PAR, or 2.2% of the surface irradiance PAR. Green light (500–600 nm) constituted most (62–88%) of the irradiance on Nitella. Net photosynthesis by Nitella was linearly correlated to irradiance. Nitella had a positive oxygen balance from mid-May to late September and a minor negative one at other times. The annual turnover of biomass was potentially high, and the dark-respiration was very important in the metabolic balance. The contribution of Nitella to total autotrophic production and to oxygen conditions in the hypolimnion is discussed.  相似文献   

2.
Danilov  Roman A.  Ekelund  Nils G. A. 《Hydrobiologia》2001,444(1-3):203-212
Impacts of solar radiation, humic substances and nutrients on phytoplankton abundance at different depths were investigated in a temperate dimictic lake, Lake Solumsjö. Penetration of solar radiation profiles at different depths, represented as light attenuation coefficient (K d) were examined. Water sampling and downward irradiance of photosynthetically active radiation (PAR), ultraviolet-A (UV-A, 320–400 nm) and ultraviolet-B (UV-B, 280–320 nm) radiation were performed once a week and at three different times of the day (08.00, 12.00 and 16.00 hrs, local time) between September 13 and November 1, 1999. During the period of investigation, solar radiation above the water surface declined from 474 to 94 mol m–2 s–1 for PAR, from 1380 to 3.57 W m–2 for UV-A and from 13.1 to 0.026 W m–2 for UV-B, respectively. The attenuation coefficient (K d) for UV-B radiation ranged from 3.7 to 31 m–1 and UV-B radiation could not be detected at depths greater than 0.25 m. Humic substances measured at 440 nm ranged from 35.5 to 57.7 Pt mg l–1. Mean values of biomass, estimated from chlorophyll a, in the whole water column (0–10 m) varied between 2.3 and 5.6 g l–1 and a diel fluctuation was observed. During stratified conditions, high levels of iron (1.36 mg l–1) and manganese (4.32 mg l–1) were recorded in the hypolimnion, suggesting that the thermocline played a major role in the vertical distribution of phytoplankton communities in Lake Solumsjö. The high levels of iron and manganese stimulated the growth of Trachelomonas volvocinopsis in the hypolimnion at a depth of 10 m. Negative impacts of UV-B radiation on phytoplankton in lake Solumsjö are reduced due to the high levels of humic substances and the high degree of solar zenith angle at the latitude studied.  相似文献   

3.
This paper shows that the sub-surface light regime in the offshore North Sea varies spatially and seasonally between different ecohydrodynamic regions, which is likely to have important implications for primary production and carbon and nutrient fluxes in different areas of the North Sea. Measurements of downward irradiance were collected using different instruments (i.e. water column-profiling instruments, semi-autonomous moorings, and remote sensing) at three ecohydrodynamically distinct sites in the North Sea: in the southern Bight (SB), at the Oyster Grounds (OG) and north of the Dogger Bank (ND). The ND site was the deepest, and had the lowest and least variable light attenuation coefficients (mean Kd(PAR) = 0.11 m?1). The onset of the phytoplankton spring bloom was earlier than at the other two sites. In summer, ND had low Kd(PAR) ~ 0.07 m?1 and light penetration was shifted towards blue-green wavelengths (490–560 nm), with water itself being one of the strongest contributors to overall attenuation. In contrast, the SB site was characterised by the highest and most variable values of Kd(PAR) (mean = 0.54 m?1), comparable to near-coastal waters, and the spring bloom started almost a month later than at the ND site. The vertical variability of the attenuation coefficient and the strong PAR attenuation in the blue region of the spectrum were the result of higher concentrations of phytoplankton, CDOM and SPM, due to riverine inputs, shallow depth and strong tidal mixing. The OG site showed intermediate conditions between the ND and SB sites with a mean Kd(PAR) = 0.23 m?1, and deepest penetration of irradiance in the green region of the spectrum at 560 nm. The implications of these results for phytoplankton growth and ecosystem modelling are discussed.  相似文献   

