首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protein component of light meromyosin [LMM-1] was shown earlier to relax glycerinated muscle fibres and actomyosin. Presently its influence on ATP-ase activity of myofibrils, actomyosin, myosin and heavy meromyosin has been studied. LMM-1 decreases Mg-ATP-ase activity of myofibrils and of reconstructed actomyosin by 25-- 30% and does not change [or slightly increases] Ca-ATP-ase activity of this protein and of myosin; besides LMM-1 is able to increase Mg-ATP-ase of HMM substantially. LMM-1 markedly inhibits [preliminary data] the activation of ATP-ase activity of HMM by actin. It is suggested that LMM-1 protein interacts with myosin and decreases the actin-myosin affinity, displacing actin out of the complex. It reacts only with one of the heads of myosin. Probably this suggestion can account for a relatively slight inhibition of ATP-ase activity of complex by LMM-1. LMM-1 represents a natural and specific inhibitor of Mg-AM-ATP-ase activity, included in the structure of myosin protofibrils and interacting with the myosin active site region.  相似文献   

2.
The assembly of myosins into filaments is a property common to all conventional myosins. The ability of myosins to form filaments is conferred by the tail of the large asymmetric molecule. We are studying cloned portions of the Dictyostelium myosin gene expressed in Escherichia coli to investigate functional properties of defined segments of the myosin tail. We have focused on five segments derived from the 68-kD carboxyl-terminus of the myosin tail. These have been expressed and purified to homogeneity from E. coli, and thus the boundaries of each segment within the myosin gene and protein sequence are known. We identified an internal 34-kD segment of the tail, N-LMM-34, which is required and sufficient for assembly. This 287-amino acid domain represents the smallest tail segment purified from any myosin that is capable of forming highly ordered paracrystals characteristic of myosin. Because the assembly of Dictyostelium myosin can be regulated by phosphorylation of the heavy chain, we have studied the in vitro phosphorylation of the expressed tail segments. We have determined which segments are phosphorylated to a high level by a Dictyostelium myosin heavy chain kinase purified from developed cells. While LMM-68, the 68-kD carboxyl terminus of Dictyostelium myosin, or LMM-58, which lacks the 10-kD carboxyl terminus of LMM-68, are phosphorylated to the same extent as purified myosin, subdomains of these segments do not serve as efficient substrates for the kinase. Thus LMM-58 is one minimal substrate for efficient phosphorylation by the myosin heavy chain kinase purified from developed cells. Taken together these results identify two functional domains in Dictyostelium myosin: a 34-kD assembly domain bounded by amino acids 1533-1819 within the myosin sequence and a larger 58-kD phosphorylation domain bounded by amino acids 1533-2034 within the myosin sequence.  相似文献   

3.
Betz M  Löhr F  Wienk H  Rüterjans H 《Biochemistry》2004,43(19):5820-5831
Xylanase from Bacillus agaradhaerens belongs to a large group of glycosyl hydrolases which catalyze the degradation of xylan. The protonation behavior of titratable groups of the uniformly (15)N- and (13)C-labeled xylanase was investigated by multinuclear NMR spectroscopy. A total of 224 chemical shift titration curves corresponding to (1)H, (13)C, and (15)N resonances revealed pK(a) values for all aspartic and glutamic acid residues, as well as for the C-terminal carboxylate and histidine residues. Most of the titratable groups exhibit a complex titration behavior, which is most likely due to the mutual interactions with other neighboring groups or due to an unusual local microenvironment. Subsite -1 containing the catalytic dyad shows a long-range interaction over 9 A with Asp21 via two hydrogen bonds with Asn45 as the mediator. This result illuminates the pivotal role of the conserved position 45 among family 11 endoxylanases, determining an alkaline pH optimum by asparagine residues or an acidic pH optimum by an aspartate. The asymmetric interactions of neighboring tryptophan side chains with respect to the catalytic dyad can be comprehended as a result of hydrogen bonding and aromatic stacking. Most of the chemical shift-pH profiles of the backbone amides exhibit biphasic behavior with two distinct inflection points, which correspond to the pK(a) values of the nearby acidic side chains. However, the alternation of both positive and negative slopes of individual amide titration curves is interpreted as a consequence of a simultaneous reorganization of side chain conformational space at pH approximately 6 and/or an overall change in the hydrogen network in the substrate binding cleft.  相似文献   

