首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intravenous administration of two benzodiazepines, flurazepam and diazepam, had an inhibitory effect on the firing rates of neurons of the substantia nigra pars reticulata, a brain region with an identified GABAergic innervation. Diazepam was more potent than flurazepam. Bicuculline and picrotoxin, two drugs which block GABAergic transmission, and caffeine and theophylline, two methylxanthines which inhibit benzodiazepine binding, all reversed the inhibition produced by diazepam. The action of theophylline was less consistent than that of caffeine. Similarly, Ro 15–1788, an imidazodiazepine which putatively functions as a specific benzodiazepine antagonist, reversed the diazepam-induced inhibition. These findings are consistent with previous reports which suggest that the benzodiazepines may act through a GABAergic mechanism. In a separate group of experiments, caffeine or Ro 15–1788 was administered alone. While caffeine excited all reticulata cells tested. Ro 15–1788, the more specific benzodiazepine antagonist, generally had little excitatory effect. These results suggest: 1) that cells of the substantia nigra pars reticulata may not receive a substantial, tonic inhibition mediated by an endogenous benzodiazepine-like substance; and 2) that the methylxanthines may increase reticulata cell firing, at least in part, through mechanisms unrelated to the blockade of benzodiazepine receptors.  相似文献   

2.
Imidazobenzodiazepine (Ro 15-1788, 5 mg/kg) similarly to a lose dose of apomorphine (0.1 mg/kg) decreased the intensity of footshock aggression in male rats. Ro 15-1788 significantly potentiated the antiaggressive action of apomorphine. Pirenperone (0.01 mg/kg) potentiated the effect of both drugs, whereas haloperidol (0.01 mg/kg) had an opposite action. After long-term treatment with apomorphine and Ro 15-1788 the tolerance to their antiaggressive action developed. This change was in agreement with increased serotonin metabolism in the forebrain. Unlike the action on aggressive behavior, Ro 15-1788 similarly to haloperidol (0.05 mg/kg) decreased the motor depressant effect of apomorphine (0.01 mg/kg) in mice. This effect correlated with the lowered serotonin metabolism after Ro 15-1788 administration. Unlike apomorphine, Ro 15-1788 reversed catalepsy induced by haloperidol (0.25 mg/kg). Administration of pirenperone (0.03 mg/kg) and destruction of serotoninergic terminals by p-chloroamphetamine (2 X 15 mg/kg) significantly potentiated the sedative action of apomorphine. It appears that different action of Ro 15-1788 on behavioral effects of apomorphine is related to different influence of Ro-1788 on serotoninergic processes in the striatum and limbic structures.  相似文献   

3.
Benzodiazepine agonists such as Ro 11-6896 [B10(+)], diazepam, clonazepam, and flurazepam were found to enhance muscimol-stimulated 36Cl- uptake into rat cerebral cortical synaptoneurosomes. The rank order of potentiation was B10(+) greater than diazepam greater than clonazepam greater than flurazepam. These benzodiazepines had no effect on 36Cl-uptake in the absence of muscimol. Further, the inactive enantiomer, Ro 11-6893 [B10(-)], and the peripheral benzodiazepine receptor ligand Ro 5-4864 did not potentiate muscimol-stimulated 36Cl- uptake at concentrations up to 10 microM. In contrast, the benzodiazepine receptor inverse agonists ethyl-beta-carboline-3-carboxylate and 6,7-dimethoxy-4-ethyl-beta- carboline-3-carboxylic acid methyl ester inhibited muscimol stimulated 36Cl- uptake. Benzodiazepines and beta-carbolines altered the apparent K0.5 of muscimol-stimulated 36Cl- uptake, without affecting the Vmax. The effects of both benzodiazepine receptor agonists and inverse agonists were reversed by the benzodiazepine antagonists Ro 15-1788 and CGS-8216. These data further confirm that central benzodiazepine receptors modulate the capacity of gamma-aminobutyric acid receptor agonists to enhance chloride transport and provide a biochemical technique for studying benzodiazepine receptor function in vitro.  相似文献   

