首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enzyme glutamate decarboxylase (GAD) is prevalent in Escherichia coli but few strains in the various pathogenic E. coli groups have been tested for GAD. Using PCR primers that amplify a 670-bp segment from the gadA and gadB genes encoding GAD, we examined the distribution of the gadAB genes among enteric bacteria. Analysis of 173 pathogenic E. coli strains, including 125 enterohemorrhagic E. coli isolates of the O157:H7 serotype and its phenotypic variants and 48 isolates of enteropathogenic E. coli, enterotoxigenic E. coli, enteroinvasive E. coli, and other Shiga toxin-producing E. coli (STEC) serotypes, showed that gadAB genes were present in all these strains. Among the 22 non-E. coli isolates tested, only the 6 Shigella spp. carried gadAB. Analysis of naturally contaminated water and food samples using a gadAB-specific DNA probe that was labeled with digoxigenin showed that a gadAB-based assay is as reliable as standard methods that enumerate E. coli organisms on the basis of lactose fermentation. The presence of few E. coli cells initially seeded into produce rinsates could be detected by PCR to gadA/B genes after overnight enrichment. A multiplex PCR assay using the gadAB primers in combination with primers to Shiga toxin (Stx) genes stx1 and stx2 was effective in detecting STEC from the enrichment medium after seeding produce rinsate samples with as few as 2 CFU. The gadAB primers may be multiplexed with primers to other trait virulence markers to specifically identify other pathogenic E. coli groups.  相似文献   

2.
AIMS: To develop and evaluate a multiplex PCR (mPCR) system for rapid and specific identification of Shiga toxin-producing Escherichia coli (STEC) and their main virulence marker genes. METHODS AND RESULTS: A series of mPCR assays were developed using primer pairs that identify the sequences of Shiga toxins 1 and 2 (stx1 and stx2, including the stx2c, stx2d, stx2e and stx2f variants), intimin (eaeA), and enterohaemorrhagic E. coli enterohaemolysin (ehlyA). Moreover, two additional genes (rfb O157 and fliC H7), providing the genotypic identification of the O157:H7 E. coli serotype, were detected. As an internal positive control, primers designated to amplify the E. coli 16S rRNA were included in each mPCR. All the amplified genes in the E. coli reference strains were sucessfully identified by this procedure. The method was then used for the examination of 202 E. coli isolates recovered from cattle and children. Among them, 25 (12.4%) were stx positive including the strains of O157:H7 serotype (six isolates) and O157:NM serogroup (four strains). Moreover, 20 STEC strains possessed the eaeA (intimin) and ehlyA (enterohaemolysin) genes. CONCLUSIONS: The developed mPCR-based system enabled specific detection of STEC bacteria and identification of their main virulence marker genes. SIGNIFICANCE AND IMPACT OF THE STUDY: The ability to identify STEC bacteria and the majority of their virulence gene markers, including four variants of Shiga toxin, as well as the differentiation of O157:H7 from non-O157 isolates represents a considerable advancement over other PCR-based methods for rapid characterization of STEC.  相似文献   

3.
The presence of Shiga toxin-producing Escherichia coli (STEC) strains in feces samples of cattle was determined using the cytotoxicity assay on Vero cells and a screening PCR system to detect stx genes. The STEC isolates were serotyped, tested for antimicrobial susceptibility, and analyzed for virulence genes using multiplex PCR. The verocytotoxin-producing E. coli - reverse passive latex agglutination (VTEC-RPLA) assay was also used to detect Shiga toxin production. The frequency of cattle shedding STEC was 36%. The isolates belonged to 33 different serotypes, of which O10:H42, O98:H41, and O159:H21 had not previously been associated with STEC. The most frequent serotypes were ONT:H7 (10%), O22:H8 (7%), O22:H16 (7%), and ONT:H21 (7%). Most of the strains (96%) were susceptible to all antimicrobial agents tested. Shiga toxin was detected by the VTEC-RPLA assay in most (89%) of the STEC strains. The frequency of virulence markers was as follows: stx1, 10%; stx2, 43%; stx1 plus stx2, 47%; ehxA, 44%; eae, 1%; and saa, 38%. Several strains belong to serotypes associated with human disease, and most of them carried a stx2-type gene, suggesting that they represent a risk to human health. The screening PCR assay showed fewer false-negative results for STEC than the Vero-cell assay and is suitable for laboratory routine.  相似文献   

