首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
"Cancer-germline" genes such as those of the MAGE family are expressed in many tumors and in male germline cells, but are silent in normal tissues. They encode shared tumor-specific Ags, which have been used in therapeutic vaccination trials of cancer patients. MAGE-3 is expressed in 74% of metastatic melanoma and in 50% of carcinomas of esophagus, head and neck, bladder, and lung. We report here the identification of a new MAGE-3 peptide, which is recognized by three different CD4(+) T cell clones isolated from a melanoma patient vaccinated with a MAGE-3 protein. These clones, which express different TCRs, recognize an HLA-DR1 peptide ACYEFLWGPRALVETS, which corresponds to the MAGE-3(267-282) and the MAGE-12(267-282) protein sequences. One of the T cell clones, which expresses LFA-1 at a high level, lysed tumor cells expressing DR1 and MAGE-3. Another of these DR1-restricted CD4(+) clones recognized not only the MAGE-3/12 peptide but also homologous peptides encoded by genes MAGE-1, 2, 4, 6, 10, and 11.  相似文献   

2.
In previous studies, the shared cancer-testis Ag, NY-ESO-1, was demonstrated to be recognized by both Abs and CD8+ T cells. Gene expression of NY-ESO-1 was detected in many tumor types, including melanoma, breast, and lung cancers, but was not found in normal tissues, with the exception of testis. In this study, we describe the identification of MHC class II-restricted T cell epitopes from NY-ESO-1. Candidate CD4+ T cell peptides were first identified using HLA-DR4 transgenic mice immunized with the NY-ESO-1 protein. NY-ESO-1-specific CD4+ T cells were then generated from PBMC of a patient with melanoma stimulated with the candidate peptides in vitro. These CD4+ T cells recognized NY-ESO-1 peptides or protein pulsed on HLA-DR4+ EBV B cells, and also recognized tumor cells expressing HLA-DR4 and NY-ESO-1. A 10-mer peptide (VLLKEFTVSG) was recognized by CD4+ T cells. These studies provide new opportunities for developing more effective vaccine strategies by using tumor-specific CD4+ T cells. This approach may be applicable to the identification of CD4+ T cell epitopes from many known tumor Ags recognized by CD8+ T cells.  相似文献   

3.
HIV-1-specific CD4(+) T cells are qualitatively dysfunctional in the majority of HIV-1-infected individuals and are thus unable to effectively control viral replication. The current study extensively details the maturational phenotype of memory CD4(+) T cells directed against HIV-1 and CMV. We find that HIV-1-specific CD4(+) T cells are skewed to an early central memory phenotype, whereas CMV-specific CD4(+) T cells generally display a late effector memory phenotype. These differences hold true for both IFN-gamma- and IL-2-producing virus-specific CD4(+) T cells, are present during all disease stages, and persist even after highly active antiretroviral therapy (HAART). In addition, after HAART, HIV-1-specific CD4(+) T cells are enriched for CD27(+)CD28(-)-expressing cells, a rare phenotype, reflecting an early intermediate stage of differentiation. We found no correlation between differentiation phenotype of HIV-1-specific CD4(+) T cells and HIV-1 plasma viral load or HIV-1 disease progression. Surprisingly, HIV-1 viral load affected the maturational phenotype of CMV-specific CD4(+) T cells toward an earlier, less-differentiated state. In summary, our data indicate that the maturational state of HIV-1-specific CD4(+) T cells cannot be a sole explanation for loss of containment of HIV-1. However, HIV-1 replication can affect the phenotype of CD4(+) T cells of other specificities, which might adversely affect their ability to control those pathogens. The role for HIV-1-specific CD4(+) T cells expressing CD27(+)CD28(-) after HAART remains to be determined.  相似文献   

4.
CD4+ T cells play a central role in orchestrating host immune responses against cancer as well as autoimmune and infectious diseases. Identification of major histocompatibility complex (MHC) class II-restricted helper T peptides is important for development of effective vaccines. The lack of effective methods to identify such T-cell peptides is a major hurdle in the use of antigen-specific CD4+ T cells in cancer vaccines. Here we describe a genetic targeting expression system for cloning genes encoding for MHC class II-restricted tumor antigens recognized by tumor-reactive CD4+ T cells. Helper T peptides are subsequently identified by using synthetic peptides to test their ability to stimulate CD4+ T cells.  相似文献   