4.
Coastal kelp forests produce substantial marine carbon due to high annual net primary production (NPP) rates, but upscaling of NPP estimates over time and space remains difficult. We investigated the impact of variable underwater photosynthetically active radiation (PAR) and photosynthetic parameters on photosynthetic oxygen production of Laminaria hyperborea, the dominant NE-Atlantic kelp species, throughout summer 2014. Collection depth of kelp had no effect on chlorophyll a content, pointing to a high photoacclimation potential of L. hyperborea towards incident light. However, chlorophyll a and photosynthesis versus irradiance parameters differed significantly along the blade gradient when normalized to fresh mass, potentially introducing large uncertainties in NPP upscaling to whole thalli. Therefore, we recommend a normalization to kelp tissue area, which is stable over the blade gradient. Continuous PAR measurements revealed a highly variable underwater light climate at our study site (Helgoland, North Sea) in summer 2014, reflected by PAR attenuation coefficients (Kd) between 0.28 and 0.87 m−1. Our data highlight the importance of continuous underwater light measurements or representative average values using a weighted Kd to account for large PAR variability in NPP calculations. Strong winds in August increased turbidity, resulting in a negative carbon balance at depths >3–4 m over several weeks, considerably impacting kelp productivity. Estimated daily summer NPP over all four depths was 1.48 ± 0.97 g C · m−2 seafloor · d−1 for the Helgolandic kelp forest, which is in the range of other kelp forests along European coastlines.  相似文献   

5.
Seven large lakes in the Naknek River drainage and four in the Alagnak River drainage within the Katmai National Park and Preserve, Alaska, were surveyed once a summer during the period 1990–92 to determine baseline limnological conditions. All of the lakes are oligotrophic based on Secchi depth (SD) transparency and light penetration. Overall, SD transparency varied from 4.4 m to 17 m, the vertical light extinction coefficient (K d) ranged from 0.411 m-1 to 0.070 m-1 and the depth of 1% light penetration (I1%) varied from 11 m to 67 m. However, because of greater light scattering, the percent of photosynthetic radiation (PAR) at SD was nearly twice as much in Battle Lake (30.4%) and Naknek Lake (32.8%), compared with the other nine lakes (mean 16%). Consequently, the ratio of I1% to SD was about 4 in these two lakes compared to a mean value of 2.6 for the other lakes. However, Battle Lake is a deep blue calcium sulfate lake with little phytoplankton, whereas Naknek Lake contains some inorganic glacial flour and volcanic ash, as well as planktonic algae, but where sampled exhibits minimal turbidity. Biomass of planktonic algae (indexed by total chlorophyll concentration) explained most of the variation in SD (r 2=0.66), K d (r 2=0.75), and I 1% (r 2=0.85). In contrast, neither color nor turbidity were significant predictors of any optical variable. Considering all 11 lakes, there was a significant linear relationship between SD and both K d (r 2=0.80) and I 1% (r 2=0.72); however, most of the unaccounted for variation was attributed to Battle Lake and Naknek Lake. Although changes in water transparency are often linked to changes in algal biomass (chlorophyll), simple measures of SD transparency alone may not be appropriate for assessing whole-scale watershed or regional changes toward oligotrophication or eutrophication in lakes of the remote and pristine Katmai National Park and Preserve.  相似文献   

6.
The magnitude and frequency of events leading to changes in turbidity have been studied in a large (61 km2), shallow (mean depth 3.4 m) wind-exposed lake basin at the western end of Lake Mälaren, Sweden. In this paper we couple changes in suspended particulate inorganic material (SPIM) resulting from wind driven sediment resuspension, and variations in the discharge and sediment load, to spectral variations in subsurface light and estimates of photosynthetically active radiation (PAR). To accomplish this we use a semi-analytical model which predicts the spectral variations in downwelling irradiance (E d()) and the attenuation coefficient of downwelling irradiance (K d()), as a function of the concentrations of chlorophyll, dissolved yellow substances, and suspended inorganic and organic particulate material. Unusually high river discharge, led to large inputs of yellow substances and large in lake yellow substance concentrations (a ys(420) 20 m–1), causing variations in yellow substance concentration to have the greatest role in influencing temporal trends in the attenuation of PAR and variations in the depth of the euphotic zone (Z eup). In spite of this, variations in SPIM could account for approximately 60% of the variation in Z eup attributed to changes in yellow substances alone. Our results show that changes in suspended sediment concentration leads to both long-term and short-term changes in the attenuation of PAR, even in the presence of high concentrations of dissolved yellow substances.  相似文献   

