首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cyclin-dependent kinase 5 (Cdk5)/p35 kinase activity is known to decrease the affinity of beta-catenin for cadherin in developing cortical neurons. Our recent work demonstrated that depolarization causes an increased affinity between beta-catenin and cadherin. Here, we examine whether Cdk5/p35 regulates beta-catenin-cadherin affinity in response to neural activity. In hippocampal neurons depolarization caused a significant decrease in Cdk5 kinase activity, without changing the protein levels of either Cdk5 or p35, suggesting that the proteasome pathway is not involved. Decreasing Cdk5 kinase activity with the inhibitor roscovitine increased the amount of beta-catenin that was co-immunoprecipitated with cadherin. Inhibiting Cdk5 activity also resulted in a redistribution of EGFP-beta-catenin from the dendritic shaft to the spines, where cadherins are highly concentrated. The redistribution of beta-catenin induced by roscovitine is similar to that induced by depolarization. Interestingly, the redistribution induced by the Cdk5 inhibitor was completely blocked by either a tyrosine phosphatase inhibitor, orthovanadate or by point mutations of beta-catenin Tyr-654 to Glu or Phe. Immunoprecipitation studies further revealed that roscovitine increases the affinity of the wild-type, but not mutated, EGFP-beta-catenin for cadherin. These results suggest that Cdk5 activity regulates the affinity of beta-catenin for cadherin by changing the phosphorylation level of beta-catenin Tyr-654.  相似文献   

2.
3.
Chemical transmission at central synapses is known to be highly plastic; the strength of synaptic connections can be modified bi-directionally as a result of activity at individual synapses. Long-term changes in synaptic efficacy, both increases and decreases, are thought to be involved in the development of the nervous system, and in ongoing changes in response to external cues such as during learning and addiction. Other, shorter lasting changes in synaptic transmission are also likely to be important in normal functioning of the CNS. Calcium mobilisation is an important step in multiple forms of plasticity and, although entry into neurones from the extracellular space is often the initial trigger for plasticity changes, release of calcium from intracellular stores also has an important part to play in a variety of forms of synaptic plasticity.  相似文献   

4.
It is clear that de novo protein synthesis has an important function in synaptic transmission and plasticity. A substantial amount of work has shown that mRNA translation in the hippocampus is spatially controlled and that dendritic protein synthesis is required for different forms of long‐term synaptic plasticity. More recently, several studies have highlighted a function for protein degradation by the ubiquitin proteasome system in synaptic plasticity. These observations suggest that changes in synaptic transmission involve extensive regulation of the synaptic proteome. Here, we review experimental data supporting the idea that protein homeostasis is a regulatory motif for synaptic plasticity.  相似文献   

5.
During the past several years, there has been increasing interest in the effects of estrogen on neural function. This enthusiasm is driven, in part, by the results of early clinical studies suggesting that estrogen therapy given after menopause may prevent, or at least delay, the onset of Alzheimer's disease in older women. However, later clinical trials of women with probable Alzheimer's disease had contrary results. Much of the current research related to estrogen and brain function is focused in two directions. One involves clinical studies that examine the potential of estrogen in protecting against cognitive decline during normal aging and against Alzheimer's disease (neuroprotection). The other direction, which is the primary focus of this review, involves laboratory studies that examine the mechanisms by which estrogen can modify the structure of nerve cells and alter the way neurons communicate with other cells in the brain (neuroplasticity). In this review, we examine recent evidence from experimental and clinical research on the rapid effects of estrogen on several mechanisms that involve synaptic plasticity in the nervous system,including hippocampal excitability, long-term potentiation and depression related to sex and aging differences, cellular neuroprotection and probable molecular mechanisms of the action of estrogen in brain tissue.  相似文献   

6.
Receptor trafficking and synaptic plasticity   总被引:11,自引:0,他引:11  
Long-term potentiation and long-term depression are processes that have been widely studied to understand the molecular basis of information storage in the brain. Glutamate receptors are required for the induction and expression of these forms of plasticity, and GABA (gamma-aminobutyric acid) receptors are involved in their modulation. Recent insights into how these receptors are rapidly moved into and out of synaptic membranes has profound implications for our understanding of the mechanisms of long-term potentiation and long-term depression.  相似文献   

