首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, we investigated the contributions of forebrain, brain stem, and spinal neural circuits to heating-induced sympathetic nerve discharge (SND) responses in chloralose-anesthetized rats. Frequency characteristics of renal and splenic SND bursts and the level of activity in these nerves were determined in midbrain-transected (superior colliculus), spinal cord-transected [first cervical vertebra (C1)], and sham-transected (midbrain and spinal cord) rats during progressive increases in colonic temperature (T(c)) from 38 to 41.6-41.7 degrees C. The following observations were made. 1) Significant increases in renal and splenic SND were observed during hyperthermia in midbrain-transected, sham midbrain-transected, C1-transected, and sham C1-transected rats. 2) Heating changed the discharge pattern of renal and splenic SND bursts and was associated with prominent coupling between renal-splenic discharge bursts in midbrain-transected, sham midbrain-transected, and sham C1-transected rats. 3) The pattern of renal and splenic SND bursts remained unchanged from posttransection recovery levels during heating in C1-transected rats. We conclude that an intact forebrain is not required for the full expression of SND responses to increased T(c) and that spinal neural systems, in the absence of supraspinal circuits, are unable to markedly alter the frequency characteristics of SND in response to acute heat stress.  相似文献   

2.
The ability of neurons in the central nervous system (CNS) to grow through a lesion and restore conduction has been analysed in developing spinal cord in vitro. The preparation consists of the entire CNS of embryonic rat, isolated and maintained in culture. Conduction of electrical activity and normal morphological appearance (light microscopical and electron microscopical) were maintained in the spinal cord of such preparations for up to 7 d in culture. A complete transverse crush of the spinal cord abolished all conduction for 2 d. After 3-5 d, clear recovery had occurred: electrical conduction across the crush was comparable with that in uninjured preparations. Furthermore, the spinal cord had largely regained its gross normal appearance at the crush site. Axons stained in vivo by carbocyanine dyes had, by 5 d, grown in profusion through the lesion and several millimetres beyond it. These experiments, like those made in neonatal opossum (Treherne et al. 1992) demonstrate that central neurons of immature mammals, unlike those in adults, can respond to injury by rapid and extensive outgrowth of nerve fibres in the absence of peripheral nerve bridges or antibodies that neutralize inhibitory factors. However, unlike the opossum, in which outgrowth occurred at 24 degrees C, although there was prolonged survival of rat spinal cords at this temperature, outgrowth of axons across the lesion required a temperature of 29 degrees C. With rapid and reliable regeneration in vitro it becomes practicable to assay the effects of molecules that promote or inhibit restoration of functional connections.  相似文献   

3.
Acute heating in young rats increases visceral sympathetic nerve discharge (SND); however, renal and splanchnic SND responses to hyperthermia are attenuated in senescent compared with young Fischer 344 (F344) rats (Kenney MJ and Fels RJ. Am J Physiol Regul Integr Comp Physiol 283: R513-R520, 2002). Central mechanisms by which aging alters visceral SND responses to heating are unknown. We tested the hypothesis that forebrain neural circuits are involved in suppressing sympathoexcitatory responses to heating in chloralose-anesthetized, senescent F344 rats. Renal and splanchnic SND responses to increased (38 degrees C-41 degrees C) internal temperature were determined in midbrain-transected (MT) and sham-MT young (3-mo-old), mature (12-mo-old), and senescent (24-mo-old) F344 rats and in cervical-transected (CT) and sham-CT senescent rats. Renal SND remained unchanged during heating in MT and sham-MT senescent rats but was increased in CT senescent rats. Splanchnic SND responses to heating were higher in MT vs. sham-MT senescent rats and in CT vs. MT senescent rats. SND responses to heating were similar in MT and sham-MT young and mature rats. Mean arterial pressure (MAP) was increased during heating in MT but not in sham-MT senescent rats, whereas heating-induced increases in MAP were higher in sham-MT vs. MT young rats. These data suggest that in senescent rats suppression of splanchnic SND to heating involves forebrain and brain stem neural circuits, whereas renal suppression is mediated solely by brain stem neural circuits. These results support the concept that aging alters the functional organization of pathways regulating SND and arterial blood pressure responses to acute heating.  相似文献   