5.
Recent studies have defined vaccinia virus (VACV)-specific CD8(+) T cell epitopes in mice and humans. However, little is known about the epitope specificities of CD4(+) T cell responses. In this study, we identified 14 I-A(b)-restricted VACV-specific CD4(+) T cell epitopes by screening a large set of 2146 different 15-mer peptides in C57BL/6 mice. These epitopes account for approximately 20% of the total anti-VACV CD4(+) T cell response and are derived from 13 different viral proteins. Surprisingly, none of the CD4(+) T cell epitopes identified was derived from VACV virulence factors. Although early Ags were recognized, late Ags predominated as CD4(+) T cell targets. These results are in contrast to what was previously found in CD8(+) T cells responses, where early Ags, including virulence factors, were prominently recognized. Taken together, these results highlight fundamental differences in immunodominance of CD4(+) and CD8(+) T cell responses to a complex pathogen.  相似文献   

6.
In vivo studies have shown that regulatory CD4(+) T cells regulate conventional CD4(+) T cell responses to self- and environmental Ags. However, it remains unclear whether regulatory CD4(+) T cells control CD8(+) T cell responses to self, directly, or indirectly by decreasing available CD4(+) T cell help. We have developed an experimental mouse model in which suppressive and helper T cells cannot mediate their functions. The mouse chimeras generated were not viable and rapidly developed multiple organ autoimmunity. These features were correlated with strong CD8(+) T cell activation and accumulation in both lymphoid and nonlymphoid organs. In vivo Ab treatment and secondary transfer experiments demonstrated that regulatory CD4(+) T cells play an important direct role in the prevention of peripheral CD8(+) T cell-mediated autoimmunity.  相似文献   

7.
The meningococcal class I outer membrane protein porin A plays an important role in the development of T cell-dependent protective immunity against meningococcal serogroup B infection and is therefore a major component of candidate meningococcal vaccines. T cell epitopes from porin A are poorly characterized because of weak in vitro memory T cell responses against purified Ag and strain variation. We applied a novel strategy to identify relevant naturally processed and MHC class II-presented porin A epitopes, based on stable isotope labeling of Ag. Human immature HLA-DR1-positive dendritic cells were used for optimal uptake and MHC class II processing of (14)N- and (15)N-labeled isoforms of the neisserial porin A serosubtype P1.5-2,10 in bacterial outer membrane vesicles. HLA-DR1 bound peptides, obtained after 48 h of Ag processing, contained typical spectral doublets in mass spectrometry that could easily be assigned to four porin A regions, expressed at diverging densities ( approximately 30-4000 copies/per cell). Epitopes from two of these regions are recognized by HLA-DR1-restricted CD4(+) T cell lines and are conserved among different serosubtypes of meningococcal porin A. This mass tag-assisted approach provides a useful methodology for rapid identification of MHC class II presented bacterial CD4(+) T cell epitopes relevant for vaccine development.  相似文献   

8.
Invariant NK T (iNKT) cells regulate immune responses, express NK cell markers and an invariant TCR, and recognize lipid Ags in a CD1d-restricted manner. Previously, we reported that activation of iNKT cells by alpha-galactosylceramide (alpha-GalCer) protects against type 1 diabetes (T1D) in NOD mice via an IL-4-dependent mechanism. To further investigate how iNKT cells protect from T1D, we analyzed whether iNKT cells require the presence of another subset(s) of regulatory T cells (Treg), such as CD4+ CD25+ Treg, for this protection. We found that CD4+ CD25+ T cells from NOD.CD1d(-/-) mice deficient in iNKT cell function similarly in vitro to CD4+ CD25+ T cells from wild-type NOD mice and suppress the proliferation of NOD T responder cells upon alpha-GalCer stimulation. Cotransfer of NOD diabetogenic T cells with CD4+ CD25+ Tregs from NOD mice pretreated with alpha-GalCer demonstrated that activated iNKT cells do not influence the ability of T(regs) to inhibit the transfer of T1D. In contrast, protection from T1D mediated by transfer of activated iNKT cells requires the activity of CD4+ CD25+ T cells, because splenocytes pretreated with alpha-GalCer and then inactivated by anti-CD25 of CD25+ cells did not protect from T1D. Similarly, mice inactivated of CD4+ CD25+ T cells before alpha-GalCer treatment were also not protected from T1D. Our data suggest that CD4+ CD25+ T cells retain their function during iNKT cell activation, and that the activity of CD4+ CD25+ Tregs is required for iNKT cells to transfer protection from T1D.  相似文献   