7.
Stambler  Noga  Lovengreen  Charlotte  Tilzer  Max M. 《Hydrobiologia》1997,344(1-3):41-56
The underwater light field in the Bellingshausen andAdmundsen Seas was characterised using data collectedduring the R/V Polarstern cruise ANT XI/3, from12.1.94 to 27.3.94. The euphotic zone varied from 24to 100 m depth. Spectral diffuse vertical attenuationcoefficients (K d ())were determined for 12narrow wavebands as well as for photosyntheticallyavailable radiation (PAR, 400–700 nm): K d (490)ranged from 0.03 to 0.26 m1; K d (550) from0.04 to 0.17 m1; K d (683) from 0.04 to0.17 m1; and K d (PAR) varied from 0.02 to0.25 m1. K d () for wavelengths centred at412 nm, 443 nm, 465 nm, 490 nm, 510 nm, 520 nm and550 nm were significantly correlated with chlorophyllconcentration (ranging from 0.1 to 6 mg m3). Thevertical attenuation coefficients for 340 nm and380 nm ranged from 0.10 to 0.69 m1 and from 0.05to 0.34 m1, respectively, and were also highlycorrelated with chlorophyll concentrations. These K d values indicate that the 1% penetration depthmay reach maxima of 46 m and 92 m for 340 nm and380 nm, respectively. The spectral radiancereflectances (Rr()) for 443 nm, 510 nm and 550 nmwere less than 0.01 sr1. Rr() for 665 nm and683 nm increased with depth up to 0.2 sr1 because ofchlorophyll fluorescence. Using a model that predicts downwardirradiances by taking into account the attenuation bywater and absorption by chlorophyll, we show thatchlorophyll fluorescence has a significant influenceon the red downward irradiance (E d (633, 665, 683))in deeper layers. The ability of the phytoplanktonpopulation to influence the light environment byautofluorescence and absorption processes depends onthe light conditions and on the photoacclimation ofthe cells, represented by the in vivo crosssection absorption coefficient of chlorophyll (a*). Theobtained mean chlorophyll-specific light attenuationcoefficients of phytoplankton in situ (k d ) are higherthan the in vivo absorption coefficient of chlorophyll,more than to be excepted from the scattering. a*(), m2 mg chl1, decreased due topackaging effect with increasing chlorophyllconcentrations.  相似文献   

8.
Effect of salinity on photosynthetic activity of Nodularia spumigena   总被引:1,自引:0,他引:1  
The aim of the study was to determine the influence of total dissolvedsolids/salinity (mg L-1 TDS) on photosynthetic activity of Nodularia spumigena strain 001E isolated from Lake Alexandrina, SouthAustralia, using photosynthesis-irradiance (PI) curves. N. spumigena001E cultures were grown in ASM medium at a range of TDSconcentrations (360, 6,600, 13,200, 19,800, 26,400 mg L-1)at an irradiance of 30 mol m-2 s-1 (PAR, 400–700 nm) at 25 °C. The PI relationship was determined at 25 °Cfor irradiances between 0 and 500 mol photon m-2s-1 (PAR). The initial slope of PI curve, , a function of lightharvesting efficiency and photosynthetic energy conversion, decreasedproportionally with an increase in salinity from 360 to 26,400 mgL-1 TDS. The maximum rate of photosynthesis (Pmax),occurred at 6,600 mg L-1 TDS. No influence of salinity onIk, the irradiance at which Pmax was measured, or on Rd, the dark respiration rate, was identified.  相似文献   

9.
The aims of the present study were to develop a parameterization of a one-year-long observed PAR time-series, apply the PAR parameterization in a primary production relation, and compare calculated and observed time-series of primary production. The PAR parameterization was applied in the generally used relation for the primary production (P d): P d = a(BI 0 Z 0) + b with observed photic depth (Z 0) and Chl-a concentrations (B). It was tested whether the PAR parameterization in combination with this simple relation for primary production was able to describe the actual measured primary production. The study is based on a one year long time-series of PAR, CTD-casts (n = 45), and primary production measurements (n = 24) from Århus Bay (56°09′ N; 10°20′ E), south west Kattegat. Results showed a high and positive correlation between observed and calculated primary production in the bay, as based on the present PAR parameterization combined with the simple primary production relation. The developed PAR parameterization, which calculates total daily surface irradiance per day (M photons m?2 d?1), can be applied in any ecological application taking into account that it was developed for the latitude of 56° N.  相似文献   