4.
Frequency-domain analyses were used to determine the effect of cold stress on the relationships between the discharge bursts of sympathetic nerve pairs, sympathetic and aortic depressor nerve pairs, and sympathetic and phrenic nerve pairs in chloralose-anesthetized, baroreceptor-innervated rats. Sympathetic nerve discharge (SND) was recorded from the renal, lumbar, splanchnic, and adrenal nerves during decreases in core body temperature from 38 to 30 degrees C. The following observations were made. 1) Hypothermia produced nonuniform changes in the level of activity in regionally selective sympathetic nerves. Specifically, cold stress increased lumbar and decreased renal SND but did not significantly change the level of activity in splanchnic and adrenal nerves. 2) The cardiac-related pattern of renal, lumbar, and splanchnic SND bursts was transformed to a low-frequency (0-2 Hz) pattern during cooling, despite the presence of pulse-synchronous activity in arterial baroreceptor afferents. 3) Peak coherence values relating the discharges between sympathetic nerve pairs decreased at the cardiac frequency but were unchanged at low frequencies (0-2 Hz), indicating that the sources of low-frequency SND bursts remain prominently coupled during progressive reductions in core body temperature. 4) Coherence of discharge bursts in phrenic and renal sympathetic nerve pairs in the 0- to 2-Hz frequency band increased during mild hypothermia (36 degrees C) but decreased during deep hypothermia (30 degrees C). We conclude that hypothermia profoundly alters the organization of neural circuits involved in regulation of sympathetic nerve outflow to selected regional circulations.  相似文献   

5.
The exact location of the central respiratory chemoreceptors sensitive to changes in PCO2 has not yet been determined. To avoid the confounding effects of the cerebral circulation, we used the in vitro brain stem-spinal cord of neonatal rats (1-5 days old) to identify areas within 500 microns of the ventral surface of the medulla where changes in PCO2 evoked a sudden increase in the rate of respiratory neural activity. The preparation was superfused with mock cerebrospinal fluid (CSF) while maintained at constant temperature (26 +/- 1 degrees C) and pH (7.34). Respiratory frequency increased linearly with decreases in superfusate pH (r2 = 0.92, P less than 0.001), indicating that the respiratory circuitry for the detection of CO2 and stimulation of breathing was intact in this preparation. The search for central chemoreceptors was performed with a specially designed micropipette that allowed microejection of 2-10 nl of mock CSF equilibrated with different CO2-O2 gas mixtures. The pipette was advanced in 50- to 100-microns steps by use of a microdrive to a maximum depth of 500 microns from the surface of the ventral medulla. Depending on the location of the micropipette, ejection of CO2-acidified mock CSF at depths of 100-350 microns below the ventral surface of the medulla stimulated neural respiratory output. Using this response as an indication of the location of central respiratory chemoreceptors, we found that chemoreceptive elements were located in a column in the ventromedial medulla extending from the hypoglossal rootlets caudally to an area 0.75 mm caudal to VI nerve in the rostral medulla.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Hypothermia produced by acute cooling prominently alters sympathetic nerve outflow. Skin sympathoexcitatory responses to skin cooling are attenuated in aged compared with young subjects, suggesting that advancing age influences sympathetic nerve responsiveness to hypothermia. However, regulation of skin sympathetic nerve discharge (SND) is only one component of the complex sympathetic nerve response profile to hypothermia. Whether aging alters the responsiveness of sympathetic nerves innervating other targets during acute cooling is not known. In the present study, using multifiber recordings of splenic, renal, and adrenal sympathetic nerve activity, we tested the hypothesis that hypothermia-induced changes in visceral SND would be attenuated in middle-aged and aged compared with young Fischer 344 (F344) rats. Colonic temperature (Tc) was progressively reduced from 38 degrees C to 31 degrees C in young (3 to 6 mo), middle-aged (12 mo), and aged (24 mo) baroreceptor-innervated and sinoaortic-denervated (SAD), urethane-chloralose anesthetized, F344 rats. The following observations were made. 1) Progressive hypothermia significantly (P < 0.05) reduced splenic, renal, and adrenal SND in young baroreceptor-innervated F344 rats. 2) Reductions in splenic, renal, and adrenal SND to progressive hypothermia were less consistently observed and, when observed, were generally attenuated in baroreceptor-innervated middle-aged and aged compared with young F344 rats. 3) Differences in splenic, renal, and adrenal SND responses to reduced Tc were observed in SAD young, middle-aged, and aged F344 rats, suggesting that age-associated attenuations in SND responses to acute cooling are not the result of age-dependent modifications in arterial baroreflex regulation of SND. These findings demonstrate that advancing chronological age alters the regulation of visceral SND responses to progressive hypothermia, modifications that may contribute to the inability of aged individuals to adequately respond to acute bouts of hypothermia.  相似文献   