4.
The action of the central-type benzodiazepine-receptor agonist clonazepam on alpha-MSH release has been studied in vitro using perifused frog neurointermediate lobes. High concentrations of clonazepam (3.16 X 10(-5) and 10(-4) M) caused an inhibition of alpha-MSH release and this effect was reversed by the central-type benzodiazepine-receptor antagonist Ro 15-1788. High doses of GABA (10(-5) and 10(-4) M) induced a biphasic effect on pars intermedia cells: a brief stimulation followed by a sustained inhibition of alpha-MSH secretion. Administration of clonazepam (10(-5) M) in the presence of various concentrations of GABA (10(-6) to 10(-4) M) led to a potentiation of both stimulatory and inhibitory phases of alpha-MSH secretion induced by GABA. Ro 15-1788 completely abolished the potentiating effect of clonazepam. Thus our results indicate that endogenous benzodiazepine receptors may modulate the effects of GABA on alpha-MSH secretion.  相似文献   

5.
Neuropharmacological analysis of previously revealed antihypoxic activity of benzodiazepines (BDZ) has been performed in experiments on mice exposed to hypoxia. Antihypoxic effect of diazepam is shown to be antagonized by the central BDZ receptor blocker, Ro 15-1788. A certain degree of antihypoxic activity also abolished by Ro 15-1788 is exhibited by hypothetical ligands of BDZ receptors: inosin, nicotinamide, ethyl-beta-carboline-3-carboxylate. The effect of dipyridamole, a drug with high affinity for BDZ receptors of the peripheral type is not antagonized by Ro 15-1788, another evidence of Ro 15-1788 affinity precisely to the central BDZ receptors. GABA-mimetics (muscimol and GABA cetyl ester) were also found to have marked antihypoxic activity. Unlike BDZ receptor agonists, this effect is reduced by bicuculline and not by Ro 15-1788. The data obtained suggest that antihypoxic activity of BDZ is caused by their direct interaction with the central BDZ receptors, probably with the type which is not modulated by GABAA receptors.  相似文献   

6.
The recently discovered benzodiazepine antagonist Ro 15-1788 was characterized in binding studies, and its potency and selectivity were determined in vivo by interaction with drug-induced changes in dopamine turnover and cerebellar cGMP level. Ro 15-1788 reduced [3H]flunitrazepam binding in the brain in vivo with a potency similar to that of diazepam and effectively inhibited [3H]diazepam binding in vitro (IC50 = 2.3 +/- 0.6 nmol/liter). [3H]Ro 15-1788 bound to tissue fractions of rat cerebral cortex with an apparent dissociation (KD) of 1.0 +/- 0.1 nmol/liter. The in vitro potency of various benzodiazepines in displacing [3H]Ro 15-1788 from its binding site was of the same rank order as found previously in [3H]diazepam binding. Autoradiograms of [3H]Ro 15-1788 binding in sections of rat cerebellum showed the same distribution of radioactivity as with [3H]flunitrazepam. The attenuating effect of diazepam on the chlorpromazine- or stress-induced elevation of homovanillic acid in rat brain was antagonized by Ro 15-1788. Among a series of compounds which either decreased or increased the rat cerebellar cGMP level, only the effect of benzodiazepine receptor ligands (diazepam, zopiclone, CL 218 872) was antagonized by Ro 15-1788. Thus, Ro 15-1788 is a selective benzodiazepine antagonist acting at the level of the benzodiazepine receptor in the central nervous system. Peripheral benzodiazepine binding sites in kidney and schistosomes were not affected by Ro 15-1788.  相似文献   

7.
The effects of the benzodiazepine receptor antagonist, Ro 15-1788, were examined on analgesia induced by morphine after central (intracerebroventricular, i.c.v., or intrathecal, i.t.) and systemic administration. Analgesia was assessed in squirrel monkeys trained to respond under an electric shock tiltration procedure and in mice using the radiant heat tail-flick test. Central and systemic administration of morphine produced antinociceptive effects that were antagonized by 0.1 mg/kg of naloxone in both species. Ro 15-1788 antagonized the effects of morphine after central (i.c.v. or i.t.) administration but did not alter the effects of morphine given by the systemic route. This novel interaction suggests that Ro 15-1788 may be useful in pharmacologically separating neural substrates subserving opiate analgesia.  相似文献   

