首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:研究NADPH氧化酶抑制剂apocynin对力竭运动大鼠运动性蛋白尿产生的影响及其机制。方法:32只SD雄性大鼠随机分为安静对照组(C组)、对照+药物组(CA组)、力竭运动组(E组)、力竭运动+药物组(EA组)。药物注射按10 mg/kg体重,每天一次,连续3 d,并在末次药物注射1 h后进行一次性跑台力竭运动。测定运动后尿UP、血液BUN水平、肾脏ROS浓度、NOS活性、NOS与3-NT蛋白含量。结果:结果显示,E组UP、肾脏ROS、iNOS含量及活性、3-NT明显升高,而EA组的这些指标与C组相比无显著性差异。结论:力竭运动可明显增加肾组织NADPH氧化酶活性,从而产生大量的ROS,后者可迅速地与由肾脏iNOS催化生成的NO反应,产生过量的ONOO-,诱发运动性蛋白尿的生成。  相似文献   

2.
目的: 观察大鼠在一次性力竭运动后肾脏裂孔膜蛋白的表达水平,探究PKC抑制剂对其蛋白表达水平的影响,揭示PKC在运动性蛋白尿形成中的作用机制。方法: SD雄性大鼠30只随机分为对照组(C)、运动组(E)、运动联合PKC抑制剂组(EPI),每组10只。E组和EPI组大鼠分别进行一次性跑台力竭运动(25 m/min),EPI组大鼠运动前1 d及1 h腹腔注射PKC抑制剂白屈菜红碱(chelerythrine,5 mg/kg),C组和E组注射相应体积的生理盐水。运动后即刻麻醉后,取血液、尿液及肾脏组织,使用化学比色法检测尿蛋白、尿酸、尿糖、血尿素、血尿酸、血糖水平,使用荧光探针法检测肾脏ROS水平,使用Western blot法检测肾脏PKC、Nox2、Nox4、nephrin、podocin蛋白表达。结果: ①与C组相比,E组尿蛋白、尿酸、尿糖、血尿素、血尿酸显著增多(P<0.05),血糖显著减少(P<0.01),肾脏ROS生成显著增多(P<0.01),肾脏nephrin、podocin蛋白表达明显降低(P<0.05),PKC、Nox2、Nox4蛋白表达明显增多(P<0.05);②与E组比,EPI组尿蛋白、尿糖、血尿素显著减少(P<0.05),血糖显著增加(P< 0.01),肾脏ROS生成显著降低(P<0.01),EPI组肾组织中nephrin、podocin蛋白表达明显增加(P<0.05),PKC、Nox2蛋白表达明显降低(P<0.05)。结论: 一次性力竭运动通过PKC/NOX/ROS途径使大鼠肾脏裂孔膜蛋白nephrin、podocin表达下调;PKC抑制剂缓解力竭运动导致的肾脏裂孔膜蛋白表达下降,预防运动性蛋白尿的发生。  相似文献   

3.
An in vivo study was performed to see whether deterioration of the muscle cytoskeleton caused by eccentric exercise could be counteracted by raising the tissue content of nitric oxide. In Wistar rats that ran downhill on a treadmill inclined at 16° for 40 min at 20 m/min, the desmin content in m. soleus measured 24 h later declined by 15%, and the percentage of ruptures in the dystrophin layer was three times higher than in the control. Destruction of cytoskeletal proteins was also pronounced in rats pretreated with a blocker of NO synthase before exercise. By contrast, animals that received a nitric oxide donor (L-arginine) prior to running had control levels of desmin and dystrophin. It was concluded that nitric oxide can protect muscle cytoskeletal proteins in a single eccentric exercise.  相似文献   

4.
We previously reported that endurance training increases amino acid catabolism. In this study, the effects of an acute endurance exercise bout on tissue protein levels and urea excretion have been investigated. Exhaustive exercising of trained rats resulted in an increase in ammonia excretion but there was no significant change in urea excretion. Protein levels of muscle and liver were significantly decreased by an exhaustive bout of exercise. In muscle, both the soluble and myofibrillar protein fractions were decreased in exhausted rats. These results demonstrate that during exercise there is a net loss of protein in muscle and liver.  相似文献   