7.
The neural control system for generation of locomotion is an important system for analysis of neural mechanisms underlying complex motor acts. In these studies, a novel experimental model using neonatal rat brain stem and spinal cord in vitro was developed for investigation of the locomotor system in mammals. The in vitro brain stem and spinal cord system was shown to retain functional circuitry for locomotor command generation, motor pattern generation, and sensorimotor integration. This system was exploited to investigate neurochemical mechanisms involved in neurogenesis of locomotion. Evidence was obtained for peptidergic and gamma-amino-butyric acid-mediated mechanisms in brain-stem circuits generating locomotor commands. Cholinergic, dopaminergic, and excitatory amino acid-mediated mechanisms were shown to activate spinal cord circuits for locomotor pattern generation. Endogenous N-methyl-D-aspartic acid receptors in spinal networks were found to play a central role in the generation of locomotion. The chemically induced patterns of motor activity and rhythmic membrane potential oscillations of spinal motoneurons were characteristic of those during locomotion in other mammals in vivo. The in vitro brain stem and spinal cord model provides a versatile and powerful experimental system with potentially broad application for investigation of diverse aspects of the neurobiology of mammalian motor control systems.  相似文献   

8.
Heart failure (HF) alters the regulation of basal sympathetic nerve discharge (SND); however, the effect of HF on SND responses to acute stress is not well established. In the present study, renal SND responses to hyperthermia were determined in chloralose-anesthetized HF rats and in sham controls. Whole body heating (colonic temperature increased from 38 to 41 degrees C) was used as an acute stressor because increased internal body temperature provides a potent stimulus to the sympathetic nervous system. Left ventricular end-diastolic pressure and the right ventricular wt-to-body wt ratio were increased (P < 0.05) in HF compared with sham rats. The following observations were made: 1) renal sympathoexcitatory responses to heating were significantly reduced in HF compared with sham rats, 2) renal blood flow remained unchanged from control levels during heating in HF rats but was significantly reduced in sham rats, and 3) renal SND responses to heating were significantly higher in HF rats with bilateral lesions of the hypothalamic paraventricular nucleus (PVN) compared with sham PVN-lesioned HF rats. These results demonstrate a marked attenuation in the responsiveness of renal SND to heating in HF rats and suggest that HF alters the organization of neural pathways mediating SND responses to heating.  相似文献   

9.
Although interleukin-1beta (IL-1beta) administration produces nonuniform changes in the level of sympathetic nerve discharge (SND), the effect of IL-1beta on the frequency-domain relationships between discharges in different sympathetic nerves is not known. Autospectral and coherence analyses were used to determine the effect of IL-1beta and mild hypothermia (60 min after IL-1beta, colonic temperature from 38 degrees C to 36 degrees C) on the relationships between renal-interscapular brown adipose tissue (IBAT) and splenic-lumbar sympathetic nerve discharges in chloralose-anesthetized rats. The following observations were made. 1) IL-1beta did not alter renal-IBAT coherence values in the 0- to 2-Hz frequency band or at the cardiac frequency (CF). 2) Peak coherence values relating splenic-lumbar discharges at the CF were significantly increased after IL-1beta and during hypothermia. 3) Hypothermia after IL-1beta significantly reduced the coupling (0-2 Hz and CF) between renal-IBAT but not splenic-lumbar SND bursts. 4) Combining IL-1beta and mild hypothermia had a greater effect on renal-IBAT SND coherence values than did mild hypothermia alone. These data demonstrate functional plasticity in sympathetic neural circuits and suggest complex relationships between immune products and SND regulation.  相似文献   