4.
AIMS: The object of this study was to develop a multiplex PCR system for rapid and specific identification of Shiga toxin-producing Escherichia coli (STEC) in faeces. METHODS AND RESULTS: A multiplex PCR (mPCR) protocol was developed using a primer pair specific for genes that are involved in the biosynthesis of the O157 E. coli antigen, and primers that identify the sequences of Shiga toxin 1 and 2 (stx 1 and stx1) and the intimin protein (eaeA). The mPCR assay was used for amplification of STEC genes in bacteria directly (after enrichment) in faeces. The test was very sensitive and could detect between 9 and 1 bacterial cells per gram of faeces. The mPCR was used for the examination of 69 bovine faecal samples derived from healthy cattle. The results indicated that 62 x 3% of the samples were positive, generating at least one PCR amplicon of the expected size. CONCLUSIONS: The method can be applied for rapid and specific identification of STEC bacteria in faecal samples, and for differentiation of their main virulence marker genes. SIGNIFICANCE AND IMPACT OF THE STUDY: The ability to sensitively detect Shiga toxin-producing E. coli directly in faeces within a short time represents a considerable advancement over more time-consuming and less sensitive methods for identification and characterization of STEC bacteria.  相似文献   

5.
AIMS: To determine the prevalence and molecular characteristics of Shiga toxin-producing Escherichia coli (STEC) isolates from bovine mastitic milk in Brazil. METHODS AND RESULTS: A total of 2144 milk samples from dairy cattle showing mastitis were screened for the presence of E. coli. A total of 182 E. coli isolates were selected and examined. All were subjected to dot blot analysis using the CVD419 probe for the detection of the enterohaemolysin (hly) gene, and to a multiplex PCR for the detection of stx1, stx2 and eaeA genes. STEC were isolated from 22 (12.08%) milk samples. All the STEC isolates were tested for sensibility to 10 antimicrobials; the resistances most commonly observed were to cephalothin (86.3%), tetracycline (63.6%) and doxycycline (63.6%). CONCLUSION: STEC isolates were found in bovine mastitic milk in Brazil. SIGNIFICANCE AND IMPACT OF THE STUDY: STEC isolates from mastitic milk were potentially pathogenic for human in that they belonged to serogroups associated with diarrhoea and haemolytic-uraemic syndrome, some of them were stx2, eaeA and hly positive.  相似文献   

6.
Shiga toxin-producing Escherichia coli (STEC) strains isolated in Mangalore, India, were characterised by bead-enzyme-linked immunosorbent assay (bead-ELISA), Vero cell cytotoxicity assay, PCR and colony hybridisation for the detection of stx1 and stx2 genes. Four strains from seafood, six from beef and one from a clinical case of bloody diarrhoea were positive for Shiga toxins Stx1 and Stx2 and also for stx1and stx2 genes. The seafood isolates produced either Stx2 alone or both Stx1 and Stx2, while the beef isolates produced Stx1 alone. The stx1 gene of all the beef STEC was found to be of recently reported stx1c type. All STEC strains and one non-STEC strain isolated from clam harboured EHEC-hlyA. Interestingly, though all STEC strains were negative for eae gene, two STEC strains isolated from seafood and one from a patient with bloody diarrhoea possessed STEC autoagglutinating adhesion (saa) gene, recently identified as a gene encoding a novel autoagglutinating adhesion.  相似文献   