5.
目的:探讨一次和反复力竭性运动后不同时相大鼠血清肌酸激酶(CK)、肌酸激酶同工酶(CK-MB)与心肌损伤的变化规律。方法:通过力竭性游泳制备运动性心肌损伤模型,分别于运动后即刻和3 h6、h、12 h2、4 h4、8 h、96 h检测血清CK、CK-MB活性,并观察心肌组织形态学的动态变化。结果:大鼠一次力竭运动后0~12 h,CK和CK-MB活性明显增加,6 h达高峰;心肌炎细胞浸润灶逐渐增多,胞质嗜酸性增强,损伤高峰在12 h左右。反复力竭运动后0~12 h和48 h9、6 h CK和CK-MB活性皆明显增加,分别于运动后即刻和96 h达高峰;心肌细胞均有不同程度的损伤,48 h最严重。结论:过度运动和/或力竭性运动皆引起运动性心肌损伤,同时存在延迟性心肌损伤。  相似文献   

6.
Thirteen men were submitted to graded exhaustive cycle exercise to determine the kinetics of proteinuria in the recovery period. Venous blood samples were analysed for haematocrit, lactate, creatinine, total protein and albumin for 1 h following exercise. Urine samples were collected during a 3-h recovery period. Total protein, albumin, and creatinine levels were determined for these samples. Total protein and albumin urinary excretion increased to 581 and 315 micrograms min-1, respectively, at the end of the 1st h of recovery as compared to 42 and 15 micrograms.min-1 for resting values. Plasma volume returned to pre-exercise levels between 30 and 60 min after cessation of exercise, while urinary total protein and albumin content still remained above the resting values for the following 2 h. Both post-exercise urinary total protein and albumin excretion followed a logarithmic decline with the same half-life of 54 min, thus requiring about 4 h to regain resting values. The reduction of plasma volume and the degree of dehydration do not seem to be involved in the process. The present study indicates the delayed recovery of protein handling by the kidney, as compared with other biochemical parameters, and provides accurate information on the kinetics of post-exercise proteinuria.  相似文献   

7.
Arima S 《Steroids》2006,71(4):281-285
Recent studies provide evidence that aldosterone (Aldo) accelerates hypertension, proteinuria and glomerulosclerosis in animal models of chronic renal failure. Although the underlying mechanisms are not well defined, Aldo may exert these deleterious renal effects by elevating renal vascular resistance (RVR) and glomerular capillary pressure (P(GC)). To test this possibility, we studied the action of Aldo on rabbit afferent (Af-) and efferent arterioles (Ef-Arts), crucial vascular segments to the control of glomerular hemodynamics. Aldo caused rapid (within 5 min) constriction in both arterioles. The constriction was not affected by spironolactone but was reproduced by membrane-impermeable albumin-conjugated Aldo, suggesting that vasoconstrictor actions are non-genomic. This notion was further supported by the finding that neither actinomycin D nor cycloheximide had effect. The vasoconstrictor action of Aldo on Af-Arts was inhibited by nifedipine (L-type calcium channel blocker), whereas that on Ef-Arts was inhibited by efonidipine (both L- and T-type calcium channel blocker) but not nifedipine. Disrupting the endothelium or nitric oxide (NO) synthesis inhibition augmented the vasoconstriction in Af-Arts, demonstrating that endothelium-derived NO modulates the vasoconstrictor actions of Aldo. Thus, Aldo causes non-genomic vasoconstriction via calcium mobilization thorough L- or T-type calcium channels in Af- or Ef-Arts, respectively. These vasoconstrictor actions on the glomerular microcirculation may play an important role in the pathophysiology and progression of renal diseases by elevating RVR and P(GC), especially when endothelium functions are impaired. In addition to our study, this review describes recent findings on the rapid cardiovascular actions of Aldo, with a particular attention to the renal hemodynamics.  相似文献   

8.
This study investigated alterations in glycogen, catecholamines, and the function of various subcellular membranes of the heart after exhaustive swimming in rats. The rats were exhausted by daily exercise over 1, 3, or 7 consecutive days. Glycogen content of the heart and three selected skeletal muscles was depleted after a single bout of exhaustive exercise. Repeated bouts of exhaustive swimming elicited a depletion of glycogen in only the plantaris and gastrocnemius skeletal muscles. Plasma norepinephrine and epinephrine levels were highly elevated, and cardiac concentrations of these hormones were significantly depleted immediately after all exercise sessions. Cardiac sarcoplasmic reticulum (SR) Ca2+ transport was depressed after a single exhaustive exercise period. After three exercise bouts SR Ca2+ accumulation remained depressed; however, mitochondrial Ca2+ transport was found to be augmented. If the exhaustive exercise protocol was continued up to seven days, only mitochondrial Ca2+ accumulation was depressed. Various parameters of sarcolemmal membrane function were observed to be unaltered after exhaustive exercise. These findings demonstrate that exhaustive swimming exercise in rats is capable of producing significant alterations in the Ca2+ transport capacity of the SR and mitochondrial membrane systems of the heart but is without apparent effect on the sarcolemmal membrane.  相似文献   