10.
The effects of electroconvulsive shock (ECS) on rectal temperature (TR) and on protein synthesis in brain and liver were compared in rabbit, rat, and mouse. Protein synthesis status was assessed using an in vitro amino acid incorporation method which provides information equivalent to polyribosome profiles. In the rabbit, TR rose from 39.5 +/- 0.4 degrees C to 40.4 +/- 0.2 degrees C within 10 min following a single ECS, and significant hyperthermia persisted for at least 60 min. This effect was markedly attenuated in animals housed at 4 degrees C. In vitro protein synthesis activities of rabbit brain and liver preparations were significantly reduced following ECS only in those animals whose TR exceeded 40 degrees C. In the rat, ECS gave rise to a significant hyperthermia, but in no case did TR exceed 40 degrees C, and protein synthesis activity of brain supernatants was not affected. In the mouse, ECS reduced TR and had no effect on in vitro protein synthesis activity. These results demonstrate that the unique sensitivity of protein synthesis in rabbit tissues to electroconvulsive shock is a direct consequence of the hyperthermia that arises following ECS in this species.  相似文献   

11.
The effects of temperature and pH/CO(2) were examined in isolated brainstem preparations from adult North American bullfrogs (Rana catesbeiana). These experiments were undertaken to determine the effects of temperature on fictive breathing, central pH/CO(2) chemoreception, and to examine potential alphastat regulation of respiration in vitro. Adult bullfrog brainstem preparations were isolated, superfused with an artificial cerebrospinal fluid (aCSF) and respiratory-related neural activity was recorded from cranial nerves V, X and XII. In Series I experiments (N=8), brainstem preparations were superfused with aCSF equilibrated with 2% CO(2) at temperatures ranging from 10 to 30 degrees C. Neural activity was present in all preparations in the temperature range of 15-25 degrees C, but was absent in most preparations when aCSF was at 10 or 30 degrees C. The absence of fictive breathing at high (30 degrees C) temperatures was transient since fictive breathing could be restored upon returning the preparation to 20 degrees C. In Series II experiments (N=10), preparations were superfused with aCSF equilibrated with 0%, 2% and 5% CO(2) at temperatures of 15, 20 and 25 degrees C. Fictive breathing frequency (f(R)) was significantly dependent upon aCSF pH at all three temperatures, with slopes ranging from -0.82 min(-1) pH unit(-1) (15 degrees C) to -3.3 min(-1) pH unit(-1) (20 degrees C). There was a significant difference in these slopes (P<0.02), indicating that central chemoreceptor sensitivity increased over this temperature range. Fictive breathing frequency was significantly dependent upon the calculated alpha-imidazole (alpha(Im)) ionization (P<0.05), consistent with the alphastat hypothesis for the effects of temperature on the regulation of ventilation. However, most of the variation in f(R) was not explained by alpha(Im) (R(2)=0.05), suggesting that other factors account for the regulation of fictive breathing in this preparation. The results indicate that the in vitro brainstem preparation of adult bullfrogs has a limited temperature range (15-25 degrees C) over which fictive breathing is consistently active. Although there is a close correspondence of ventilation in vitro and in vivo at low temperatures, these data suggest that, as temperature increases, changes in ventilation in the intact animal are likely to be more dependent upon peripheral feedback which assumes a greater integrative role with respect to chemoreceptor drive, respiratory frequency and tidal volume.  相似文献   

12.
Presynaptic inhibition of primary afferents can be evoked from at least three sources in the adult animal: 1) by stimulation of several supraspinal structures; 2) by spinal reflex action from sensory inputs; or 3) by the activity of spinal locomotor networks. The depolarisation in the intraspinal afferent terminals which is due, at least partly, to the activation of GABA(A) receptors may be large enough to reach firing threshold and evoke action potentials that are antidromically conducted into peripheral nerves. Little is known about the development of presynaptic inhibition and its supraspinal control during ontogeny. This article, reviewing recent experiments performed on the in vitro brainstem/spinal cord preparation of the neonatal rat, demonstrates that a similar organisation is present, to some extent, in the new-born rat. A spontaneous activity consisting of antidromic discharges can be recorded from lumbar dorsal roots. The discharges are generated by the underlying afferent terminal depolarizations reaching firing threshold. The number of antidromic action potentials increases significantly in saline solution with chloride concentration reduced to 50% of control. Bath application of the GABA(A) receptor antagonist, bicuculline (5-10 microM) blocks the antidromic discharges almost completely. Dorsal root discharges are therefore triggered by chloride-dependent GABA(A) receptor-mediated mechanisms; 1) activation of descending pathways by stimulation delivered to the ventral funiculus (VF) of the spinal cord at the C1 level; 2) activation of sensory inputs by stimulation of a neighbouring dorsal root; or 3) pharmacological activation of the central pattern generators for locomotion evokes antidromic discharges in dorsal roots. VF stimulation also inhibited the response to dorsal root stimulation. The time course of this inhibition overlapped with that of the dorsal root discharge suggesting that part of the inhibition of the monosynaptic reflex may be exerted at a presynaptic level. The existence of GABA(A) receptor-independent mechanisms and the roles of the antidromic discharges in the neonatal rat are discussed.  相似文献   