7.
A study was conducted to determine the prevalence of Shiga toxin-producing Escherichia coli (STEC) in swine feces in the United States as part of the National Animal Health Monitoring System's Swine 2000 study. Fecal samples collected from swine operations from 13 of the top 17 swine-producing states were tested for the presence of STEC. After enrichment of swine fecal samples in tryptic soy broth, the samples were tested for the presence of stx1 and stx2 by use of the TaqMan E. coli STX1 and STX2 PCR assays. Enrichments of samples positive for stx1 and/or stx2 were plated, and colony hybridization was performed using digoxigenin-labeled probes complementary to the stx1 and stx2 genes. Positive colonies were picked and confirmed by PCR for the presence of the stx1, stx2, or stx2e genes, and the isolates were serotyped. Out of 687 fecal samples tested using the TaqMan assays, 70% (484 of 687) were positive for Shiga toxin genes, and 54% (370 of 687), 64% (436 of 687), and 38% (261 of 687) were positive for stx1, stx2, and both toxin genes, respectively. Out of 219 isolates that were characterized, 29 (13%) produced stx1, 14 (6%) produced stx2, and 176 (80%) produced stx2e. Twenty-three fecal samples contained at least two STEC strains that had different serotypes but that had the same toxin genes or included a strain that possessed stx1 in addition to a strain that possessed stx2 or stx2e. The STEC isolates belonged to various serogroups, including O2, O5, O7, O8, O9, OX10, O11, O15, OX18, O20, O57, O65, O68, O69, O78, O91, O96, O100, O101, O120, O121, O152, O159, O160, O163, and O untypeable. It is noteworthy that no isolates of serogroup O157 were recovered. Results of this study indicate that swine in the United States harbor STEC that can potentially cause human illness.  相似文献   

8.
Escherichia coli strains in water may originate from various sources, including humans, farm and wild animals, waterfowl, and pets. However, potential human health hazards associated with E. coli strains present in various animal hosts are not well known. In this study, E. coli strains from diverse human and animal sources in Minnesota and western Wisconsin were analyzed for the presence of genes coding for virulence factors by using multiplex PCR and biochemical reactions. Of the 1,531 isolates examined, 31 (2%) were found to be Shiga toxin-producing E. coli (STEC) strains. The majority of these strains, which were initially isolated from the ruminants sheep, goats, and deer, carried the stx(1c) and/or stx(2d), ehxA, and saa genes and belonged to E. coli phylogenetic group B1, indicating that they most likely do not cause severe human diseases. All the STEC strains, however, lacked eae. In contrast, 26 (1.7%) of the E. coli isolates examined were found to be potential enteropathogenic E. coli (EPEC) strains and consisted of several intimin subtypes that were distributed among various human and animal hosts. The EPEC strains belonged to all four phylogenetic groups examined, suggesting that EPEC strains were relatively widespread in terms of host animals and genetic background. Atypical EPEC strains, which carried an EPEC adherence factor plasmid, were identified among E. coli strains from humans and deer. DNA fingerprint analyses, done using the horizontal, fluorophore-enhanced repetitive-element, palindromic PCR technique, indicated that the STEC, potential EPEC, and non-STEC ehxA-positive E. coli strains were genotypically distinct and clustered independently. However, some of the potential EPEC isolates were genotypically indistinguishable from nonpathogenic E. coli strains. Our results revealed that potential human health hazards associated with pathogenic E. coli strains varied among the animal hosts that we examined and that some animal species may harbor a greater number of potential pathogenic strains than other animal species.  相似文献   