8.
Abstract: The recently discovered benzodiazepine antagonist Ro 15-1788 was characterized in binding studies, and its potency and selectivity were determined in vivo by interaction with drug-induced changes in dopamine turnover and cerebellar cGMP level. Ro 15-1788 reduced [3H]flunitrazepam binding in the brain in vivo with a potency similar to that of diazepam and effectively inhibited [3H]diazepam binding in vitro (IC50= 2.3 ± 0.6 nmol/liter). [3H]Ro 15-1788 bound to tissue fractions of rat cerebral cortex with an apparent dissociation constant ( K D) of 1.0 ± 0.1 nmol/liter. The in vitro potency of various benzodiazepines in displacing [3H]Ro 15-1788 from its binding site was of the same rank order as found previously in [3H]diazepam binding. Autoradiograms of [3H]Ro 15-1788 binding in sections of rat cerebellum showed the same distribution of radioactivity as with [3H]flunitrazepam. The attenuating effect of diazepam on the chlorpromazine- or stress-induced elevation of homovanillic acid in rat brain was antagonized by Ro 15-1788. Among a series of compounds which either decreased or increased the rat cerebellar cGMP level, only the effect of benzodiazepine receptor ligands (diazepam, zopiclone, CL 218 872) was antagonized by Ro 15-1788. Thus, Ro 15-1788 is a selective benzodiazepine antagonist acting at the level of the benzodiazepine receptor in the central nervous system. Peripheral benzodiazepine binding sites in kidney and schistosomes were not affected by Ro 15-1788.  相似文献   

9.
GABA, THIP and muscimol enhance spontaneous and inhibit electrically induced release of tritium labelled compounds from rat striatal slices which have been pre-labelled with 3H-choline. Baclofen is inactive in this model. Muscimol can inhibit electrically induced release of tritiated material by approximately 75% with half maximal effects at 2 microM. The response to muscimol can be blocked by the GABA antagonists bicuculline methobromide, picrotoxin, anisatin, R 5135 and CPTBO (cyclopentylbicyclophosphate). Drugs which act on the benzodiazepine receptor (BR) require the presence of muscimol to be effective and they modulate the effects of muscimol in a bidirectional manner. Thus BR agonists enhance and inverse BR agonists attenuate the inhibitory effects of muscimol on electrically induced release. Ro15-1788, a BR antagonist, does not modulate the inhibitory effects of muscimol but antagonizes the actions of clonazepam, a BR agonist, and of DMCM, an inverse BR agonist. These results demonstrate that a GABA/benzodiazepine receptor complex can modulate acetylcholine release from rat striatal slices in vitro.  相似文献   

10.
Possible mechanisms of action of carbamazepine and diazepam on amygdala-kindled seizures were studied using compounds acting at the central and "peripheral-type" benzodiazepine binding sites. Ro-15-1788, a selective antagonist at the central benzodiazepine site, blocked the anticonvulsant effect of diazepam, but not of carbamazepine. In contrast, Ro5-4864, which acts at the "peripheral-type" benzodiazepine site, blocked the anticonvulsant effect of carbamazepine, but not of diazepam. The effect of Ro5-4864 was itself reversed by PK-11195, a compound that displaces Ro5-4864 binding in vitro and in vivo. These data indicate that the anticonvulsant effects of carbamazepine and diazepam on amygdala-kindled seizures are differentially mediated and suggest that the "peripheral-type" benzodiazepine binding site is functionally involved in the anticonvulsant effect of carbamazepine.  相似文献   

11.
Increased gastrointestinal motility in mice as one of the withdrawal symptoms of commonly abused drugs like diazepam or morphine and its possible mechanism of action was studied. Male Laka mice (20-25 g) were made addict to either diazepam (20 mg/kg, ip for 7 days) or morphine (10 mg/kg, sc for 9 days). Withdrawal symptoms were noted 24 hr after the last injection of diazepam or morphine. The animals were injected with Ro 15-1788 (flumazenil) (1 mg/kg, ip) or naloxone (2 mg/kg, ip) in the respective group to precipitate the withdrawal symptoms. Gastrointestinal motility was assessed by charcoal-meal test. Animals developed tolerance to acute sedative effect of diazepam, and similarly to the acute nociceptive action of morphine. On abrupt cessation of these drugs after chronic treatment the animals showed hyperlocomotion and hyperreactivity in diazepam withdrawal group and hyperalgesia on hot plate in morphine withdrawal groups, respectively. Increase in gastrointestinal motility was observed in all the drug withdrawal groups. Treatment with respective antagonists, Ro 15-1788 (flumazenil) and naloxone precipitated the withdrawal symptoms. The results suggest the involvement of both central and peripheral receptors of benzodiazepines and opioid (mu) receptors in the withdrawal symptoms of the benzodiazepines and morphine, respectively.  相似文献   