7.
8.
钙依赖性突触的可塑性   总被引:3,自引:0,他引:3  
Dou Y  Yan J  Wu YY  Cui RY  Lu CL 《生理科学进展》2001,32(1):35-38
突触前和突触后细胞内钙离子([Ca^2 ]i)在短时程和长时程突触的可塑性中,发挥着重要的住处传递作用。兴奋后残留[Ca^2 ]i,可以激发短时程突触增强。突触前[Ca^2 ]i可以影响被抑制的突触前膜囊泡的更新,并准确编码突前和突触后信息,产生截然相反的长时程突触修(LTP或LTD)。  相似文献   

9.
Mitochondria are the predominant organelle within many presynaptic terminals. During times of high synaptic activity, they affect intracellular calcium homeostasis and provide the energy needed for synaptic vesicle recycling and for the continued operation of membrane ion pumps. Recent discoveries have altered our ideas about the role of mitochondria in the synapse. Mitochondrial localization, morphology, and docking at synaptic sites may indeed alter the kinetics of transmitter release and calcium homeostasis in the presynaptic terminal. In addition, the mitochondrial ion channel BCL-xL, known as a protector against programmed cell death, regulates mitochondrial membrane conductance and bioenergetics in the synapse and can thereby alter synaptic transmitter release and the recycling of pools of synaptic vesicles. BCL-xL, therefore, not only affects the life and death of the cell soma, but its actions in the synapse may underlie the regulation of basic synaptic processes that subtend learning, memory and synaptic development.  相似文献   

10.
We have shown that the synapse maturation phase of synaptogenesis is a model for synaptic plasticity that can be particularly well-studied in chicken forebrain because for most forebrain synapses, the maturation changes occur slowly and are temporally well-separated from the synapse formation phase. We have used the synapse maturation phase of neuronal development in chicken forebrain to investigate the possible link between changes in the morphology and biochemical composition of the postsynaptic density (PSD) and the functional properties of glutamate receptors overlying the PSD. Morphometric studies of PSDs in forebrains and superior cervical ganglia of chickens and rats have shown that the morphological features of synapse maturation are characteristic of a synaptic type, but that the rate at which these changes occur can vary between types of synapses within one animal and between synapses of the same type in different species. We have investigated, during maturation in the chicken forebrain, the properties of the N-methyl-D-aspartate (NMDA) subtype of the glutamate receptors, which are concentrated in the junctional membranes overlying thick PSDs in the adult. There was no change in the number of NMDA receptors during maturation, but there was an increase in the rate of NMDA-stimulated uptake of 45Ca2+ into brain prisms. This functional change was not seen with the other ionotropic subtypes of the glutamate receptor and was NMDA receptor-mediated. The functional change also correlated with the increase in thickness of the PSD during maturation that has previously been shown to be due to an increase in the amount of PSD associated Ca(2+)-calmodulin stimulated protein kinase II (CaM-PK II). Our results provide strong circumstantial evidence for the regulation of NMDA receptors by the PSD and implicate changing local concentrations of CaM-PK II in this process. The results also indicate some of the ways in which properties of existing synapses can be modified by changes at the molecular level.  相似文献   

11.
Ca2+ and synaptic plasticity   总被引:3,自引:0,他引:3  
Cavazzini M  Bliss T  Emptage N 《Cell calcium》2005,38(3-4):355-367
The induction and maintenance of synaptic plasticity is well established to be a Ca2+-dependent process. The use of fluorescent imaging to monitor changes [Ca2+]i in neurones has revealed a diverse array of signaling patterns across the different compartments of the cell. The Ca2+ signals within these compartments are generated by voltage or ligand-gated Ca2+ influx, and release from intracellular stores. The changes in [Ca2+]i are directly linked to the activity of the neurone, thus a neurone's input and output is translated into a dynamic Ca2+ code. Despite considerable progress in measuring this code much still remains to be determined in order to understand how the code is interpreted by the Ca2+ sensors that underlie the induction of compartment-specific plastic changes.  相似文献   

12.
Whereas the regenerative nature of action potential conduction in axons has been known since the late 1940s, neuronal dendrites have been considered as passive cables transferring incoming synaptic activity to the soma. The relatively recent discovery that neuronal dendrites contain active conductances has revolutionized our view of information processing in neurons. In many neuronal cell types, sodium action potentials initiated at the axon initial segment can back-propagate actively into the dendrite thereby serving, for the dendrite, as an indicator of the output activity of the neuron. In addition, the dendrites themselves can initiate action-potential-like regenerative responses, so-called dendritic spikes, that are mediated either by the activation of sodium, calcium, and/or N-methyl-D-aspartate receptor channels. Here, we review the recent experimental and theoretical evidence for a role of regenerative dendritic activity in information processing within neurons and, especially, in activity-dependent synaptic plasticity.  相似文献   