9.
Aims:  Sheep are important carriers of Shiga toxin-producing Escherichia coli (STEC) in several countries. However, there are a few reports about ovine STEC in American continent.
Methods and Results:  About 86 E. coli strains previously isolated from 172 healthy sheep from different farms were studied. PCR was used for detection of stx 1, stx 2, eae, ehxA and saa genes and for the identification of intimin subtypes. Restriction fragment length polymorphism (RFLP)–PCR was performed to investigate the variants of stx 1 and stx 2, and the flagellar antigen ( fli C) genes in nonmotile isolates. Five isolates were eae + and stx , and belonged to serotypes O128:H2/β-intimin (2), O145:H2/γ, O153:H7/β and O178:H7/ε. Eighty-one STEC isolates were recovered, and the stx genotypes identified were stx 1c stx 2d-O118 (46·9%), stx 1c (27·2%), stx 2d-O118 (23·4%), and stx 1c stx 2dOX3a (2·5%). Pulsed-field gel electrophoresis (PFGE) revealed 27 profiles among 53 STEC and atypical enteropathogenic Escherichia coli (EPEC) isolates.
Conclusions:  This study demonstrated that healthy sheep in São Paulo, Brazil, can be carriers of potential human pathogenic STEC and atypical EPEC.
Significance and Impact of the Study:  As some of the STEC serotypes presently found have been involved with haemolytic uraemic syndrome (HUS) in other countries, the important role of sheep as sources of STEC infection in our settings should not be disregarded.  相似文献   

10.
Enterotoxigenic Escherichia coli (ETEC) may produce heat-labile toxin (LT) I and LTII and heat-stable toxin (ST) I and STII, while shiga toxin producing E. coli (STEC) strains, including enterohaemorrhagic E. coli (EHEC), may produce shiga-like toxin (SLT) I and/or SLTII. Both ETEC and STEC are pathogenic to humans, pigs and cattle. As contamination of environmental water by any of these pathogenic E. coli cells is possible, a multiplex polymerase chain reaction (PCR) system for the rapid screening of LTI, STII, and SLTI and SLTII genes of E. coli was developed. The PCR primers used were the SLTI and SLTII genes specific primers developed by the present authors and the LTI and STII genes specific primers reported by other laboratories. The detection specificity of this multiplex PCR system was confirmed by PCR assay of ETEC, STEC and other E. coli cells as well as non- E. coli bacteria. Its detection limit was 102–103 cfu each of the target cells per assay. When this multiplex PCR system was used for the rapid screening of LTI, STII ETEC and STEC in water samples such as tap, underground and lake waters, it was found that after the enrichment step, as few as 100 cells 100 ml−1 of the water sample could be detected. Therefore, this PCR system could be used for the rapid monitoring of ETEC and/or STEC cells contaminating water samples.  相似文献   

11.
为了解产志贺毒素大肠埃希菌 (Shigatoxin producingEscherichiacoli ,STEC)stx1,stx2 ,eaeA ,hlyA 4种毒力基因的分布情况 ,以及分离株对 18种抗生素的敏感性 ,采用多重PCR(multiplexPCR ,mPCR)法对分离株进行毒力基因的分子生物学鉴定 ;用WHO推荐的K B法对分离株进行抗生素的敏感性测定。产志贺毒素的大肠埃希菌共有 4 6株 ,其中 2种毒素均产生的有 2 2株 (4 7.8% ) ;单纯产生stx1的有 16株 (36 .9% ) ,stx2 的有 8株 (17.4 % ) ;4种毒力基因均存在的有 19株 (4 1.3% ) ,血清型为O15 7∶H7,而非O15 7∶H7血清型的菌株 (2 3/46 )中 ,4种毒力基因同时存在的仅有 3株 (6 .6 % ) ,但有 13株 (5 6 .9% )hlyA基因阳性。全部STEC对复方新诺明耐药 ,对链霉素耐药率为 2 8.3% ,氨苄西林为 30 .4 % ,红霉素为 6 9.6 % ,而且有 5株对至少 4种以上抗生素多重耐药 ,耐药谱为复方新诺明 链霉素 红霉素 氨苄西林。非O15 7型STEC耐药菌次为 12 2 ,而O15 7型为 6 3。可见 ,mPCR法可以快速检测STEC特征性毒力基因 ,以判定其致病性能。非O15 7型STEC对抗生素较易形成耐药性。  相似文献   