10.
The light climate at the deep chlorophyll maxima (DCM) was analysedin a set of lakes of the North Patagonian Andean region. Apparentand inherent optical properties in relation to the chlorophylla vertical distribution were investigated in seven lakes includingdeep (Zmax > 90 m) and shallow (Zmax < 12 m) ones. Samplingwas carried out during the thermal stratification period (summer)of the deep lakes since in the shallower lakes no stable thermalstratification was detected. The large deep lakes presentedvery low diffuse attenuation coefficients of photosyntheticallyactive radiation (Kd PAR), and a DCM situated at 0.98–2%of surface PAR irradiance, coinciding with the maximum abundanceof the mixotrophic ciliate Ophrydium naumanni and autotrophicpicoplankton. Both fractions seemed to be favoured by dim lightconditions of particular wavelengths, since at these DCM layersmainly green and blue wavelengths prevailed (<600 nm). Incontrast, shallow lakes showed higher Kd PAR values, with ahigher concentration of dissolved yellow substances, which causedsubstantial differences in the spectral quality that may havecontributed to explain the absence of this ciliate populationin these lakes.  相似文献   

11.
The true growth efficiency (c) relates the light energy absorbed by phytoplankton to the production of biomass corrected for constant energy requirement of maintenance. Continuous culture studies have shown that, at constant incident irradiance, the value of c for both prokaryotic and eukaryotic species is constant. Culture data for the relevant conditions of incident light may be used for directly estimating the growth rate from daily insolation of optically deep, fully mixed lakes, when the light absorption by the phytoplankton can be established. In order to examine the influence of vertical light attenuation and daily insolation on c, computations were made on a basis of a photosynthesis-irradiance curve of light-limited Oscillatoria limnetica. For steady state growth, the true growth efficiency is linearly related to the areal quantum efficiency of photosynthesis ( a ). The computations showed that a remains constant at fluctuating vertical light attenuation, no matter whether the concentration of tripton or phytoplankton changes. The effect of insolation is great: a is 0.108 mol O2/E at very low light, but only 0.014 mol O2/E at 400 W m–2 subsurface downward irradiance. The results imply that a c-value obtained from cultures for summer averaged insolation must be corrected: between cloudy and clear days the value may vary by a factor of 2. The true growth efficiency for cultures will decrease by about 10% when the same daily irradiation is dosed sinusoidally instead of constantly.  相似文献   

12.
In the eastern Seto Inland Sea, Japan, phytoplankton abundance in the surface water has gradually declined, whereas Secchi depth has risen in recent years, particularly in offshore areas. Therefore, it may be hypothesized that phytoplankton dominate light attenuation in the offshore area, and that other constituents are less important. To test this hypothesis, we examined the roles of seawater, colored dissolved organic matter (CDOM), non-algal particles (tripton), and phytoplankton in the light attenuation at an offshore station of Harima Sound in the eastern Sea. The magnitude of light attenuation was then determined from the attenuation coefficient of photosynthetically available radiation (PAR) through the water column (K d). During a 13-month period, K d ranged from 0.179 to 0.507 m?1, with a mean of 0.262 m?1. The mean relative contributions of seawater (15%) and CDOM (13%) to K d were small, while the most dominant K d constituent was tripton (45%). The mean contribution of phytoplankton to K d (27%) was consequently less than that of tripton. However, 75% of the temporal variability in K d was attributed to phytoplankton, measured as chlorophyll a. Our results emphasize that the main component of light attenuation does not always govern the temporal variation of light attenuation in coastal regions.  相似文献   

13.
Eleven lakes in the South Island of New Zealand were sampled in summer 1996. Water column profiles of ultraviolet radiation (UVR) at four wavelengths and photosynthetically available radiation (PAR) were obtained, along with analyses of dissolved organic carbon (DOC) concentration, total suspended solids (TSS), and catchment vegetation, including forest and natural grassland. Downward attenuation coefficients (K d) and lake water transparency (1/K d) for UVR were examined in relation to these variables. Consistent with other regions of the world, DOC concentration and variables related to DOC were the best predictors of UVR penetration. With our data set, we calculated ratios of water column integrals (RI) of UVR/PAR irradiance, using equations from the literature. At DOC concentrations below 4 g m−3, a progressive increase in RI shows that lakes become increasingly transparent to UVR. We also normalized chromophoric dissolved organic matter (CDOM) absorption of UVR at 380 nm (a 380) to DOC concentration and found that the UVR-absorbing capacity per unit DOC increases with increasing percentage of forest in the catchment area. This indicates that not only DOC concentration but also DOC type or composition is important in determining the transparency of lake water to UVR, and that qualitative differences in DOC are dictated by the type and amount of vegetation present in the lake's catchment area. Received: September 18, 2000 / Accepted: December 14, 2000  相似文献   