13.
Renal and splanchnic sympathetic nerve discharge (SND) responses to increased (38-41 degrees C) internal temperature were determined in anesthetized young (3-6 mo old), mature (12 mo old), and senescent (24 mo old) Fischer 344 (F344) rats. We hypothesized that SND responses would be altered in senescent and mature rats as demonstrated by attenuated sympathoexcitatory responses to heating and by the absence of hyperthermia-induced SND pattern changes. The following observations were made. 1) Renal and splanchnic SND responses were significantly increased during heating in young and mature but not in senescent rats. 2) At 41 degrees C, renal and splanchnic SND responses were higher in young compared with senescent rats, and renal SND was higher in mature than in senescent rats. 3) Heating changed the SND bursting pattern in young, but not in mature or senescent, rats. 4) SND responses to heating did not differ between baroreceptor-innervated (BRI) and sinoaortic-denervated (SAD) senescent rats but were higher in SAD compared with BRI young rats. These results demonstrate an attenuated responsiveness of sympathetic neural circuits to heating in senescent F344 rats.  相似文献   

14.
Application of the glutamate agonists alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionate (AMPA, 5-10 microM), or N-methyl-D-aspartate (NMDA, 50-100 microM) to the turtle spinal cord produced fictive hindlimb motor patterns in low-spinal immobilized animals (in vivo) and in isolated spinal cord-hindlimb nerve preparations (in vitro). For in vivo experiments, drugs were applied onto the dorsal surface of 2-4 adjacent spinal cord segments in and near the anterior hindlimb enlargement. Motor output was recorded unilaterally or bilaterally from hindlimb muscle nerves. AMPA elicited vigorous motor patterns in vivo that included strict hip flexor-extensor and right-left alternation. In most turtles, the monoarticular knee extensor nerve FT-KE was active during the HE phase of AMPA evoked burst cycles, similar to the timing of pocket scratch motor patterns. NMDA was less effective in vivo, typically producing only weak and irregular bursting from hip nerves and little or no knee extensor (KE) discharge. Sensory stimulation of a rostral scratch reflex in vivo could reset an ongoing AMPA-evoked motor rhythm, indicating that cutaneous reflex pathways interact centrally with the chemically activated rhythm generator. Most in vitro preparations consisted of six segments of spinal cord, including the entire 5-segment hindlimb enlargement (D8-S2) and the segment immediately anterior to the enlargement (D7), with attached hindlimb nerves. In contrast to in vivo experiments, in vitro preparations exhibited highly regular, long-lasting motor rhythms when NMDA was superfused over the spinal cord. AMPA also produced rhythmic motor patterns in vitro, but these lasted only a few minutes before they were replaced with tonic discharge. FT-KE timing during in vitro chemically elicited activity was similar to that of sensory-evoked pocket scratch motor patterns. Some NMDA-evoked rhythmicity persisted even in 3-segment (D6-D8) and 1-segment (D8) in vitro preparations, demonstrating that neural mechanisms for chemically activated rhythmogenesis reside even in a single segment of the hindlimb enlargement.  相似文献   