12.
[目的]揭示从我国部分地区仔猪腹泻或水肿病病猪体内分离到的300个大肠杆菌分离株所属病原型(pathotype)、毒力基因及其与O血清型的关系.[方法]O血清型采用常规的凝集试验进行测定,毒力基因采用PCR方法检测.[结果]通过对这300个分离株的O血清型及其毒素、紧密素和黏附素基因进行鉴定,结果显示除50株未定型、17株自凝外,测定出233个分离株的血清型,这些分离株覆盖了45个血清型,其中以0149、0107、0139、093和091为主,共133株,占定型菌株的57.1%;拥有est Ⅰ、estⅡ、elt、stx2e和eae A基因的菌株分别为102(34.0%)、190(63.3%)、81(27.0%)、57(19.0%)和54(18.0%)株;分离株中有51株K88基因阳性(其中菌毛表达率为100%),75株F18基因阳性(其中菌毛表达率为50.7%),在K88菌株中,0149血清型与est Ⅰ或estⅡ elt密切相关,在F18菌株中,0107血清型与est Ⅰ或estⅡ、0139血清型与stx2e紧密相关.依其毒力特征可将这些分离株分为以下6种类型:ETEC、STEC、AEEC、ETEC/STEC、AEEC/ETEC和AEEC/ETEC/STEC,分别拥有190、24、36、32、17和1个菌株,占分离株的63.3%、8.0%、12.0%、10.7%、5.7%和0.3%.通过分析这些分离株的O血清型、毒素类型和黏附素型之间的相关性:猪源ETEC以0149、0107、093和098等血清型为主,0149:K88菌株主要与estⅡ或estⅡ elt肠毒素相关,0107:F18菌株主要与estⅡ相关,093和098血清型菌株主要与estⅡ肠毒素相关;STEC菌株以0139:F18血清型为主,拥有stx2e;AEEC菌株拥有紧密素,无明显优势血清型;ETEC/STEC菌株以0107:F18和0116:F18血清型为主,主要与est Ⅰ stx2e或estⅡ stx2e密切相关,ETEC/AEEC菌株以091和0107血清型为主,全部拥有肠毒素est Ⅰ和紧密素基因.[结论]我国至少存在6种病原型的猪肠道致病性大肠杆菌,其中ETEC为我国部分地区猪大肠杆菌病的主要病原,同时其病原型日益复杂.  相似文献   

13.
Thirteen Escherichia coli strains harboring stx2e were isolated from 11,056 human stools. This frequency corresponded to the presence of the stx2e allele in 1.7% of all Shiga toxin-producing E. coli (STEC) strains. The strains harboring stx2e were associated with mild diarrhea (n = 9) or asymptomatic infections (n = 4). Because STEC isolates possessing stx2e are porcine pathogens, we compared the human STEC isolates with stx2e-harboring E. coli isolated from piglets with edema disease and postweaning diarrhea. All pig isolates possessed the gene encoding the F18 adhesin, and the majority possessed adhesin involved in diffuse adherence; these adhesins were absent from all the human STEC isolates. In contrast, the high-pathogenicity island encoding an iron uptake system was found only in human isolates. Host-specific patterns of interaction with intestinal epithelial cells were observed. All human isolates adhered to human intestinal epithelial cell lines T84 and HCT-8 but not to pig intestinal epithelial cell line IPEC-J2. In contrast, the pig isolates completely lysed human epithelial cells but not IPEC-J2 cells, to which most of them adhered. Our data demonstrate that E. coli isolates producing Shiga toxin 2e have imported specific virulence and fitness determinants which allow them to adapt to the specific hosts in which they cause various forms of disease.  相似文献   