13.
14.
In acute hippocampal slices, we found that the presence of extracellular brain-derived neurotrophic factor (BDNF) is essential for the induction of spike-timing-dependent long-term potentiation (tLTP). To determine whether BDNF could be secreted from postsynaptic dendrites in a spike-timing-dependent manner, we used a reduced system of dissociated hippocampal neurons in culture. Repetitive pairing of iontophoretically applied glutamate pulses at the dendrite with neuronal spikes could induce persistent alterations of glutamate-induced responses at the same dendritic site in a manner that mimics spike-timing-dependent plasticity (STDP)—the glutamate-induced responses were potentiated and depressed when the glutamate pulses were applied 20 ms before and after neuronal spiking, respectively. By monitoring changes in the green fluorescent protein (GFP) fluorescence at the dendrite of hippocampal neurons expressing GFP-tagged BDNF, we found that pairing of iontophoretic glutamate pulses with neuronal spiking resulted in BDNF secretion from the dendrite at the iontophoretic site only when the glutamate pulses were applied within a time window of approximately 40 ms prior to neuronal spiking, consistent with the timing requirement of synaptic potentiation via STDP. Thus, BDNF is required for tLTP and BDNF secretion could be triggered in a spike-timing-dependent manner from the postsynaptic dendrite.  相似文献   

15.
MAPK cascade signalling and synaptic plasticity   总被引:2,自引:0,他引:2  
  相似文献   

16.
A major effort in neuroscience is directed towards understanding the roles of Ca2+ signalling in the induction of synaptic plasticity. Here, we summarize the evidence concerning Ca2+ signalling, paying particular attention to CA1 excitatory synapses, and its relationship to the induction of long-term potentiation and long-term depression. We discuss the ways in which synaptic activation can elevate Ca2+ postsynaptically and how dendritic spines may act as a Ca2+ compartment which can both isolate and integrate Ca2+ signals.  相似文献   

17.
The growing realization that neurotrophins, such as brain-derived neurotrophic factor (BDNF), are crucial in modulating synaptic plasticity has broadened the spectrum of their trophic actions. At the same time, it has become clear that Abeta peptides derived from amyloid precursor protein (APP) have dramatic effects on synaptic transmission before the onset of the neurodegenerative disease. Because neurotrophins and Abeta are responsible for affecting both synaptic and cognitive function, it is likely that their mechanisms of action will be related and might even intersect. This review highlights several recent findings that suggest trophic factors and APP use similar pathways to control neuronal activity.  相似文献   

18.
Calcium ions play crucial signaling roles in many forms of activity-dependent synaptic plasticity. Recent presynaptic [Ca2+]i measurements and manipulation of presynaptic exogenous buffers reveal roles for residual [Ca2+]i following conditioning stimulation in all phases of short-term synaptic enhancement. Pharmacological manipulations implicate mitochondria in post-tetanic potentiation. New evidence supports an influence of Ca2+ in replacing depleted vesicles after synaptic depression. In addition, high-resolution measurements of [Ca2+]i in dendritic spines show how Ca2+ can encode the precise relative timing of presynaptic input and postsynaptic activity and generate long-term synaptic modifications of opposite polarity.  相似文献   

19.
研究表明能量可能是支配神经元活动的统一原则,编码能力与能量成本的比率最大化被认为是突触连接在选择性压力下改变的关键原则之一,这意味着突触范围内能量的变化与突触可塑性有关。为此,建立一个基于能量的突触可塑性模型。当突触后膜瞬时功率高于功率阈值时突触权重增加,反之突触权重下降。该模型可再现脉冲频率依赖可塑性以及脉冲时间依赖可塑性这两种主要的突触可塑性实验结果,并且和其他公认的突触可塑性模型相比具有优越性。结果表明,能量是影响突触可塑性的关键因素,对进一步理解突触连接的选择性和神经网络动力学特征提供了一个新思路。  相似文献   

20.
Statistical constraints on synaptic plasticity   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号