9.
Heme oxygenase-1 (HO-1) is induced by oxidative stress and plays an important role in protecting the kidney from oxidant-mediated damage in the streptozotocin (STZ) rat model of type-1 diabetes mellitus (DM-1). HO-derived metabolites, presumably carbon monoxide (CO), mediate vasodilatory influences in the renal circulation, particularly in conditions linked to elevated HO-1 protein expression or diminished nitric oxide (NO) levels. We tested the hypothesis that diabetes increases oxidative stress and induces HO-1 protein expression, which contributes to regulate renal hemodynamics in conditions of low NO bioavailability. Two weeks after the induction of diabetes with STZ (65 mg/kg iv), Sprague-Dawley rats exhibited higher renal HO-1 protein expression, hyperglycemia, and elevated renal nitrotyrosine levels than control normoglycemic animals. In anesthetized diabetic rats, renal vascular resistance (RVR) was increased, and in vivo cortical NO levels were reduced (P < 0.05) compared with control animals. Acute administration of the HO inhibitor Stannous mesoporphyrin (SnMP; 40 μmol/kg iv) did not alter renal hemodynamics in control rats, but greatly decreased glomerular filtration rate and renal blood flow, markedly increasing RVR in hyperglycemic diabetic rats. Chronic oral treatment with the SOD mimetic tempol prevented the elevation of nitrotyrosine, the HO-1 protein induction, and the increases in RVR induced by SnMP in the diabetic group, without altering basal NO concentrations or RVR. Increasing concentrations of a CO donor (CO-releasing molecule-A1) on pressurized renal interlobar arteries elicited a comparable relaxation in vessels taken from control or diabetic animals. These results suggest that oxidative stress-induced HO-1 exerts vasodilatory actions that partially maintain renal hemodynamics in uncontrolled DM-1.  相似文献   

10.
In an earlier study, we found increased NO production and NO synthase (NOS) expression in renal and vascular tissues of prehypertensive and adult spontaneously hypertensive rats (SHR). This study was designed to determine the effects of aging and AT-1 receptor blockade (losartan 30 mg/kg/day beginning at 8 weeks of age) on NO system in this model. Compared to the Wistar Kyoto (WKY) control rats, untreated SHR showed severe hypertension, elevated urinary NO metabolite (NO(chi)) excretion, marked upregulations of renal and vascular eNOS and iNOS proteins, normal renal function and heart weight at 9 weeks of age. Hypertension control with either AT-1 receptor or calcium channel blockade (felodipine 5 mg/kg/day) mitigated upregulation of NOS isoforms in the young SHR. With advanced age (63 weeks), the untreated SHR showed increased proteinuria, renal insufficiency, cardiomegaly, reduced urinary NO(chi) excretion and depressed renal and vascular NOS protein expressions as compared to the corresponding WKY group. AT-1 receptor blockade prevented proteinuria, renal insufficiency, cardiomegaly, and renal and vascular NOS deficiency. Thus, in young SHR, hypertension results in compensatory upregulation of renal and vascular NOS, which can be attenuated by vigorous antihypertensive therapy. With advanced age, untreated SHR exhibit cardiomegaly, renal dysfunction and marked reductions of eNOS and iNOS compared with the aged WKY rats. Hypertension control with AT-1 receptor blockade initiated early in the course of the disease prevents target organ damage and preserves renal and vascular NOS.  相似文献   

11.
We investigated whether acute systemic exercise increases vascular endothelial growth factor (VEGF), VEGF receptor (KDR and Flt-1) mRNA, and VEGF protein in sedentary humans. Twelve sedentary subjects were recruited and performed 1 h of acute, cycle ergometer exercise at 50% of maximal oxygen consumption. Muscle biopsies were obtained from the vastus lateralis before exercise and at 0, 2, and 4 h postexercise. Acute exercise significantly increased VEGF mRNA at 2 and 4 h and increased KDR and Flt-1 mRNA at 4 h postexercise. The sustained increase in VEGF mRNA through 4 h and the increases in KDR and Flt-1 at 4 h are different from their respective time course responses in rats. In contrast to the increase in VEGF mRNA postexercise, VEGF protein levels were decreased at 0 h postexercise. These results provide evidence in humans that 1) VEGF, KDR, and Flt-1 mRNA are increased by acute systemic exercise; 2) the time course of the VEGF, KDR, and Flt-1 mRNA responses are different from those previously reported in rats (Gavin TP and Wagner PD. Acta Physiol Scand 175: 201-209, 2002); and 3) VEGF protein is decreased immediately after exercise.  相似文献   