4.
M M Snel  R Kaptein  B de Kruijff 《Biochemistry》1991,30(14):3387-3395
The topology of apocytochrome c, the heme-free precursor of the mitochondrial protein cytochrome c, was investigated in a lipid-associated form. For this purpose photochemically induced dynamic nuclear polarization 1H nuclear magnetic resonance (CIDNP 1H NMR) spectroscopy and quenching of tryptophan and tyrosine fluorescence by acrylamide were applied to an apocytochrome c-sodium dodecyl sulfate (SDS) micellar system. A pH titration of the chemical shifts of the histidine C2 proton resonances of apocytochrome c, using conventional 1H NMR, yielded pK(a)'s of 5.9 +/- 0.1 and 6.2 +/- 0.1, which were assigned to histidine-18 and -33 and histidine-26, respectively. In the presence of SDS micelles an average pK(a) of 8.1 +/- 0.1 was obtained for all histidine C2 protons. Photo-CIDNP enhancements of the histidine, tryptophan, and tyrosine residues, contained in the intact apocytochrome c and in chemically and enzymatically prepared fragments of the precursor, were reduced in the presence of SDS micelles. Similarly, the quenching of the tryptophan fluorescence of the polypeptides by acrylamide was diminished in the presence of SDS. These results indicate the aromatic residues studied are localized in the interface of the SDS micelle.  相似文献   

5.
Substrate specificity of myosin light chain kinases.   总被引:3,自引:0,他引:3  
Skeletal muscle myosin light chain kinase can phosphorylate myosin light chains isolated from skeletal or smooth muscle. In contrast, smooth muscle myosin light chain kinase specifically phosphorylates light chains isolated from smooth muscle. In this study, we have identified residues within the rabbit smooth and skeletal muscle myosin light chain kinases which may interact with the basic residues that are important substrate determinants in the light chains. Mutation of aspartic acid 270 amino-terminal of the catalytic core of the skeletal muscle myosin light chain kinase increased the Km value for both smooth and skeletal muscle light chains. Although deletions of the analogous region of the smooth muscle myosin light chain kinase (residues 663-678) markedly increased the Km value for light chain, mutation of any single acidic residue within this region did not have a similar effect. Mutation of single residues within the catalytic core of the skeletal muscle (E377 and E421) and smooth muscle (E777 and E821) myosin light chain kinases increased Km values for the smooth muscle light chain at least 35- and 100-fold, respectively. It is proposed that these residues may form ionic interactions with the arginine that is 3 residues amino-terminal of the phosphorylatable serine in the smooth muscle light chain.  相似文献   

6.
220-MHz NMR was used to observe the titration behavior of the 5 histidine residues in porcine pancreatic ribonuclease (ribonucleate pyrimidine-nucleotido-2'-transferase (cyclizing), EC 3.1.4.22) and a derivative prepared by removal of 80% of the attached carbohydrate from this glycoprotein. Resonances due to histidine C-2 protons were observed over the full pH range for 3 of the residues; such resonances for the remaining 2 histidine residues broadened out as the pH was increased. Resonances due to histidine C-4 protons were also observed for 2 of the residues. The titration curves for both proteins were identical within experimental error. Resonances were assigned by comparison with histidine NMR titrations in ribonucleases from other species. Histidine 105, immediately adjacent to the site of attachment of a heterosaccharide side chain, has a C-2 proton chemical shift and pK that are insensitive to the large alteration in the bulk of the carbohydrate side chain. The chemical shifts of the C-2 proton of histidine 48 and of the C-4 proton of histidine 80, histidine residues that are close to one another and to another heterosaccharide side chain, show a similar insensitivity. The observations are direct evidence in support of the thesis that the heterosaccharides in porcine ribonuclease project away from the surface of the protein into the solution environment.  相似文献   