12.
Modulation of the GABAA receptor by progesterone metabolites   总被引:12,自引:0,他引:12  
The naturally occurring progesterone metabolites 5 beta-pregnan-3 alpha-ol-20-one and 5 beta-pregnane-3,20-dione reversibly enhance membrane currents elicited by locally applied GABA in bovine adrenomedullary chromaffin cells. Such potentiation was not influenced by the benzodiazepine antagonist Ro 15-1788. At concentrations in excess of those necessary to evoke potentiation of GABA currents, 5 beta-pregnan-3 alpha-ol-20-one and 5 beta-pregane-3,20-dione directly activated a membrane conductance. The resulting currents were potentiated by phenobarbitone and diazepam, and abolished by the GABAA-receptor antagonist, bicuculline. On outside-out membrane patches, 5 beta-pregnan-3 alpha-ol-20-one and 5 beta-pregnane-3,20-dione activated single channel currents of similar amplitude to those evoked by GABA. The results suggest that certain naturally occurring steroids potentiate the actions of GABA and, additionally, directly activate the GABAA receptor.  相似文献   

13.
Ethological procedures were used to study the effects of GABA-positive drugs on aggression in male albino mice kept in isolation (opponent test). The results revealed several variants of antiaggressive effects of the tested GAB Aergic drugs: 1) antiaggressive, re-socializing of GABAA agonists muscimol (0.125 and 0.5 mg/kg) and THIP (2.0 mg/kg), and GABAB agonist baclofen (2.5-10 mg/kg); 2) antiaggressive, sedative of GABAB agonists baclofen (12.5 mg/kg), phenibut (50-100 mg/kg), and inhibitor of GABA transamininase sodium valproate (100 mg/kg); 3) antiaggressive, anxiogenic for muscimol (1 mg/kg), THIP (5 mg/kg), and sodium valproate (25-50 mg/kg).  相似文献   

14.
Benzodiazepine receptors on human blood platelets   总被引:3,自引:0,他引:3  
Binding studies conducted on membrane preparation from human platelets using (3H) Ro5-4864 and (3H) diazepam showed specific and saturable binding. Scatchard analysis revealed a single class of binding sites with KD = 10.8 +/- 0.9 nM and Bmax = 775 +/- 105 fmol/mg protein for (3H) Ro5-4864 and KD = 10.5 +/- 1.1 nM and Bmax = 133 +/- 19 fmol/mg for (3H) diazepam. We were unable to detect any GABA binding site on crude membrane preparation, nor did GABA enhance the binding of (3H) Ro5-4864 or (3H) diazepam. This suggests that benzodiazepine receptors are uncoupled to GABA system on human platelets. Ro15-1788, a specific antagonist for "central type" benzodiazepine (BDZ) binding sites was inactive in displacing (3H) Ro5-4864 from membrane receptors, while PK 11195 (a specific ligand for the "peripheral type" receptor) was the most potent of the drugs tested in inhibiting (3H) Ro5-4864 binding. These results indicate that human blood platelets bear "peripheral-type" BDZ receptor. Moreover, we could not detect any (3H) propyl beta carboline specific binding on platelet membranes. Results on benzodiazepine receptors on human circulating lymphocytes are also reported and similarity in pharmacological properties with platelet benzodiazepine receptors is suggested.  相似文献   

15.
Diazepam increases membrane fluidity of rat hippocampus synaptosomes   总被引:1,自引:0,他引:1  
Diazepam in vitro produced a concentration-dependent increase of membrane fluidity in crude synaptic membranes from rat hippocampus, but not cerebellum. Similar effects were obtained with higher concentrations of Ro 15-1788 and PK 11195, while zopiclone was completely inactive. In vivo acute treatment with diazepam and Ro 15-1788 gave results similar to those in vitro. The specific benzodiazepine antagonist also significantly increased membrane fluidity and was not able to reverse diazepam's effect. The data are discussed in terms of a possible role of protein kinase inhibition by the drugs not mediated by the 'central' or 'peripheral' type of benzodiazepine receptors.  相似文献   

16.
The effects of benzodiazepine antagonist Ro 15–1788, alone or with diazepam, were studied in mice on convulsions induced by pentylenetetrazol (PTZ). We found that Ro 15–1788 (1 mg/kg) was able to antagonize the anticonvulsive effects of diazepam (1 mg/kg), but also had, with submaximal doses of PTZ (65 mg/kg), its own anti-convulsive action. At very low doses (0.1 mg/kg), it even potentiated the anticonvulsive effects of diazepam (0.05 mg/kg). This dual action provides evidence for partial agonist properties of the antagonist Ro 15–1788.  相似文献   