14.
Shiga toxin-producing Escherichia coli (STEC) has been associated with food-borne diseases ranging from uncomplicated diarrhea to hemolytic-uremic syndrome (HUS). While most outbreaks are associated with E. coli O157:H7, about half of the sporadic cases may be due to non-O157:H7 serotypes. To assess the pathogenicity of STEC isolated from dairy foods in France, 40 strains isolated from 1,130 raw-milk and cheese samples were compared with 15 STEC strains isolated from patients suffering from severe disease. The presence of genes encoding Shiga toxins (stx(1), stx(2), and variants), intimin (eae and variants), adhesins (bfp, efa1), enterohemolysin (ehxA), serine protease (espP), and catalase-peroxidase (katP) was determined by PCR and/or hybridization. Plasmid profiling, ribotyping, and pulsed-field gel electrophoresis (PFGE) were used to further compare the strains at the molecular level. A new stx(2) variant, stx(2-CH013), associated with an O91:H10 clinical isolate was identified. The presence of the stx(2), eae, and katP genes, together with a combination of several stx(2) variants, was clearly associated with human-pathogenic strains. In contrast, dairy food STEC strains were characterized by a predominance of stx(1), with a minority of isolates harboring eae, espP, and/or katP. These associations may help to differentiate less virulent STEC strains from those more likely to cause disease in humans. Only one dairy O5 isolate had a virulence gene panel identical to that of an HUS-associated strain. However, the ribotype and PFGE profiles were not identical. In conclusion, most STEC strains isolated from dairy products in France showed characteristics different from those of strains isolated from patients.  相似文献   

15.
【目的】探讨江苏某羊场健康绵羊体内产志贺毒素大肠杆菌的带菌和流行情况,同时就分离株的致病力和对Vero细胞的毒性作用作了研究。【方法】基于本实验室已经建立的EHEC O157:H7 EDL933W株的stx1、stx2、eaeA、hlyA四个基因的多重PCR检测并配合选择性增菌、平板筛选等方法对STEC进行分离鉴定。【结果】在为期6个月的连续跟踪调查中,共分离到STEC菌株107株,分离率为19.4%(107/550)。分离株属于41种O血清型、62种O:H血清型,未定型(ONT)有22株,粗糙型(OR)1株。其中属于绵羊STEC的优势血清型有O5(2株)、O91(1株)、O103(1株)。本文检测到的优势血清型为O93,stx2阳性菌株的分离率较stx1阳性菌株的分离率高,LD50测定结果表明分离株对小鼠致病力不高,受试的3个分离株均不能致小鼠死亡。对107株stx阳性分离株噬菌斑试验表明,71株阳性菌株携带噬菌体(66.3%,71/109)。受试分离株进行Vero细胞毒性试验,其中有一个菌株stx基因阳性但不能使Vero细胞产生病变。【结论】绵羊是STEC的天然宿主,可健康带菌。虽然STEC分离株对小鼠的致病力较弱,但不能排除其对人类安全的威胁。STEC携带志贺毒素基因并不意味着一定表达志贺毒素,需对志贺毒素的表达及调控机理做进一步的研究。  相似文献   

16.
Shiga toxins Stx1 and Stx2 play a prominent role in the pathogenesis of Shiga toxin-producing Escherichia coli (STEC) infections. Several variants of the stx(2) gene, encoding Stx2, have been described. In this study, we developed a PCR-restriction fragment length polymorphism system for typing stx(2) genes of STEC strains. The typing system discriminates eight described variants and allows the identification of new stx(2) variants and STEC isolates carrying multiple stx(2) genes. A phylogenetic tree, based on the nucleotide sequences of the toxin-encoding genes, demonstrates that stx(2) sequences with the same PvuII HaeIII HincII AccI type generally cluster together.  相似文献   