7.
The NMR titration curves of proton chemical shifts were observed for the C2 protons of histidine residues in intact bovine pancreatic RNAase A (EC 3.1.27.5) and carboxyalkylated RNAase A. By comparing the methyl region of NMR spectra, the 250-340 nm region of circular dichoic spectra, and the NMR titration curves of tyrosine ring protons among intact and modified RNAase A, it was ascertained that the carboxyalkylation of histidine residues at position 12 or 119 did not make any appreciable conformational changes to RNAase A. With the pK values determined for intact and modified RNAase A, the microscopic pK values and molar ratios of tautomers were estimated for His-12 and His-119 by means of the procedure described in the preceding paper. The estimated microscopic pK values of tautomers were 6.2 for the N1-H tautomer of His-12, more than 8 for the N3-H tautomer of His-12, 7.0 for the N1-H tautomer of His-119, and 6.4 for the N3-H tautomer of His-119, respectively. These values were interpreted in terms of the microscopic environments surrounding the histidine residues. The microscopic structure estimated in the present study was discussed, comparing it with those from X-ray crystallography and hydrogen-tritium (or hydrogen-deuterium) exchange technique.  相似文献   

8.
Protein-carbohydrate interactions typically rely on aromatic stacking interactions of tyrosine, phenylalanine and tryptophan side chains with the sugar rings whereas histidine residues are rarely involved. The small cellulose-binding domain of the Cel7A cellobiohydrolase (formerly CBHI) from Trichoderma reesei binds to crystalline cellulose primarily using a planar strip of three tyrosine side chains. Binding of the wild-type Cel7A CBD is practically insensitive to pH. Here we have investigated how histidine residues mediate the binding interaction and whether the protonation of a histidine side chain makes the binding sensitive to pH. Protein engineering of the Cel7A CBD was thus used to replace the tyrosine residues in two different positions with histidine residues. All of the mutants exhibited a clear pH-dependency of the binding, in clear contrast to the wild-type. Although the binding of the mutants at optimal pH was less than for the wild-type, in one case, Y31H, this binding almost reached the wild-type level.  相似文献   

9.
The light chains of scallop myosin as regulatory subunits   总被引:27,自引:0,他引:27  
In molluscan muscles contraction is regulated by the interaction of calcium with myosin. The calcium dependence of the aotin-activated ATPase activity of scallop myosin requires the presence of a specific light chain. This light chain is released from myosin by EDTA treatment (EDTA-light chains) and its removal desensitizes the myosin, i.e. abolishes the calcium requirement for the actin-activated ATPase activity, and reduces the amount of calcium the myosin binds; the isolated light chain, however, does not bind calcium and has no ATPase activity. Calcium regulation and calcium binding is restored when the EDTA-light chain is recombined with desensitized myosin preparations. Dissociation of the EDTA-light chain from myosin depends on the concentration of divalent cations; half dissociation is reached at about 10?5 M-magnesium or 10?7 M-calcium concentrations. The EDTA-light chain and the residual myosin are fairly stable and the components may be kept separated for a day or so before recombination.Additional light chains containing half cystine residues (SH-light chains) are detached from desensitized myosin by sodium dodecyl sulfate. The EDTA-light chains and the SH-light chains have a similar chain weight of about 18,000 daltons; however, they differ in several amino acid residues and the EDTA-light chains contain no half cystine. The SH-light chains and EDTA-light chains have different tryptic fingerprints. Both light chains can be prepared from washed myofibrils.Densitometry of dodecyl sulfate gel electrophoresis bands and Sephadex chromatography in sodium dodecyl sulfate indicate that there are three moles of light chains in a mole of purified myosin, but only two in myosin treated with EDTA. The ratio of the SH-light chains to EDTA-light chains was found to be two to one in experiments where the total light-chain complements of myosin or myofibril preparations were carboxymethylated. A similar ratio was obtained from the densitometry of urea-acrylamide gel electrophoresis bands. We conclude that a myosin molecule contains two moles of SH-light chain and one mole of EDTA-light chain, and that the removal of a single EDTA-light chain completely desensitizes scallop myosin.Heavy meromyosin and S-1 subfragment can be prepared from scallop myosin. Both of these preparations bind calcium and contain light chains in significant amounts. The heavy meromyosin of scallop is extensively degraded; the S-1 preparation, however, is remarkably intact. Significantly, heavy meromyosin has a calcium-dependent actin-activated ATPase while the S-1 does not require calcium and shows high ATPase activity in its absence. These results suggest that regulation involves a co-operativity between the two globular ends of the myosin.Desensitized scallop myosin and scallop S-1 preparations can be made calcium sensitive when mixed with rabbit actin containing the rabbit regulatory proteins. This result makes it unlikely that specific light chains of myosin are involved in the regulation of the vertebrate system.The fundamental similarity in the contractile regulation of molluscs and vertebrates is that interaction between actin and myosin in both systems requires a critical level of calcium. We propose that the difference in regulation of these systems is that the interaction between myosin and actin is prevented by blocking sites on actin in the case of vertebrate muscles, whereas in the case of molluscan muscles it is the sites on myosin which are blocked in the absence of calcium.  相似文献   

