首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Bugarcic A  Taylor JA 《Journal of virology》2006,80(24):12343-12349
NSP4, a nonstructural glycoprotein encoded by rotavirus, is involved in the morphogenesis of virus particles in the endoplasmic reticulum of infected cells. NSP4 is also implicated in the pathophysiology of rotavirus-induced diarrhea by acting as an enterotoxin. To mediate enterotoxic effects in vivo, NSP4 must be secreted or released from rotavirus-infected cells in a soluble form; however, previous studies have indicated that NSP4 is a transmembrane glycoprotein localized within endomembrane compartments in infected cells. In this study, we examined the fate of NSP4 synthesized in Caco-2 cells infected with bovine rotavirus. Our studies reveal that NSP4 is actively secreted into the culture medium, preferentially from the infected-cell apical surface. The secretion of NSP4 is dramatically inhibited by brefeldin A and monensin, suggesting that a Golgi-dependent pathway is involved in release of the protein. In agreement with the proposed involvement of the Golgi apparatus during secretion, secreted NSP4 appears to undergo additional posttranslational modification compared to its cell-associated counterpart and is partially resistant to deglycosylation by endoglycosidase H. Our experiments identify a novel, soluble form of NSP4 secreted from virus-infected cells with the potential to carry out the enterotoxigenic role previously attributed to recombinant forms of the protein.  相似文献   

2.
In polarized epithelial cells, the vesicular stomatitis virus glycoprotein is segregated to the basolateral plasma membrane, where budding of the virus takes place. We have generated recombinant viruses expressing mutant glycoproteins without the basolateral-membrane-targeting signal in the cytoplasmic domain. Though about 50% of the mutant glycoproteins were found at the apical plasma membranes of infected MDCK cells, the virus was still predominantly released at the basolateral membranes, indicating that factors other than the glycoprotein determine the site of virus budding.  相似文献   

3.
We have investigated the site of surface expression of the neuraminidase (NA) glycoprotein of influenza A virus, which, in contrast to the hemagglutinin, is bound to membranes by hydrophobic residues near the NH2-terminus. Madin-Darby canine kidney or primary African green monkey kidney cells infected with influenza A/WSN/33 virus and subsequently labeled with monoclonal antibody to the NA and then with a colloidal gold- or ferritin-conjugated second antibody exhibited specific labeling of apical surfaces. Using simian virus 40 late expression vectors, we also studied the surface expression of the complete NA gene (SNC) and a truncated NA gene (SN10) in either primary or a polarized continuous line (MA104) of African green monkey kidney cells. The polypeptides encoded by the cloned NA cDNAs were expressed on the surface of both cell types. Analysis of [3H]mannose-labeled polypeptides from recombinant virus-infected MA104 cells showed that the products of cloned NA cDNA comigrated with glycosylated NA from influenza virus-infected cells. Both the complete and the truncated glycoproteins were found to be preferentially expressed on apical plasma membranes, as detected by immunogold labeling. These results indicate that the NA polypeptide contains structural features capable of directing the transport of the protein to apical cell surfaces and the first 10 amino-terminal residues of the NA polypeptide are not involved in this process.  相似文献   

4.
5.
Jin J  Li F  Mothes W 《Journal of virology》2011,85(15):7672-7682
Retrovirus transmission via direct cell-cell contact is more efficient than diffusion through the extracellular milieu. This is believed to be due to the ability of viruses to efficiently coordinate several steps of the retroviral life cycle at cell-cell contact sites (D. C. Johnson et al., J. Virol. 76:1-8, 2002; D. M. Phillips, AIDS 8:719-731, 1994; Q. Sattenau, Nat. Rev. Microbiol. 6:815-826, 2008). Using the murine leukemia virus (MLV) as a model retrovirus, we have previously shown that interaction between viral envelope (Env) and receptor directs viral assembly to cell-cell contact sites to promote efficient viral spreading (J. Jin et al., PLoS Biol. 7:e1000163, 2009). In addressing the underlying mechanism, we observed that Env cytoplasmic tail directs this contact-induced polarized assembly. We present here the viral determinants in the Env cytoplasmic tail and Gag that are important in this process. A tyrosine residue within the cytoplasmic tail of Env was identified, which directs polarized assembly. MLV matrix-mediated membrane targeting is required for Gag recruitment to sites of cell-cell contact. Our results suggest that MLV polarized assembly is mediated by a direct or indirect interaction between both domains, thereby coupling Gag recruitment and virus assembly to Env accumulation at the cell-cell interface. In contrast, HIV Gag that assembles outside of cell-cell interfaces can subsequently be drawn into contact zones mediated by MLV Env and receptor, a finding that is consistent with the previously observed lateral movement of HIV into the virological synapse (W. Hubner et al., Science 323:1743-1747, 2009; D. Rudnicka et al., J. Virol. 83:6234-6246, 2009). As such, we observed two distinct modes of virus cell-to-cell transmission that involve either polarized or nonpolarized assembly, but both result in virus transmission.  相似文献   