14.
Heterosigma akashiwo, a red tide alga, was grown in Fe-deficient and Fe-replete batch cultures. Cell final yields and the growth rate were limited when Fe was below 10 nM and alleviated with 100 nM Fe. By comparison with the results under Fe-replete conditions, chlorophyll a-specific and cell-specific light saturated net photosynthetic capacity (Pm chl a and Pm cell), dark respiration rate (Rd chl a and Rd cell) and apparent photosynthetic efficiency (chl a and cell) decreased proportionately, whereas the cells became light saturated at higher irradiance under Fe stress (Fe-limited conditions).  相似文献   

15.
Pseudomonas fluorescens LB300 is a chromateresistant strain isolated from chromium-contaminated river sediment. Chromate resistance is conferred by the plasmid pLHB1. Strain LB300 grew in minimal salts medium with as much as 1000 g of K2CrO4 ml–1, and actively reduced chromate to Cr(III) while growing aerobically on a variety of substrates. Chromate was also reduced during anaerobic growth on acetate, the chromate serving as terminal electron acceptor. P. fluorescens LB303, a plasmidless, chromatesensitive variant of P. fluorescens LB300, did not grow in minimal salts medium with more than 10 g of K2CrO4 ml–1. However, resting cells of strain LB303 grown without chromate reduced chromate as well as strain LB300 cells grown under the same conditions. Furthermore, resting cells of chromate-sensitive Pseudomonas putida strain AC10, also catalyzed chromate reduction. Evidently chromate resistance and chromate reduction in these organisms are unrelated. Comparison of the rates of chromate reduction by chromate grown cells and cells grown without chromate indicated that the chromate reductase activity is constitutive. Studies with cell-free extracts show that the reductase is membrane-associated and can mediate the transfer of electrons from NADH to chromate.  相似文献   

16.
At all seasons, the underwater light field of meso-eutrophic large (480 km2) deep (mean: 100 m) Lake Constance was studied in conjunction with the assessments of vertical distributions of phytoplankton chlorophyll concentrations. Vertical profiles of scalar, downwelling and upwelling fluxes of photosynthetically available radiation, as well as fluxes of spectral irradiance between 400 and 700 nm wavelength were measured.The overall transparency of the water for PAR is highly dependent on chlorophyll concentration. However, the spectral composition of underwater light is narrowing with water depth regardless of phytoplankton biomass.Green light is transmitted best, even at extremely low chlorophyll concentrations. This is explained by the selective absorption of blue light by dissolved organic substances and red light by the water molecules. Nevertheless, significant correlations were found between vertical attenuation coefficients of downwelling spectral irradiance and chlorophyll concentrations at all wavelengths. The slopes of the regression lines were used as estimates of chlorophyll-specific spectral vertical light attenuation coefficients (K c()).The proportions of total upwelling relative to total downwelling irradiance (reflectance) increased with water depth, even when phytoplankton were homogeneously distributed over the water column. Under such conditions, reflectance of monochromatic light remained constant. Lower reflectance of PAR in shallow water is explained by smaller bandwidths of upwelling relative to downwelling light near the water surface. In deeper water, by contrast, the spectra of both upwelling and downwelling irradiance are narrowed to the most penetrating components in the green spectral range. Reflectance of PAR was significantly correlated with chlorophyll concentration and varied from 1% and 1-% at low and high phytoplankton biomass, respectively. Over the spectrum, reflectance exhibited a maximum in the green range. Moreover, in deeper layers, a red maximum was observed which is attributed to natural fluorescence by phytoplankton chlorophyll.  相似文献   

17.
Blooms ofChrysochromulina breviturrita Nich. (Prymnesiophyceae) have been found to be restricted to lakes above pH 5.5 even though the alga is able to tolerate pH 4.0 in laboratory culture. A possible explanation is the increased transparency in acidifying lakes and a sensitivity ofC. breviturrita to high light intensities. A comparison was made withMougeotia sp., a filamentous green alga which co-occurs in moderately acidic lakes and has a similar pH tolerance range. This alga forms dense, floating mats or amorphous clouds in the upper littoral zone, where it would be exposed to full sunlight irradiances. In cultures ofC. breviturrita, prolonged exposures to 1600 μE · m−2 · s−1 (I0′) resulted in reductions in cell yield which were dependent age at the onset of exposure to high light intensity. Only cultures exposed to high light intensities during late stationary phase were able to recover to control levels and no recovery occurred if these cultures were nitrogen deficient.Mougeotia was more tolerant of both high light intensity and nitrogen limitation during the recovery period. The inability ofC. breviturrita to recover from the effects of high light intensity during nitrogen deprivation may be particularly important in small, stratified lakes which are undergoing acidification. The slow rate of vertical circulation, and increasing transparency, would prolong exposure of the alga to the high irradiance levels of nutrient-deficient epilimnetic waters. This suggests that the geographic distribution ofC. breviturrita may be explained in part by the increasing light intensities in lakes undergoing acidification.  相似文献   