10.
1. A purified preparation of Ascaris myosin was obtained from the muscle layer of Ascaris lumbricoides suum, using gel filtration and ion-exchange chromatography. 2. Ascaris myosin whether purified or unpurified, had almost the same ability for ATP-splitting and superprecipitation. 3. Ascaris myosin and rabbit skeletal myosin were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A significant difference in the number of light chains between both myosins was found. Ascaris myosin was found to have one heavy chain and two distinct light chain components (LC1-A and LC2-A), having molecular weights of 18000 and 16000, respectively. These light chains correspond in molecular weight to the light chain 2 (LC2-S) and light chain 3 (LC3-S) in rabbit skeletal myosin. 4. LC1-A could be liberated from the Ascaris myosin molecule reacted with 5,5'-dithio-bis(2-nirobenzoic acid( Nbs2) with recovery of ATPase activity by addition of dithiothreitol. These properties are equivalent to those of the LC2-S in rabbit skeletal myosin, although Ascaris myosin when treated with Nbs2-urea lost its ATPase activity.  相似文献   

11.
1. 'Inhibitor fragment' isolated from human serum albumin degraded by rabbit cathepsin D is composed of one peptide chain with two intrachain disulphide bonds. There are two kinds of inhibitor molecules having different N-terminal amino acids: one is threonine and the other glutamine. 2. Fragment F1, isolated from inhibitor degraded by trypsin, is composed of two chains linked by a disulphide bond. There are three kinds of fragment F1. All have one alpha chain in common, which has an intrachain disulphide bond. They differ by the nature of the chain, which is linked to the alpha chain by a disulphide bond. The epsilon chain is present in trace amounts. The two other chains, beta and gamma, differ by their C-terminal amino acid, which is respectively arginine and lysine. 3. Inhibitor is composed of the last 92 or 89 residues of the human albumin molecule and fragment F1 is composed of two parts of this C-terminal portion of the albumin molecule.  相似文献   

12.
Chemical properties of the functional groups of insulin.   总被引:2,自引:2,他引:0  
Y K Chan  G Oda    H Kaplan 《The Biochemical journal》1981,193(2):419-425
The method of competitive binding [Kaplan, Stevenson & Hartley (1971) Biochem. J. 124, 289-299] with 1-fluoro-2,4-dinitrobenzene as the labelling reagent [Duggleby & Kaplan (1975) Biochemistry 14, 5168-5175] was used to determine the chemical properties, namely pK and reactivity, of the amino groups, the histidine residues and the tyrosine residues of the dimeric form of pig zinc-free insulin at 20.0 degrees C. The N-terminal glycine residue of the A-chain has a pK of 7.7 and a slightly higher than normal reactivity. The N-terminal phenylalanine residue of the B-chain has a pK of 6.9 and is approximately an order of magnitude more reactive than a corresponding amino group with the same pK value. The lysine epsilon-amino group has an unusually low pK of 7.0 but has approximately the expected reactivity of such a group. In the case of the two histidine and four tyrosine residues only the average properties of each class were determined. The histidine residues have a pK value of approx. 6.6, but, however, their reactivity is at least an order of magnitude greater than that of a free imidazole group. The tyrosine residues have a pK value of approx. 10, but their average reactivities are substantially less than for a free phenolic group. At alkaline pH values above 8 the reactivity of all the functional groups show sharp discontinuities, indicating that insulin is undergoing a structural change that alters the properties of these groups.  相似文献   