6.
The glycosylated env gene precurosr (Pr80env) of Moloney murine leukemia virus has been isolated by selective immunoprecipitation. Use of the drug tunicamycin to inhibit nascent glycosylation or specific cleavage with endoglycosidase H demonstrated that the precursor contained an apoprotein with a molecular weight of 60,000. The finished virion glycoprotein (gp70) was largely resistant to the action of endoglycosidase H. Chromatography of the glycopeptides of Pr80env in conjunction with endoglycosidase H digestion studies suggested that the precursor contained two distinct major glycosylation sites. Analysis of partial proteolytic cleavage fragments of Pr80env before and after endoglycosidase H treatment placed the two glycosylation sites within a 30,000-dalton region of the apoprotein sequence. Kinetic experiments showed that carbohydrate processing as well as proteolytic cleavage are late steps in the maturation of Pr80env.  相似文献   

7.
8.
The major envelope glycoprotein (gp71) purified from Rauscher leukemia virus (R-MuLV) binds efficiently to murine lymphoid cells but not to either murine nonlymphoid cells or lymphoid cells from other species. Binding of 125I-labeled R-MuLV gp71 was competitively inhibited by unlabeled glycoprotein, as well as by whole R-MuLV, but not by murine xenotropic viruses, R-MuLV p30, and several unrelated proteins. Polyacrylamide gel electrophoresis profiles of iodinated gp71 after binding to lymphoid cells were similar to prebound profiles. Antibody to R-MuLV gp71 prevented binding, whereas normal serum had no effect. Adsorption of the glycoprotein to murine lymphoid cells occurs rapidly and is time and temperature dependent. The procedure described is sensitive for detecting the binding activity of approximately 10(4) cells. Binding was proportional up to 2.5 X 10(5) cells per ml and plateaued above 10(7) cells per ml. In the presence of excess R-MuLV gp71, BALB/c thymocytes bound approximately 2.4 X 10(4) molecules per cell.  相似文献   

9.
The time course of murine leukemia virus production after chemical induction was determined in hamster-mouse somatic cell hybrids containing the xenotropic murine leukemia virus induction locus Bxv-1 or the ecotropic locus Akv-2. By using these hybrids, induction could be studied in the absence of secondary virus spread because xenotropic viruses cannot infect hybrid cells and ecotropic viruses cannot infect hybrids which have lost mouse chromosome 5. After induction, hybrids with Bxv-1 produced only a transient burst of virus, whereas those with Akv-2 continued to produce virus for periods in excess of 3 months. The presence or absence of other mouse chromosomes in the hybrid lines did not alter these induction patterns. Thus, endogenous murine leukemia virus loci differ in their response to induction, and both inducibility and the kinetics of virus expression are controlled at or near these proviral loci.  相似文献   

10.
M Ruta  M J Murray  M C Webb  D Kabat 《Cell》1979,16(1):77-88
Cells infected with a temperature-sensitive mutant (ts-26) of Rauscher murine leukemia virus (R-MuLV) or with wild-type virus were labeled with 35S-methionine, and cell extracts were examined for radioactive polypeptides which could be precipitated by monospecific antisera to viral proteins. When shifted from permissive (31 degrees C) to nonpermissive (39 degrees C) temperature, cells infected with ts-26 rapidly begin to accumulate gPr90enr, the glycoprotein precursor to the membrane envelope glycoprotein gp70 and to the membrane-associated protein p15E. Simultaneously, formation of these mature virion proteins ceases. In addition, lactoperoxidase-catalyzed surface labeling with 125I--iodine indicates that the plasma membrane of cells infected with ts-26 becomes depleted of gp70 antigens at 39 degrees C. Nevertheless, at 39 degrees C these cells release defective MuLVs which lack gp70 and p15E but contain an outer membrane. The released particles also contain an aberrantly processed form of the major virion core protein p30, and many of these virion cores have an unusual immature crescent shape. It has previously been reported that cells infected with the ts-26 mutant of R-MuLV process a 65,000 dalton precursor (Pr65gag) of the virion core proteins more slowly at 39 degrees C than do cells infected with wild-type virus (Stephenson, Tronick and Aaronson, 1975). Although we have confirmed these results, this effect is relatively small and it is known that various alterations of MuLV assembly can lead secondarily to inhibited processing of Pr65gag. We propose that the ts-26 mutant has a primary temperature-sensitive defect in membrane glycoprotein synthesis and that this change causes pleiotropic effects on core morphogenesis.  相似文献   