18.
Summary We have found that 10mM LiCl added toTradescantia stamen hair cells prior to early anaphase appears to prevent the vesicle coalescence phase of cell plate formation. In a fashion similar to caffeine inhibition of cell plate formation [Bonsignore and Hepler 1985, Protoplasma 129, 28–35], cell plate vesicle aggregation occurs at its normal time in LiCl, forming an incipient plate which is similar in morphology to that of an untreated cell during the first 10min, but the structure subsequently disperses and the resultant cells are binucleate. The addition of 10–20M myo-inositol was sufficient to reverse the inhibitory effect of Li+ in the majority of our experiments while scyllitol, an isomer of myo-inositol, or buffer without myoinositol were usually insufficient to reverse the inhibition. The timing of the addition of myo-inositol was critical for reversal; if the rescue solution was added more than 4 min after the onset of cell plate vesicle aggregation, the cell was usually irreversibly destined to become binucleate. The addition of 100M CaCl2 within 2min of cell plate vesicle aggregation also overcame Li+-induced plate dispersal, but the kinetics of reversal were substantially slower than with myo-inositol. The results show that cell plate formation and in particular, cell plate vesicle coalescence, is sensitive to exogenously applied LiCl.Abbreviations AO Anaphase Onset - CP Cell Plate (completed) - CPD Cell Plate Dispersion - CPVA Cell Plate Vesicle Aggregation - DAG 1,2-diacylglycerol - InsP3 1,4,5-inositol trisphosphate - IP inositol-1-phosphate - polyPI polyphosphoinositide  相似文献   

19.
By using d-glucose, d-xylose, d-galactose and d-fructose in the strictly aerobic yeast Rhodotorula glutinis and by comparing the half-saturation constants with inhibition constants the yeast was shown to possess a single common system for d-xylose and d-galactose (K m's and K i's all between 0.5 and 1.1 mM) but another distinct transport system for d-fructose. The transport of d-glucose has a special position in that glucose blocks apparently allotopically all the other systems observed although it uses at least one of them for its own transport. The different character of d-glucose uptake is underlined by its relative independence of pH (its K m is completely pH-insensitive) in contrast with all other sugars. At low concentrations, all sugars show mutual positive cooperativity in uptake, suggesting at least two transport sites plus possibly a modifier site on the carrier.  相似文献   

20.
The diffuse attenuation coefficient of photosynthetically active radiation (PAR) (400–700 nm) (K d(PAR)) is one of the most important optical properties of water. Our purpose was to create K d(PAR) prediction models from the Secchi disk depth (SDD) and beam attenuation coefficient of particulate and dissolved organic matter (C t−w(PAR), excluding pure water) in the PAR range. We compare their performance and prediction precision by using the determination coefficient (r 2), relative root mean square error (RRMSE), and mean relative error (MRE). Our dataset comprised 1,067 measurements, including K d(PAR), SDD, and C t−w(PAR) taken in shallow, eutrophic, Lake Taihu, China, from 2005 to 2010. The prediction models of K d(PAR) were based on the linear model with an intercept of zero, using the inverse SDD, and the nonlinear model using SDD. The linear model generated a slope of 1.369, which was not significantly different from 1.7, the index used worldwide, but significantly lower than the value of 2.26. The nonlinear model gave a slightly more reliable prediction of K d(PAR) with a r 2 of 0.804. Compared to the SDD, C t−w(PAR) was more significantly correlated to K d(PAR) based on the linear model, with a significantly higher r 2 and lower RMSE and RE. Considering the measurement simplicity of C t−w(PAR) and data acquisition feasibility from high-frequency autonomous buoys and satellites, our results demonstrated that this prediction model reliably estimates K d(PAR), and could be used to significantly expand optical observations in an environment where the conditions for underwater PAR measurement are limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号