12.
We investigated whether nitric oxide (NO) upregulates a cyclic nucleotide-gated (CNG) channel and whether this contributes to sustained elevation of intracellular calcium levels ([Ca(2+)](i)) in porcine pulmonary artery endothelial cells (PAEC). Exposure of PAEC to an NO donor, NOC-18 (1 mM), for 18 h increased the protein and mRNA levels of CNGA2 40 and 50%, respectively (P < 0.05). [Ca(2+)](i) in NO-treated cells was increased 50%, and this increase was maintained for up to 12 h after removal of NOC-18 from medium. Extracellular calcium is required for the increase in [Ca(2+)](i) in NO-treated cells. Thapsigargin induced a rapid cytosolic calcium rise, whereas both a CNG and a nonselective cation channel blocker caused a faster decline in [Ca(2+)](i), suggesting that capacitive calcium entry contributes to the elevated calcium levels. Antisense inhibition of CNGA2 expression attenuated the NO-induced increases in CNGA2 expression and [Ca(2+)](i) and in capacitive calcium entry. Our results demonstrate that exogenous NO upregulates CNGA2 expression and that this is associated with elevated [Ca(2+)](i) and capacitive calcium entry in porcine PAEC.  相似文献   

13.
Although non-steroidal anti-inflammatory agents have been used to reduce levels of urinary protein excretion in patients with the nephrotic syndrome, the general usefulness of these drugs in proteinuric states remains unclear. The present study was designed to confirm the efficacy and to investigate some of the mechanism/s of action of non-steroidal anti-inflammatory agents in animals with proteinuria as the result of a single form experimental renal disease. Autologous immune complex nephropathy was produced in groups of Lewis rats by the administration of autologous tubular F×1A antigen. After marked proteinuria developed, indomethacin (8 mg/kg/day) was administered orally to one group of animals for five days while a control group received only vehicle. The level of urinary protein excretion in the indomethacin treated animals was 420 ± 198 mg/day compared to a level of 1180 ± 306 seen in the untreated animals (p < 0.05). When the indomethacin-treated and control animals were compared, the reduction in proteinuria could not be found to be associated with a change in the glomerular filtration rate, urine electrolyte or osmolar excretion rates, electron microscopic appearance of the glomerular basement membrane, or a change in the glomerular permeability to neutral dextran. Treatment of animals with either sodium salicylate or lower doses of indomethacin (both of which resulted also in significant falls in urinary prostaglandin E excretion rates) failed to reduce the levels of proteinuria. Thus, indomethacin was capable of reducing the levels of protein excretion in rats with autologous immune complex nephropathy although the mechanism of action of this agent remains unclear.  相似文献   

14.
Although non-steroidal anti-inflammatory agents have been used to reduce levels of urinary protein excretion in patients with the nephrotic syndrome, the general usefulness of these drugs in proteinuric states remains unclear. The present study was designed to confirm the efficacy and to investigate some of the mechanism/s of action of non-steroidal anti-inflammatory agents in animals with proteinuria as the result of a single form experimental renal disease. Autologous immune complex nephropathy was produced in groups of Lewis rats by the administration of autologous tubular Fx1A antigen. After marked proteinuria developed, indomethacin (8 mg/kg/day) was administered orally to one group of animals for five days while a control group received only vehicle. The level of urinary protein excretion in the indomethacin treated animals was 420 +/- 198 mg/day compared to a level of 1180 +/- 306 seen in the untreated animals (p less than 0.05). When the indomethacin-treated and control animals were compared, the reduction in proteinuria could not be found to be associated with a change in the glomerular filtration rate, urine electrolyte or osmolar excretion rates, electron microscopic appearance of the glomerular basement membrane, or a change in the glomerular permeability to neutral dextran. Treatment of animals with either sodium salicylate or lower does of indomethacin (both of which resulted also in significant falls in urinary prostaglandin E excretion rates) failed to reduce the levels of proteinuria. Thus, indomethacin was capable of reducing the levels of protein excretion in rats with autologous immune complex nephropathy although the mechanism of action of this agent remains unclear.  相似文献   