11.
Polarized epithelial cells exhibit apical (lumenal) and basolateral (serosal) membrane domains that are separated by circumferential tight junctions. In such cells, enveloped viruses that mature by budding at cell surfaces are released at particular membrane domains. We have used a vaccinia virus recombinant to investigate the site of surface expression of the human immunodeficiency virus type 1 envelope glycoprotein in Madin-Darby canine kidney cells. Cells were infected with the vaccinia virus recombinant, and surface expression of the glycoprotein was analyzed by indirect immunofluorescence, 125I-protein A binding, and immunoelectron microscopy. The glycoprotein appeared exclusively at the basolateral surface as early as 2 h postinfection and reached a maximum level at 8 h postinfection. The gp120 glycoprotein was found to be secreted efficiently into culture medium, and this secretion occurred exclusively at the basolateral surface.  相似文献   

12.
The murine leukemia virus envelope protein is synthesized as a precursor molecule, Pr85env, which is proteolytically cleaved at an arginine residue to produce two mature envelope proteins, gp70 and p15(E). The results presented here indicate that mutation to lysine of the arginine found at the envelope precursor cleavage site results in a precursor which is cleaved with an efficiency at least 10-fold lower than the efficiency with which the wild-type protein is cleaved. This mutation has been used to investigate the requirement for envelope protein processing in various aspects of retroviral infection. Viruses produced by cells transfected with mutant proviral clones are approximately 10-fold less infectious than wild-type viruses. Mutant viruses are incapable of inducing XC cell syncytium formation and are 100-fold less efficient than wild-type viruses at rendering cells resistant to superinfection. Envelope glycoproteins bearing the lysine mutation are found in reduced amounts on the surface of infected cells, and as a result mutant virions contain significantly less envelope protein than do wild-type virions. The phenotypic effects of the processing mutation described here are most likely the result of this paucity of envelope glycoproteins in virions carrying the mutation.  相似文献   

13.
Plasma membrane preparations from KA31 (mouse) cells contained receptors for the binding of Rauscher murine leukemia virus (R-MuLV) envelope glycoprotein, gp70. This binding was demonstrated by gel filtration of a mixture of the microsomal fraction of the cells and 125I-labeled gp70. A rapid and convenient assay was developed to measure the complex formation between the membrane receptors and gp70 involving specific precipitation of the complex by 3 to 4% polyethylene glycol. The complex formation was responsive to the concentrations of both the receptor and gp70 and also to changes in temperature and pH. The gp70 binding was a noncooperative, saturable process, and an association constant of 3.5 X 10(8) M-1 was estimated from the binding data. The complex formation was reversible and a near-total exchange of 125I-labeled gp70 in the complex was achieved by incubation with excess of unlabeled gp70. The complex formation was inhibited by protein denaturing agents, guanidine-hydrochloride and urea. Pretreatment of the membrane fractions with either chymotrypsin or phospholipase C led to a loss of the membrane-associated receptor activity, indicating that a lipoprotein structure was important for the receptor function, consistent with the observation that nonionic detergents strongly inhibited the complex formation.  相似文献   

14.
We constructed a chimeric human T-cell lymphotropic virus type 1 (HTLV-1) provirus in which the original envelope precursor sequence was replaced by that of ecotropic Moloney murine leukemia virus (Mo-MuLV). Chimeric particles produced by transient transfection of this chimeric provirus were infectious for murine cells, such as NIH 3T3 fibroblasts, lymphoid EL4 cells, and primary CD4(+) T lymphocytes, whereas HTLV-1 particles were not. The infectivity of chimeric particles increased 10 times when the R peptide located at the carboxy terminus of the MuLV envelope glycoprotein was deleted. Primary murine CD4(+) T lymphocytes, infected by the Delta R chimeric virus, released particles that could spread the infection to other naive murine lymphoid cells. This chimeric virus, with the Mo-MuLV envelope glycoprotein and the replication characteristics of HTLV-1, should be useful in studying the pathogenesis of HTLV-1 in a mouse model.  相似文献   

15.
Members of the herpesvirus family mature at inner nuclear membranes, although a fraction of the viral glycoproteins is expressed on the cell surface. In this study, we investigated the localization of herpes simplex virus type 2 (HSV-2) glycoproteins in virus-infected epithelial cells by using a panel of monoclonal antibodies directed against each of the major viral glycoproteins. All of the HSV-2 glycoproteins were localized exclusively on the basolateral membranes of Vero C1008, Madin-Darby bovine kidney, and mouse mammary epithelial cells. Using a monoclonal antibody to HSV-2 gD which cross-reacts with HSV-1 strains, we could also localize HSV-1 gD on the basolateral membranes of Madin-Darby bovine kidney cells. These results indicate that these molecules contain putative sorting signals that direct them to basolateral membrane domains.  相似文献   