15.
We investigated the contributions of forebrain, brain stem, and spinal neural circuits to interleukin (IL)-1beta-induced sympathetic nerve discharge (SND) responses in alpha-chloralose-anesthetized rats. Lumbar and splenic SND responses were determined in spinal cord-transected (first cervical vertebra, C1), midbrain-transected (superior colliculus), and sham-transected rats before and for 60 min after intravenous IL-1beta (285 ng/kg). The observations made were the following: 1) lumbar and splenic SND were significantly increased after IL-1beta in sham C1-transected rats but were unchanged after IL-1beta in C1-transected rats; 2) intrathecal administration of DL-homocysteic acid (10 ng) increased SND in C1-transected rats; 3) lumbar and splenic SND were significantly increased after IL-1beta in sham- but not midbrain-transected rats; and 4) midbrain transection did not alter the pattern of lumbar and splenic SND, demonstrating the integrity of brain stem sympathetic neural circuits after decerebration. These results demonstrate that an intact forebrain is required for mediating lumbar and splenic sympathoexcitatory responses to intravenous IL-1beta, thereby providing new information about the organization of neural circuits responsible for mediating sympathetic-immune interactions.  相似文献   

16.
On the basis of the high level of P2X receptor expression found in phrenic motoneurons (MN) in rats (Kanjhan et al., J Comp Neurol 407: 11-32, 1999) and potentiation of hypoglossal MN inspiratory activity by ATP (Funk et al., J Neurosci 17: 6325-6337, 1997), we tested the hypothesis that ATP receptor activation also modulates phrenic MN activity. This question was examined in rhythmically active brain stem-spinal cord preparations from neonatal rats by monitoring effects of ATP on the activity of spinal C4 nerve roots and phrenic MNs. ATP produced a rapid-onset, dose-dependent, suramin- and pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid 4-sodium-sensitive increase in C4 root tonic discharge and a 22 +/- 7% potentiation of inspiratory burst amplitude. This was followed by a slower, 10 +/- 5% reduction in burst amplitude. ATPgammaS, the hydrolysis-resistant analog, evoked only the excitatory response. ATP induced inward currents (57 +/- 39 pA) and increased repetitive firing of phrenic MNs. These data, combined with persistence of ATP currents in TTX and immunolabeling for P2X2 receptors in Fluoro-Gold-labeled C4 MNs, implicate postsynaptic P2 receptors in the excitation. Inspiratory synaptic currents, however, were inhibited by ATP. This inhibition differed from that seen in root recordings; it did not follow an excitation, had a faster onset, and was induced by ATPgammaS. Thus ATP inhibited activity through at least two mechanisms: 1) a rapid P2 receptor-mediated inhibition and 2) a delayed P1 receptor-mediated inhibition associated with hydrolysis of ATP to adenosine. The complex effects of ATP on phrenic MNs highlight the importance of ATP as a modulator of central motor outflows.  相似文献   

17.
An enzyme-linked immunoadsorbent assay has been developed to evaluate comparative levels of neurofilament protein in developing primary cultures of human foetal dorsal root ganglion and brain tissue. The quantitative parameters of the assay, relating linearity of response with varying levels of neurofilament protein, were verified by comparing the relative binding of human species-specific (BF10) and cross-species-reactive (RT97) monoclonal antibodies to mixtures of human and baboon spinal cord homogenates that had been passively adsorbed onto microtitre wells. In human neural cultures, the localisation of neurofilament protein to growing neurites was determined by indirect immunofluorescence staining with anti-neurofilament antibodies and, using the immunoadsorbent assay, a time-dependent increase in the level of neurofilament protein was detected that correlated with the morphological time course of neurite development. In the case of dorsal root ganglion cells over 6 days in vitro, a seven- to ninefold greater increase in neurofilament protein levels was observed in cultures treated with nerve growth factor when compared with control unstimulated preparations. The quantitative responsiveness of dorsal root ganglion neurones to nerve growth factor detected by the neurofilament assay indicates its potential usefulness in the identification and analysis of neurotrophic and neurotoxic factors or cellular interactions operating in vitro.  相似文献   