9.
We have used TCR transgenic mice directed to different MHC class II-restricted determinants from the influenza virus hemagglutinin (HA) to analyze how specificity for self-peptides can shape CD4+CD25+ regulatory T (Treg) cell formation. We show that substantial increases in the number of CD4+CD25+ Treg cells can occur when an autoreactive TCR directed to a major I-E(d)-restricted determinant from HA develops in mice expressing HA as a self-Ag, and that the efficiency of this process is largely unaffected by the ability to coexpress additional TCR alpha-chains. This increased formation of CD4+CD25+ Treg cells in the presence of the self-peptide argues against models that postulate selective survival rather than induced formation as mechanisms of CD4+CD25+ Treg cell formation. In contrast, T cells bearing a TCR directed to a major I-A(d)-restricted determinant from HA underwent little or no selection to become CD4+CD25+ Treg cells in mice expressing HA as a self-Ag, correlating with inefficient processing and presentation of the peptide from the neo-self-HA polypeptide. These findings show that interactions with a self-peptide can induce thymocytes to differentiate along a pathway to become CD4+CD25+ Treg cells, and that peptide editing by DM molecules may help bias the CD4+CD25+ Treg cell repertoire away from self-peptides that associate weakly with MHC class II molecules.  相似文献   

10.
We previously demonstrated that cultures of rat uveitogenic T cells rapidly become dominated by CD4+ cells, but activation of CD8+ autoreactive T cells also occurred during the in vitro culture of in vivo-primed T cells. In the present study, we show that the commonly used uveitogenic peptide, interphotoreceptor retinoid-binding protein (IRBP) 1-20, generated both CD4+ and CD8+ autoreactive T cells in the C57BL/6 (B6) mouse and that this 20-mer contains at least two distinct antigenic epitopes. To determine whether the CD8 response was Ag-specific and whether CD4+ and CD8+ IRBP1-20-specific T cells recognize distinct antigenic epitopes, we prepared highly purified CD4+ and CD8+ T cells from IRBP1-20-primed mice and tested their proliferative response to a large panel of truncated peptides derived from IRBP1-20. The results showed that both CD4+ and CD8+ T cells recognized the same spectrum of peptides. In addition, peptides P10-18 were found to bind effectively to CD8+ IRBP1-20-specific T cells when complexed with recombinant H-2K(b) and also stimulate the proliferation and cytokine production of CD4+ IRBP1-20-specific T cells. Our results document for the first time that CD8+ and CD4+ autoreactive T cells display characteristic epitope recognition and they both recognize the same core epitope.  相似文献   

11.
Every person harbors a population of potentially self-reactive lymphocytes controlled by tightly balanced tolerance mechanisms. Failures in this balance evoke immune activation and autoimmunity. In this study, we investigated the contribution of self-reactive CD8(+) T lymphocytes to chronic pulmonary inflammation and a possible role for naturally occurring CD4(+)CD25(+)Foxp3(+) regulatory T cells (nTregs) in counterbalancing this process. Using a transgenic murine model for autoimmune-mediated lung disease, we demonstrated that despite pulmonary inflammation, lung-specific CD8(+) T cells can reside quiescently in close proximity to self-antigen. Whereas self-reactive CD8(+) T cells in the inflamed lung and lung-draining lymph nodes downregulated the expression of effector molecules, those located in the spleen appeared to be partly Ag-experienced and displayed a memory-like phenotype. Because ex vivo-reisolated self-reactive CD8(+) T cells were very well capable of responding to the Ag in vitro, we investigated a possible contribution of nTregs to the immune control over autoaggressive CD8(+) T cells in the lung. Notably, CD8(+) T cell tolerance established in the lung depends only partially on the function of nTregs, because self-reactive CD8(+) T cells underwent only biased activation and did not acquire effector function after nTreg depletion. However, although transient ablation of nTregs did not expand the population of self-reactive CD8(+) T cells or exacerbate the disease, it provoked rapid accumulation of activated CD103(+)CD62L(lo) Tregs in bronchial lymph nodes, a finding suggesting an adaptive phenotypic switch in the nTreg population that acts in concert with other yet-undefined mechanisms to prevent the detrimental activation of self-reactive CD8(+) T cells.  相似文献   