17.
AIMS: This study was carried out to evaluate the presence of Shiga toxin-producing Escherichia coli (STEC) and E. coli O157:H7 in shellfish from French coastal environments. METHODS AND RESULTS: Shellfish were collected in six growing areas or natural beds (B category) and nonfarming areas (D category) from July 2002 to August 2004. PCR detection of stx genes was performed on homogenized whole shellfish and digestive gland tissues enrichments. STEC strains were detected by colony DNA hybridization using a stx-specific gene probe and E. coli O157 strains were additionally searched by immunomagnetic separation with O157-specific magnetic beads. Stx genes were detected in 40 of 144 (27.8%) sample enrichments from mussels, oysters or cockles, 32 of 130 enrichments (24.6%) were from B-category areas and eight of 14 (57.1%) from the D-category area. Five strains carrying stx(1) or stx(1d) genes and one stx negative, eae and ehxA positive E. coli O157:H7 were isolated from six of 40 stx-positive enrichments. No relation was found between the total E. coli counts in shellfish and the presence of STEC strains in the samples. CONCLUSIONS: The STEC strains of different serotypes and stx types are present in shellfish from French coastal environments. It is the first isolation of STEC stx1d strains in France. SIGNIFICANCE AND IMPACT OF THE STUDY: Shellfish collected in coastal environments can serve as a vehicle for STEC transmission.  相似文献   

18.
AIMS: To investigate the prevalence and characteristics of Shiga toxin-producing Escherichia coli (STEC) in cattle from Paraná State, southern Brazil. METHODS AND RESULTS: One hundred and seven faeces cattle samples were cultured on Sorbitol-MacConkey agar. Escherichia coli colonies were tested for production of Shiga toxin using Vero-cell assay. A high prevalence (57%) of STEC was found. Sixty-four STEC were serotyped and examined for the presence of stx(1), stx(2), eae, ehxA and saa genes and stx(2) variants. The isolates belonged to 31 different serotypes, of which three (O152:H8, O175:H21 and O176:H18) had not previously been associated with STEC. A high prevalence of stx(2)-type genes was found (62 strains, 97%). Variant forms found were stx(2), stx(2c), stx(2vhb), stx(2vO111v/OX393) and a form nonclassifiable by PCR-RFLP. The commonest genotypes were stx(2)ehxA saa and stx(1)stx(2)ehxA saa. CONCLUSIONS: A high frequency of STEC was observed. Several strains belong to serotypes previously associated with human disease and carry stx(2) and other virulence factors, thus potentially representing a risk to human health. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study of STEC in Paraná State, and its findings emphasize the need for proper cattle handling to prevent human contamination.  相似文献   

19.
AIMS: To characterize a number of Shiga toxin-producing Escherichia coli (STEC) isolates from sheep and to discuss the potential of these isolates as human pathogens. METHODS AND RESULTS: Twelve different O-groups and seven different H-types were identified by standard serotyping methods. The most common serotypes were O5:NM, O6:H10, O91:NM and O128:NM. Polymerase chain reaction (PCR) was used for the detection of virulence factor genes. Of 102 isolates, 86.3% carried stx1 and 83% of these were also positive in the stx1OX3-specific PCR. stx2 was carried by 55.9% of the isolates and 77.2% of these were also positive in the stx2d-specific PCR. The Vero cell assay showed high toxin production in 70.6% of the isolates. None of the isolates carried eae. CONCLUSIONS: The study supports the animal-host relationship suggested in other studies with STEC serogroups O5, O91 and O128 strongly associated with sheep. Most sheep STEC carry stx1OX3 (except O91) and the dominating stx2 variant is stx2d. One stx profile clearly dominates within a serotype. SIGNIFICANCE AND IMPACT OF THE STUDY: In spite of the predominance of certain sheep-associated STEC, sheep cannot be excluded as carriers of human pathogenic STEC.  相似文献   

20.
Retail raw meat was sampled for the presence of Shiga toxin-producing Escherichia coli (STEC) using enrichment culture and Vero cell assay. The STEC obtained were serotyped and tested for enterohaemolysin (Ehly) production and the eae gene. The presence of Shiga toxin genes (stx) was confirmed by polymerase chain reaction. A total of 18 STEC were isolated accounting for 12% of beef, 17% of lamb and 4% of pork samples. Five isolates produced Ehly but none possessed the eae gene. Five isolates were identified which possessed the stx2 gene and belonged to serotypes associated with severe infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号