18.
An isolated thoracic spinal cord of the neonatal rat in vitro spontaneously generates sympathetic nerve discharge (SND) at ~25°C, but it fails in SND genesis at ≤ 10°C. Basal levels of the c-Fos expression in the spinal cords incubated at ≤ 10°C and ~25°C were compared to determine the anatomical substrates that might participate in SND genesis. Cells that exhibited c-Fos immunoreactivity were virtually absent in the spinal cords incubated at ≤ 10°C. However, in the spinal cords incubated at ~25°C, c-Fos-positive cells were found in the dorsal laminae, the white matter, lamina X, and the intermediolateral cell column (IML). Cell identities were verified by double labeling of c-Fos with neuron-specific nuclear protein (NeuN), glial fibrillary acidic protein (GFAP), or choline acetyltransferase (ChAT). The c-Fos-positive cells distributed in the white matter and lamina X were NeuN-negative or GFAP-positive and were glial cells. Endogenously active neurons showing c-Fos and NeuN double labeling were scattered in the dorsal laminae and concentrated in the IML. Double labeling of c-Fos and ChAT confirmed the presence of active sympathetic preganglionic neurons (SPNs) in the IML. Suppression of SND genesis by tetrodotoxin (TTX) or mecamylamine (MECA, nicotinic receptor blocker) almost abolished c-Fos expression in dorsal laminae, but only mildly affected c-Fos expression in the SPNs. Therefore, c-Fos expression in some SPNs does not require synaptic activation. Our results suggest that spinal SND genesis is initiated from some spontaneously active SPNs, which are capable of TTX- or MECA-resistant c-Fos expression.  相似文献   

19.
J Lu  H M Fishman 《Biophysical journal》1995,69(6):2458-2466
A steady, spontaneous current oscillation (1 nA p-p) occurs in voltage-clamped, isolated ampullary organs (canal, ampulla, and nerve) from skates (Raja). Spectral analysis showed that energy in the oscillation was confined to a narrow band of frequencies (3 Hz) about a fundamental frequency (32 Hz at 20 degrees C) and in harmonics. The frequency of the oscillation was temperature dependent (increasing from 21 to 33 Hz for increases in temperature from 13 degrees C to 21 degrees C). The addition of 0.5 microM tetrodotoxin to the basal side of the ampullary epithelium eliminated afferent nerve activity but had no effect on the epithelial oscillation, indicating that the oscillation is not generated or induced by afferent nerve activity. Nitrendipine (2 microM) added to the solution bathing the basal side of the ampullary epithelium abolished the oscillation rapidly (within minutes), but a steady-state negative conductance (i.e., real part of the complex admittance < 0) generated by the preparation remained for 36 min. Conversely, nitrendipine (50 microM) added to the perfusate (artificial sea water) of the apical side eliminated the negative conductance rapidly (18.5 min) but had no effect on the spontaneous oscillation for more than 1 h. The effect and the elapsed time for an effect of nitrendipine after separate applications to the basal and apical membrane surfaces of ampullary epithelium suggest that 1) the negative conductance and the oscillation are generated independently in apical and basal membranes, respectively, and 2) both processes involve L-type Ca channels. Furthermore, the addition of tetraethylammonium (2 mM) to the basal side eliminated both the oscillation and the postsynaptic response to voltage clamps (< or = 100 microV) of the ampullary epithelium in the operational voltage range of the afferent nerve. This result suggests that the basal membrane oscillation functions in neurotransmitter release from presynaptic (basal) membranes.  相似文献   

20.
The dorsal root reflex in isolated mammalian spinal cord   总被引:1,自引:0,他引:1  
1. The dorsal root reflex has been investigated in an isolated preparation of adult mammalian spinal cord. 2. Both evoked and spontaneous activity can be recorded from the cord in the dorsal spinal roots. 3. The spontaneous activity has a characteristic pattern of firing in bursts of action potentials. Spontaneous and evoked activity are optimum at temperatures between 25 and 27 degrees C; little activity can be detected above 35 degrees C. 4. The spontaneous dorsal root activity has been shown to be correlated with negative potentials in the dorsal horn of the cord, and intracellular recordings made from primary afferent fibres have shown spontaneous primary afferent depolarizations (PAD) which underlie the generation of the spontaneous dorsal root activity. 5. The evoked dorsal root reflex has been shown to spread up to 16 spinal segments both rostrally and caudally from the stimulated dorsal root, and to the contralateral side of the cord. 6. The spontaneous dorsal root activity in widely separated segments has been shown by cross-correlation analysis to be linked both ipsi- and contra-laterally. 7. The significance of such a widespread system for the generation of PAD is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号