17.
Both alprazolam and triazolam displaced clonazepam (but not Ro 5-4864) from rat brain membranes with high affinity, showing them to act at central but not peripheral benzodiazepine receptors. At 0 degrees C, 10 microM gamma-aminobutyric acid (GABA) increased the ability of alprazolam, but not of triazolam, to displace ethyl-beta-carboline-3-carboxylate (beta-CCE) and Ro 15-1788 from these receptors. At 37 degrees C, GABA increased the affinity of the receptors for both drugs, with a +GABA/-GABA ratio of 1.5 for each in promoting Ro 15-1788 binding displacement. As both triazolam and alprazolam act as anxiolytics in vivo, the results at 37 degrees C would be compatible with the hypothesis that GABA causes an increase in affinity of drugs that act in this way, but the results at 0 degrees C would not be compatible. At 37 degrees C, alprazolam had a higher IC50 for the benzodiazepine receptor than at 0 degrees C, whereas triazolam showed the reverse effect. The relative IC50 values in vitro at 37 degrees C correlated better with the potency in vivo than those obtained at 0 degrees C. At 0 degrees C, both drugs showed Hill plots with slopes of 0.9-1 with beta-CCE and Ro 15-1788. At 37 degrees C, the slopes with triazolam were much reduced, indicating that the drug may have a selective action on a subclass of central benzodiazepine receptors. In the studies reported here, alprazolam behaved like other benzodiazepines, whereas triazolam showed several anomalous properties. It would be of interest if these properties could be related either to the drug's use as a hypnotic or to the side effects it sometimes induces.  相似文献   

18.
The effects of a variety of factors known to influence the enhancement of GABA binding by diazepam, were studied upon pentobarbitone stimulation of GABA binding to washed synaptosomal membranes prepared from whole rat brains. The differential kinetics of, and effects of temperature, chloride ions, a benzodiazepine receptor antagonist (Ro15-1788) and picrotoxinin upon pentobarbitone and diazepam enhancement of GABA binding, suggest that these drugs exert their actions upon GABA binding at different loci. The degree of enhancement of diazepam binding and of high affinity GABA binding in chloride-containing media at 25 degrees C by members of a series of twelve side chain methyl substituted and/or unsaturated derivatives of 5-butyl-5-ethyl-barbituric acid (pentobarbitone analogs) correlated significantly. For the sedative members of the series, enhancement of high affinity GABA binding correlated with their anaesthetic but not their anticonvulsant activities. It appears likely that the anaesthetic and anticonvulsant activities of barbiturates arise from different molecular actions.  相似文献   

19.
Gatch MB  Jung ME  Wallis CJ  Lal H 《Life sciences》2002,71(22):2657-2665
Male Long-Evans rats were trained to discriminate mCPP (1.4 mg/kg, i.p.) from saline, using a two-lever, food-reinforced operant task. The GABA(A) antagonist, bicuculline (0.16-0.64 mg/kg), partially substituted for mCPP, whereas the benzodiazepine antagonist, flumazenil (1-10 mg/kg), and the benzodiazepine inverse agonist, Ro 15-4513 (0.25-2.5 mg/kg), failed to substitute for mCPP. Bicuculline produced no change in response rate, whereas Ro 15-4513 dose-dependently decreased responding. Flumazenil produced a small increase in response rates. Flumazenil (10 mg/kg), Ro 15-4513 (1.25 mg/kg), and the benzodiazepine agonists alprazolam (0.64 mg/kg) and diazepam (5 mg/kg) full agonist all failed to block the mCPP discriminative stimulus. When given in combination with mCPP, Ro15-4513 and alprazolam both produced lower response rates than did mCPP alone, whereas flumazenil and diazepam did not significantly alter response rates. These findings provide evidence that GABA(A) antagonists modulate the discriminative stimulus effects of mCPP, but that these effects are not mediated by activity at the benzodiazepine site.  相似文献   

20.
R L Garrett  W M Bourn 《Life sciences》1985,37(20):1933-1939
The convulsant influence of high doses of diazepam, in the presence of the benzodiazepine receptor antagonist Ro 15-1788, was studied in rats. Animals were implanted with permanent cortical screw electrodes for EEG recording. EEG spiking and accompanying clonic activity was observed in rats receiving greater than or equal to 200 mg/kg diazepam, followed 10 minutes later by Ro 15-1788 (20 mg/kg). Pentylenetetrazole and picrotoxin seizure thresholds, measured during constant rate iv infusion, were significantly lowered by pretreatment with diazepam (250 mg/kg) and Ro 15-1788 (20 mg/kg) administered 30 and 20 minutes, respectively, before seizure threshold measurement. It is proposed that this convulsive activity of diazepam is mediated through the picrotoxinin receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号