12.
Class I MHC tetramers have proven to be invaluable tools for following and deciphering the CD8(+) T cell response, but the development of similar reagents for detection of CD4(+) T cells based on class II MHC proteins has been more difficult. We evaluated fluorescent streptavidin-based oligomers of HLA-DR1 for use as reagents to analyze Ag-specific human CD4(+) T cells. Staining was blocked at low temperatures and by drugs that disrupt microfilament formation and endocytosis. Cell-associated MHC oligomers were resistant to a surface stripping protocol and were observed by microscopy in intracellular compartments. This behavior indicates that detection of CD4(+) T cells using class II MHC oligomers can depend on an active cellular process in which T cells cluster and/or endocytose their Ag receptors. T cells of identical specificity but in different activation states varied greatly in their ability to be detected by class II MHC oligomers.  相似文献   

13.
14.
Broad T cell depletion has been used as an integral part of treatment in transplantation and autoimmune diseases. Following depletion, residual T cells undergo homeostatic proliferation and convert to memory-like T cells. In this study, we investigated the effect of T cell depletion by antilymphocyte serum (ALS), a polyclonal anti-T cell Ab, on CD4(+) regulatory T cells. After ALS treatment, CD4(+)CD25(+) T cells underwent proliferation and expressed a memory T cell marker, CD44. One week after ALS treatment, both CD25(+) and CD25(-) T cells exhibited increased suppression of alloresponses in vitro, which waned thereafter to the levels mediated by naive CD25(+) and CD25(-) T cells. By real-time PCR analyses, ALS treatment of CD4-deficient mice adoptively transferred with Thy1.2(+)CD4(+)CD25(+)Foxp3(+) and Thy1.1(+)CD4(+)CD25(-)Foxp3(-) T cells resulted in the appearance of Thy1.2(+)CD4(+)CD25(-)Foxp3(+) and Thy1.1(+)CD4(+)CD25(+)Foxp3(+) T cells, suggesting the conversion between CD25(+) and CD25(-) T cells. Naive CD25(+) T cells expressed a higher level of intracellular Bcl-x(L) than CD25(-) T cells. Up-regulation of the Bcl-x(L) molecule during ALS-induced homeostatic expansion further promoted survival of CD25(+) and, to a lessor degree, CD25(-) cells. These results indicate that CD25(+) T cells are spared from ALS-mediated deletion, with some CD25(+) T cells converting to CD25(-) T cells, and continue to exhibit regulatory activity. The concomitant presence of T cell deletion and continuous regulatory T cell activity may underlie the therapeutic effect of ALS, particularly in treatment of autoimmune diseases.  相似文献   

15.
16.
Memory CD4 T-cell responses against respiratory syncytial virus (RSV) were evaluated in peripheral blood mononuclear cells of healthy blood donors with gamma interferon enzyme-linked immunospot (Elispot) assays. RSV-specific responses were detected in every donor at levels varying between 0.05 and 0.3% of CD4 T cells. For all donors tested, a considerable component of the CD4 T-cell response was directed against the fusion (F) protein of RSV. We characterized a set of 31 immunodominant antigenic peptides targeted by CD4 T cells in the context of the most prevalent HLA class II molecules within the Caucasian population. Most antigenic peptides were HLA-DR restricted, whereas two dominant DQ peptides were also identified. The antigenic peptides identified were located across the entire sequence of the F protein. Several peptides were presented by more than one major histocompatibility complex class II molecule. Furthermore, most donors recognized several F peptides. Detailed knowledge about immunodominant antigenic peptides will facilitate the ability to monitor CD4 T-cell responses in patients and the measurement of correlates of protection in vaccinated subjects.  相似文献   