16.
To determine whether ecotropic murine leukemia virus (MuLV) envelope glycoproteins are sufficient to cause cell-to-cell fusion when expressed in the absence of virus production, we used an ecotropic MuLV, AKV, to construct env expression vectors that lack the gag and pol genes. The rat cell line XC, which undergoes cell-to-cell fusion upon infection with ecotropic MuLV, was transfected with wild-type env expression vectors, and high levels of syncytium formation resulted. Transfection of the murine cell line NIH 3T3 with expression vectors containing the wild-type or mutated env region did not result in syncytium formation. Immunoprecipitation analysis of the envelope glycoproteins expressed in NIH 3T3 and XC cells showed that the mature surface glycoprotein expressed in XC cells was of a much lower apparent molecular weight than that expressed in NIH 3T3 cells. Further characterization showed that most if not all of this difference was the result of differences in glycosylation. Finally, site-directed mutagenesis was used to introduce several conservative and nonconservative changes into the amino-terminal region of the transmembrane protein. Analysis of the effect of these mutations confirmed that this region is a fusion domain.  相似文献   

17.
Epstein-Barr virus (EBV) initially enters the body through the oropharyngeal mucosa and subsequently infects B lymphocytes through their CD21 (CR2) complement receptor. Mechanisms of EBV entry into and release from epithelial cells are poorly understood. To study EBV infection in mucosal oropharyngeal epithelial cells, we established human polarized tongue and pharyngeal epithelial cells in culture. We show that EBV enters these cells through three CD21-independent pathways: (i) by direct cell-to-cell contact of apical cell membranes with EBV-infected lymphocytes; (ii) by entry of cell-free virions through basolateral membranes, mediated in part through an interaction between beta1 or alpha5beta1 integrins and the EBV BMRF-2 protein; and (iii) after initial infection, by virus spread directly across lateral membranes to adjacent epithelial cells. Release of progeny virions from polarized cells occurs from both their apical and basolateral membranes. These data indicate that multiple approaches to prevention of epithelial infection with EBV will be necessary.  相似文献   

18.
19.
Using monoclonal antibodies directed against the plasma membrane of Madin-Darby canine kidney (MDCK) cells, we demonstrated previously that a glycoprotein with an Mr = 23,000 (gp23) had a non-polarized cell surface distribution and was observed on both the apical and basolateral membranes (Ojakian, G. K., Romain, R. E., and Herz, R. E. (1987) Am. J. Physiol. 253, C433-C443). However, in parallel studies on MDCK clonal lines (D11, D18) with high transepithelial electrical resistances and in kidney cells in vivo it was determined that gp23 had a polarized cell surface distribution, being localized only to the basolateral membrane. The cell surface distribution of other glycoproteins was identical in both MDCK and MDCK clonal lines, indicating that MDCK cells were not deficient in the ability to properly sort membrane glycoproteins. Metabolic labeling with radioactive substrates followed by immunopurification and gel electrophoresis demonstrated that gp23 from both MDCK and MDCK clone D11 had many biochemical similarities including electrophoretic mobility, glycosylation, and palmitate incorporation. However, proteolytic digestion of gp23 from MDCK and clone D11 cells produced unique peptide maps suggesting that these closely related glycoproteins may have different primary sequences. In this report, we present evidence that the differential targeting of gp23 may be due to differences between the primary sequences of the basolateral and non-targeted proteins. The possibility that the observed differences in gp23 targeting are due to the presence of a basolateral recognition signal in gp23 from clone D11 cells is discussed.  相似文献   

20.
The Moloney murine leukemia virus (MLV) repressor binding site (RBS) is a major determinant of restricted expression of MLV in undifferentiated mouse embryonic stem (ES) cells and mouse embryonal carcinoma (EC) lines. We show here that the RBS repressed expression when placed outside of its normal MLV genome context in a self-inactivating (SIN) lentiviral vector. In the lentiviral vector genome context, the RBS repressed expression of a modified MLV long terminal repeat (MNDU3) promoter, a simian virus 40 promoter, and three cellular promoters: ubiquitin C, mPGK, and hEF-1a. In addition to repressing expression in undifferentiated ES and EC cell lines, we show that the RBS substantially repressed expression in primary mouse embryonic fibroblasts, primary mouse bone marrow stromal cells, whole mouse bone marrow and its differentiated progeny after bone marrow transplant, and several mouse hematopoietic cell lines. Using an electrophoretic mobility shift assay, we show that binding factor A, the trans-acting factor proposed to convey repression by its interaction with the RBS, is present in the nuclear extracts of all mouse cells we analyzed where expression was repressed by the RBS. In addition, we show that the RBS partially repressed expression in the human hematopoietic cell line DU.528 and primary human CD34(+) CD38(-) hematopoietic cells isolated from umbilical cord blood. These findings suggest that retroviral vectors carrying the RBS are subjected to high rates of repression in murine and human cells and that MLV vectors with primer binding site substitutions that remove the RBS may yield more-effective gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号