13.
Myosin purified from the abdominal flexor muscle of the lobster, Homarus americanus, has a number average length of 1559 +/- 218 A, a rod like tail 1335 A long and a globular head 225 X 45 A as determined from electron microscopic observations on platinum shadowed preparations. The mass of the molecule was determined to be ca. 486,000 daltons from high speed equilibrium centrifugation studies at neutral and alkaline pH, and by SDS-acrylamide gel electrophoresis. Both sedimentation equilibrium centrifuge studies at alkaline pH and SDS-acrylamide gel electrophoresis experiments, indicate that the molecule contains a heavy chain core (two polypeptide chains weighing ca. 210,000 daltons each) and ca. four light chains of two weight classes (ca. 16,000 and 20,000 daltons). The amino acid composition of the myosin was determined. The specific activities of the Mg2+ -activated, K+/EDTA-activated, and Ca2+ -activated ATPases of the myosin were determined. Kinetic analysis of the digestion of lobster myosin with trypsin suggests that lobster myosin contains three classes of lysine and arginine residues; slowly split (k = 2.07 +/- 0.31 X 10(-2) moles/min2), rapidly split (k = 11.0 +/- 1.83 X 10(-2) moles/min2) and trypsin insensitive. There are 187 +/- 22 slowly split residues, 280 +/- 35 rapidly split residues, and 144 +/- 41 trypsin insensitive bonds per molecule. Comparison of these molecular parameters with those for the vertebrate skeletal muscle myosin indicates that the two myosins are similar in terms of mass, shape and overall polypeptide chain composition but may be considerably different in terms of local polypeptide chain conformation or composition.  相似文献   

14.
Site-directed mutagenesis of the cloned subfragment-1 (S-1) region of the unc-54 gene, encoding the myosin heavy chain B (MHC B) from Caenorhabditis elegans, has been used to locate binding sites for the regulatory and essential light chains. MHC B S-1 synthesized in Escherichia coli co-migrated with rabbit skeletal muscle myosin S-1 (Mr 90,000), was recognized by anti-nematode myosin antiserum on immunoblots, and specifically bound to 125I-labelled regulatory and essential light chains in a gel overlay assay. Deletion of 102 residues from the C terminus (mutant 655) reduced regulatory and essential light-chain binding to about 30% and 20% of wild-type levels, respectively. Similar reductions in relative binding of the two light chains were seen with mutant 534, in which 38 residues were deleted from the C terminus. Potential binding sites within 75 residues of the C terminus of S-1 were mapped by construction of five other mutant S-1 clones (398, 399, 400, 409 and 411) containing internal deletions of ten to 12 amino acid residues. These showed up to 30% reductions in their ability to bind essential light chains, but did not differ significantly from wild-type in their ability to bind regulatory light chains. Another mutant, 415, containing a deletion of a conserved acidic hexapeptide, E-D-I-R-D-E, showed enhancement of binding of regulatory and essential light chains to 150% and 165% of wild-type levels. Hence, the major binding sites for both light chains are within 38 amino acid residues of the C terminus.  相似文献   

15.
The C-terminal regulatory segment of smooth muscle myosin light chain kinase folds back on its catalytic core to inhibit kinase activity. This regulatory segment consists of autoinhibitory residues linking the catalytic core to the calmodulin-binding sequence and perhaps additional C-terminal residues including an immunoglobulin-like motif. However, mutational and biochemical analyses showed no specific involvement of residues C-terminal to the calmodulin-binding sequence. To obtain additional insights on the proposed mechanisms for autoinhibition and Ca(2+)/calmodulin activation of the kinase, the polypeptide backbone chain of myosin light chain kinase was cleaved by genetic means to produce N- and C-terminal protein fragments. The N-terminal fragment containing the catalytic core was catalytically inactive when expressed alone. Co-expression of the N-terminal fragment with the C-terminal fragment containing the regulatory segment restored kinase activity. Deletion of the autoinhibitory linker residues without or with the calmodulin-binding sequence prevented restoration of kinase activity. In the presence or absence of Ca(2+)/calmodulin, regulatory segment binding occurred through the linker region connecting the catalytic core to the calmodulin-binding sequence. Collectively, these results indicate that residues C-terminal to the calmodulin-binding sequence (including the immunoglobulin-like motif) are not functional components of the regulatory segment. Furthermore, the principal autoinhibitory motif is contained in the sequence linking the catalytic core of myosin light chain kinase to the calmodulin-binding sequence.  相似文献   