17.
CD8(+) T cells provide broad immunity to viruses, because they are able to recognize all types of viral proteins. Therefore, the development of vaccines capable of inducing long-lived memory CD8(+) T cells is desired to prevent diseases, especially those for which no vaccines currently exist. However, in designing CD8(+) T cell vaccines, the role of CD4(+) T cells in the induction and maintenance of memory CD8(+) T cells remains uncertain. In the present study, the necessity or not of CD4(+) T cells in the induction and maintenance of memory CD8(+) T cells was investigated in mice immunized with liposome-coupled CTL epitope peptides. When OVA-derived CTL epitope peptides were chemically coupled to the surfaces of liposomes and inoculated into mice, both primary and secondary CTL responses were successfully induced. The results were further confirmed in CD4(+) T cell-eliminated mice, suggesting that CD4(+) T cells were not required for the generation of memory CD8(+) T cells in the case of immunization with liposome-coupled peptides. Thus, surface-linked liposomal antigens, capable of inducing long-lived memory CD8(+) T cells without the contribution of CD4(+) T cells, might be applicable for the development of vaccines to prevent viral infection, especially for those viruses that evade humoral immunity by varying their surface proteins, such as influenza viruses, HIV, HCV, SARS coronaviruses, and Ebola viruses.  相似文献   

18.
Previously we have shown that CD8(+) T cells are critical for containment of simian immunodeficiency virus (SIV) viremia and that rapid and profound depletion of CD4(+) T cells occurs in the intestinal tract of acutely infected macaques. To determine the impact of SIV-specific CD8(+) T-cell responses on the magnitude of the CD4(+) T-cell depletion, we investigated the effect of CD8(+) lymphocyte depletion during primary SIV infection on CD4(+) T-cell subsets and function in peripheral blood, lymph nodes, and intestinal tissues. In peripheral blood, CD8(+) lymphocyte-depletion changed the dynamics of CD4(+) T-cell loss, resulting in a more pronounced loss 2 weeks after infection, followed by a temporal rebound approximately 2 months after infection, when absolute numbers of CD4(+) T cells were restored to baseline levels. These CD4(+) T cells showed a markedly skewed phenotype, however, as there were decreased levels of memory cells in CD8(+) lymphocyte-depleted macaques compared to controls. In intestinal tissues and lymph nodes, we observed a significantly higher loss of CCR5(+) CD45RA(-) CD4(+) T cells in CD8(+) lymphocyte-depleted macaques than in controls, suggesting that these SIV-targeted CD4(+) T cells were eliminated more efficiently in CD8(+) lymphocyte-depleted animals. Also, CD8(+) lymphocyte depletion significantly affected the ability to generate SIV Gag-specific CD4(+) T-cell responses and neutralizing antibodies. These results reemphasize that SIV-specific CD8(+) T-cell responses are absolutely critical to initiate at least partial control of SIV infection.  相似文献   

19.
20.
During activation in vivo, naive CD4(+) T cells are exposed to various endogenous ligands, such as cytokines and the neurotransmitter norepinephrine (NE). To determine whether NE affects naive T cell differentiation, we used naive CD4(+) T cells sort-purified from either BALB/c or DO11.10 TCR-transgenic mouse spleens and activated these cells with either anti-CD3/anti-CD28 mAbs or APC and OVA(323-329) peptide, respectively, under Th1-promoting conditions. RT-PCR and functional assays using selective adrenergic receptor (AR) subtype antagonists showed that naive CD4(+) T cells expressed only the beta 2AR subtype to bind NE and that stimulation of this receptor generated Th1 cells that produced 2- to 4-fold more IFN-gamma. This increase was due to more IFN-gamma produced per cell upon restimulation instead of more IFN-gamma-secreting cells, as determined by IFN-gamma-specific immunofluorescence and enzyme-linked immunospot. In contrast, Th1 cell differentiation was unaffected when naive T cells were exposed to NE and activated either in the presence of a neutralizing anti-IL-12 mAb or by APC from IL-12-deficient mice. Moreover, the addition of IL-12 to the IL-12-deficient APC cultures restored the ability of NE to increase Th1 differentiation. Taken together, these results indicate that a possible link may exist between the signaling pathways used by NE and IL-12 to increase naive CD4(+) T cell differentiation to a Th1 cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号