15.
This study was undertaken to determine if the changes in mitochondrial structure and function that occur in muscle with exhaustive exercise could be caused by alterations in lipid composition of mitochondrial membranes. Further, the effect of training on lipid composition was studied to ascertain if lipid changes accompany the adaptation in the level of mitochondrial protein. Training decreased free fatty acids and triglycerides. Exhaustion of untrained animals resulted in increases of total phospholipid and phosphatidyl choline while exhaustion of trained rats caused a lowering of total phospholipid and phosphatidyl choline. Alterations in membrane lipid composition are most likely not the cause of changes in mitochondrial structure and function after exhaustive exercise since mitochondrial yield and lipid levels did not change in concert; i.e. muscle mitochondrial yield was decreased in both untrained and trained rats while total phospholipids were increased in untrained rats and decreased in trained rats as a result of exhaustive exercise. Although the physiological significance of the effects observed remains to be determined, this study does demonstrate that the lipid composition of mitochondria is not a constant parameter but can change in response to a chronic (training) or acute (exhaustive exercise) physiological condition.  相似文献   

16.
Factors associated with the menstrual cycle, such as the endogenous hormones estrogen and progesterone, have dramatic effects on cardiovascular regulation. It is unknown how this affects postexercise hemodynamics. Therefore, we examined the effects of the menstrual cycle and sex on postexercise hemodynamics. We studied 14 normally menstruating women [24.0 (4.2) yr; SD] and 14 men [22.5 (3.5) yr] before and through 90 min after cycling at 60% .VO2(peak) for 60 min. Women were studied during their early follicular, ovulatory, and mid-luteal phases; men were studied once. In men and women during all phases studied, mean arterial pressure was decreased after exercise throughout 60 min (P < 0.001) postexercise and returned to preexercise values at 90 min (P = 0.089) postexercise. Systemic vascular conductance was increased following exercise in both sexes throughout 60 min (P = 0.005) postexercise and tended to be elevated at 90 min postexercise (P = 0.052), and femoral vascular conductance was increased following exercise throughout 90 min (P < 0.001) postexercise. Menstrual phase and sex had no effect on the percent reduction in arterial pressure (P = 0.360), the percent rise in systemic vascular conductance (P = 0.573), and the percent rise in femoral vascular conductance (P = 0.828) from before to after exercise, nor did the pattern of these responses differ across recovery with phase or sex. This suggests that postexercise hemodynamics are largely unaffected by sex or factors associated with the menstrual cycle.  相似文献   

17.
Myocardial infarction (MI) is associated with endothelial dysfunction resulting in an imbalance in endothelium-derived vasodilators and vasoconstrictors. We have previously shown that despite increased endothelin (ET) plasma levels, the coronary vasoconstrictor effect of endogenous ET is abolished after MI. In normal swine, nitric oxide (NO) and prostanoids modulate the vasoconstrictor effect of ET. In light of the interaction among NO, prostanoids, and ET combined with endothelial dysfunction present after MI, we investigated this interaction in control of coronary vasomotor tone in the remote noninfarcted myocardium after MI. Studies were performed in chronically instrumented swine (18 normal swine; 13 swine with MI) at rest and during treadmill exercise. Furthermore, endothelial nitric oxide synthase (eNOS) and cyclooxygenase protein levels were measured in the anterior (noninfarcted) wall of six normal and six swine with MI. eNOS inhibition with N(ω)-nitro-L-arginine (L-NNA) and cyclooxygenase inhibition with indomethacin each resulted in coronary vasoconstriction at rest and during exercise, as evidenced by a decrease in coronary venous oxygen levels. The effect of l-NNA was slightly decreased in swine with MI, although eNOS expression was not altered. Conversely, in accordance with the unaltered expression of cyclooxygenase-1 after MI, the effect of indomethacin was similar in normal and MI swine. L-NNA enhanced the vasodilator effect of the ET(A/B) receptor blocker tezosentan but exclusively during exercise in both normal and MI swine. Interestingly, this effect of L-NNA was blunted in MI compared with normal swine. In contrast, whereas indomethacin increased the vasodilator effect of tezosentan only during exercise in normal swine, indomethacin unmasked a coronary vasodilator effect of tezosentan in MI swine both at rest and during exercise. In conclusion, the present study shows that endothelial control of the coronary vasculature is altered in post-MI remodeled myocardium. Thus the overall vasodilator influences of NO as well as its inhibition of the vasoconstrictor influence of ET on the coronary resistance vessels were reduced after MI. In contrast, while the overall prostanoid vasodilator influence was maintained, its inhibition of ET vasoconstrictor influences was enhanced in post-MI remote myocardium.  相似文献   