16.
1. Crayfish (Procambarus clarki) myosin was obtained from abdominal flexor muscle. The Ca2+-ATPase activity of crayfish myosin was much lower than that of rabbit skeletal myosin. However, F-actin-activated Mg2+-ATPase of crayfish and its superprecipitation closely resembled those of rabbit skeletal myosin. This fact suggests that the ability of crayfish myosin to combine with F-actin is essentially the same as that of skeletal myosin, although the chemical structures of both the myosin molecules when involved in their Ca2+-ATPast activity must be different from each other. 2. Crayfish and rabbit skeletal myosins were subjected to SDS-polyacrylamide gel electrophoresis. Crayfish myosin was found to have one heavy chain and two distinct light chain components (CF-gl and CF-g2), which have molecular weights of 18,000 and 16,000, respectively. These light chains correspond in molecular weight to the light chains (SK-g2 and SK-g3) in rabbit skeletal myosin. 3. CF-g1 could be liberated from the crayfish myosin molecule reacting with 5,5'-dithio-bis (2-nitrobenzoic acid), (Nbs2), without recovery of ATPase activity by the addition of DTT. These properties are equivalent to those of SK-g2 in rabbit skeletal myosin, although Nbs2-treated crayfish myosin did not recover its ATPase activity at all.  相似文献   

17.
1. Human haptoglobin (Hp) type 2-1 was subjected to the sulfanilazo-modification of tyrosine and histidine residues, the removal of sialic acid, and the reduction of disulfide bonds (isolation of alpha 2, alpha 1, beta subunits), respectively. Radioactively labeled preparations were administered intravenously to rabbits. 2. Human Hp and isolated beta (heavy) chain disappeared from the circulation somewhat faster (half-lives = 72 and 67 h, respectively), than homologous rabbit Hp (half-life = 96 h). Hp light chains (alpha 2, alpha 1), devoid of oligosaccharide showed shorter half-lives of 27-19 h. 3. Treatment of Hp with diazotized sulfanilic acid resulted in an appreciable reduction of half-life to 21-11 h, as dependent on the number of modified residues. 4. Asialo-Hp, asialo-beta chain, and asialo-sulfanilazo-Hp were cleared rapidly from the circulation with half-lives of 5.5, 5.0, and 4.2 h, respectively. 5. These results suggest that in different pathways of Hp catabolism in vivo, polypeptide recognition markers in addition to carbohydrate ones, are involved.  相似文献   

18.
Natural-abundance 13C NMR spectra (at 15.04 MHz) of the polypeptide cardiac stimulant Anthopleurin-A are presented. The spectra contain many resolved one- and two-carbon resonances from carbonyl and aromatic carbons and a few resolved resonances from aliphatic carbons. Most of these have been assigned to individual carbons in the protein. The effect of pH on the 13C spectrum has been investigated. In conjunction with the resonance assignments, this yields estimates for the pK alpha values of the COOH-terminal and NH2-terminal residues, the side chain carboxylate of 1 of the 2 aspartic acid residues, and the imidazolium groups of the 2 histidine residues. The effects of the lanthanides La3+ and Gd3+ on the spectrum have also been studied. The results suggest that there are at least two binding sites, and further studies will be required to characterize these before they can be utilized as an aid in structural mapping. Finally, the results are discussed in relation to a postulated model for the mode of action of Anthopleurin-A.  相似文献   

19.
A proton nuclear magnetic resonance (NMR) study at 100 and 300 MHz of neurotoxin II from the venom of Middle-Asian cobra Naja naja oxiana has been performed in 2H2O and H2O solutions. By means of chemical modification and double resonance all the aromatic residue resonances have been assigned. From the NMR titration curves, pK values of histidine 4 and histidine 31 residues have been determined. For one of the two neighbouring tryptophan residues pH dependence (in the 2-8-pH range) of the chemical shifts of indole protons has been revealed. According to the different sensitivity of the linewidth of indole NH resonances to pH in H2O solution, the accessibility of each of the tryptophan residues has been estimated. Temperature dependence has been observed for the linewidth of the aromatic resonances of the tyrosine 24 residue. Deuterium exchange rates have been measured for amide protons as well as for C(2)H histidine resonances. The NMR data obtained have allowed the conclusions to be made that the two histidine residues and one of the tryptophan residues should be localized on the surface of the protein globule, that arginine residues should be present in the environment of histidine 4, that histidine 31 and the buried tryptophan are possibly localized in close spatial proximity and that the side chain of tyrosine 24 is buried within the protein globule.  相似文献   

20.
Polarity of the myosin molecule   总被引:10,自引:0,他引:10  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号