18.
目的:观察一次性力竭运动对大鼠骨骼肌氧化应激相关酶表达的影响。方法:雄性SD大鼠40只,分为4组(n=10),分别为对照组(C组)、力竭运动组(E组)、运动+PKC抑制剂组(EC组)、运动+NOX抑制剂组(EA组)。三组运动大鼠进行3 d的跑台适应性运动(5 m/min,1次/日,无坡度),然后休息1 d; EC组于运动前1 d和运动前1 h注射PKC抑制剂白屈菜红碱(5 mg/kg),EA组同期注射NADPH氧化酶抑制剂Apocynin(10 mg/kg),C组和E组注射同等剂量生理盐水;三组运动大鼠进行一次性跑台力竭运动,力竭后取大鼠的跖肌,DCF荧光探针检测活性氧(ROS),Western blot分析NOX2、NOX4、3-NT,免疫沉淀分析PKC、NOX2、NOX4。结果:与C组相比,E组的ROS水平、NOX2和NOX4蛋白表达、PKC-NOX2和PKC-NOX4复合物水平、3-NT生成均显著增加(P <0. 01,P <0.05),EC组、EA组ROS无显著差异(P>0.05),EC组NOX4蛋白表达显著增加(P<0.05);与E组相比,EC组和EA...  相似文献   

19.
Blood pressure is frequently elevated, blood volume is usually normal or increased and plasma renin and aldosterone are usually low in nephrotic syndrome (NS). These observations challenge the conventional view attributing sodium retention in NS to a hypoalbuminemia-induced intravascular volume contraction. Given the pivotal role of nitric oxide (NO) in regulation of renal sodium (Na) handling, vascular resistance and sympathetic activity, we considered that Na retention and hypertension in NS may be associated with impaired NO system. Urinary excretion of Na and NO metabolites (NOx), as well as immunodetectable endothelial (eNOS), inducible (iNOS) and neuronal (nNOS) NO synthases were determined in rats with puromycin aminonucleoside (PAN)-induced NS, rats with protein overload proteinuria, Nagase rats (NAR) with inherited analbuminemia, iNOS inhibitor (aminoguanidine)-treated rats, prenephrotic PAN-treated and placebo-treated control rats. The NS group showed marked proteinuria, hypoalbuminemia, decreased fractional excretion of Na (FENa), reduced urinary NOx excretion, and severe reduction of iNOS and nNOS protein abundance in the kidney. Similar results were found in rats with protein overload proteinuria in which proteinuria was present without hypoalbuminemia. In contrast, despite extreme hypoalbuminemia, NAR showed normal FENa, increased urinary NOx excretion and upregulations of iNOS and nNOS protein abundance in the kidney. Administration of aminoguanidine for 3 weeks lowered FENa in normal rats to levels approximating those found in the NS group. Animals studied 2 days after PAN administration (wherein proteinuria was absent) showed no abnormality. Thus, chronic PAN-induced NS results in downregulation of kidney iNOS and nNOS, which can contribute to the reduction of FENa by augmenting renal tubular Na reabsorption, and preglomerular vasoconstriction. Findings in the NAR, which had profound hypoalbuminemia without proteinuria, and in rats with protein overload proteinuria, which had proteinuria without hypoalbuminemia, point to proteinuria as the primary mediator of kidney iNOS and nNOS deficiency and impaired Na excretion in PAN-induced NS.  相似文献   

20.
This study was carried out to elucidate the role of asymmetric dimethylarginine (ADMA) and nitric oxide (NO) in preeclampsia development, and to investigate the effect of L-arginine supplementation in rats. Preeclampsia was induced in pregnant rats using a stress model. L-arginine was administered orally and ADMA, urinary nitrate, and protein levels were measured on the 20th day of pregnancy. Compared with the group of rats that are normally pregnant, the levels of blood pressure (BP), protein excretion, and ADMA were significantly increased in preeclampsia which returned to normal levels following the supplementation of L-arginine. Both group of rats had similar urine nitrate levels. Arginine-ADMA-NO pathway is affected in preeclampsia. L-arginine supplementation decreased hypertension (HT), proteinuria, and ADMA levels indicating that taking L-arginine may be beneficial in preeclampsia treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号