首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
pp60v-src tyrosine protein kinase was suggested to interact with Ca2+-bound calmodulin (Ca2+/CaM) through the N-terminal region based on its structural similarities to CAP-23/NAP-22, a myristoylated neuron-specific protein, whose myristoyl group is essential for interaction with Ca2+/CaM; (1) the N terminus of pp60v-src is myristoylated like CAP-23/NAP-22; (2) both lysine residues are required for the myristoylation-dependent interaction and serine residues that are thought to regulate the interaction through the phosphorylations located in the N-terminal region of pp60v-src. To verify this possibility, we investigated the direct interaction between pp60v-src and Ca2+/CaM using a myristoylated peptide corresponding to the N-terminal region of pp60v-src. The binding assay indicated that only the myristoylated peptide binds to Ca2+/CaM, and the non-myristoylated peptide is not able to bind to Ca2+/CaM. Analyses of the binding kinetics revealed two independent reactions with the dissociation constants (KD) of 2.07 x 10(-9)M (KD1) and 3.93 x 10(-6)M (KD2), respectively. Two serine residues near the myristoyl moiety of the peptide (Ser2, Ser11) were phosphorylated by protein kinase C in vitro, and the phosphorylation drastically reduced the interaction. NMR experiments indicated that two molecules of the myristoylated peptide were bound around the hydrophobic clefts of a Ca2+/CaM molecule. The small-angle X-ray scattering analyses showed that the size of the peptide-Ca2+/CaM complex is 2-3A smaller than that of the known Ca2+/CaM-target molecule complexes. These results demonstrate clearly the direct interaction between pp60v-src and Ca2+/CaM in a novel manner different from that of known Ca2+/CaM, the target molecules, interactions.  相似文献   

2.
Heller WT  Krueger JK  Trewhella J 《Biochemistry》2003,42(36):10579-10588
We have gained new insight into the interactions between the second-messenger protein calmodulin (CaM) and myosin light chain kinase from skeletal muscle (skMLCK) using small-angle solution scattering and shape restoration. Specifically, we explored the nature of a 2Ca(2+)-CaM-skMLCK complex and compared it to a 4Ca(2+)-CaM-skMLCK complex under the same conditions. The 2Ca(2+) complex has been proposed to be physiologically relevant. To aid in the interpretation of the data, we developed a shape restoration approach, implemented in GA_STRUCT, that combines many of the best features of other available methods into a single, automated package. Importantly, GA_STRUCT explicitly addresses the problem of the existence of multiple solutions to the inverse scattering problem and produces a consensus envelope from a set of shapes that fit the input intensity. Small-angle scattering intensity profiles measured or calculated from known structures were used to test GA_STRUCT, which was then used to generate low-resolution models for three complexes: 2Ca(2+)-CaM-skMLCK, 4Ca(2+)-CaM-skMLCK, and 4Ca(2+)-CaM-skMLCK with a bound substrate. These models were used in conjunction with high-resolution structures of the protein components to better understand the interactions among them. In the case of the 2Ca(2+)-CaM-skMLCK complex, the consensus envelope is consistent with CaM in a fully collapsed state with its two globular lobes in close contact with each other while the catalytic cleft of the kinase is open. The consensus envelope for the 4Ca(2+)-CaM-skMLCK complex indicates that the collapsed CaM has swung further away from the open catalytic cleft of the skMLCK than in the 2Ca(2+) complex, and further that substrate binding to this complex results in closure of the kinase catalytic cleft, in agreement with previous neutron scattering results. These results indicate that activation of MLCK by CaM can only occur once CaM is fully translocated away from the catalytic cleft, which is presumably linked to full release of the pseudo-substrate/inhibitory sequence. Our scattering data indicate that this step is completed only when all four calcium binding sites are loaded.  相似文献   

3.
In addition to physical properties (DeRemer, M. F., Saeli, R. J., and Edelman, A. M. (1992) J. Biol. Chem. 267, 13460-13465), enzymatic and regulatory characteristics indicate that calmodulin (CaM) kinase Ia and CaM kinase Ib are distinct entities. The Km values for ATP and site 1 peptide were similar between the two kinases, however, CaM kinase Ib is approximately 20-fold more sensitive to CaM than is CaM kinase Ia. The kinases also displayed differential sensitivities to divalent metal ions. For both kinases, site 1 peptide, synapsin I, and syntide-2 were highly preferred substrates relative to others tested. A 72-kDa protein from a heat-treated extract of rat pancreas was phosphorylated by CaM kinase Ib but not by CaM kinase Ia. CaM kinase Ia activity displayed a pronounced lag in its time course suggesting enzyme activation over time. Preincubation of CaM kinase Ia in the combined presence of Ca(2+)-CaM and MgATP led to a time-dependent increase in its site 1 peptide kinase activity of up to 15-fold. The extent of activation of CaM kinase Ia correlated with the extent of autophosphorylation. The enzyme retained full Ca(2+)-CaM dependence in the activated state which was rapidly reversible by treatment with protein phosphatase 2A catalytic subunit. Thus, the activation of CaM kinase Ia is a result of its Ca(2+)-CaM-dependent autophosphorylation. CaM kinase Ib was not activated by preincubation under autophosphorylating conditions yet lost approximately 90% of its activity toward either an exogenous substrate (site 1 peptide) or itself (autophosphorylation) after incubation with protein phosphatase 2A catalytic subunit. The deactivated state was not reversed by subsequent incubations under autophosphorylating conditions. Thus, CaM kinase Ib activity is dependent upon phosphorylation by a regulating kinase(s) which is resolved from CaM kinase Ib during purification of the latter.  相似文献   

4.
Ma L  Liang S  Jones RL  Lu YT 《Plant physiology》2004,135(3):1280-1293
A cDNA encoding a calcium (Ca2+)/calmodulin (CaM)-dependent protein kinase (CaMK) from tobacco (Nicotiana tabacum), NtCaMK1, was isolated by protein-protein interaction-based screening of a cDNA expression library using 35S-labeled CaM as a probe. The genomic sequence is about 24.6 kb, with 21 exons, and the full-length cDNA is 4.8 kb, with an open reading frame for NtCaMK1 consisting of 1,415 amino acid residues. NtCaMK1 has all 11 subdomains of a kinase catalytic domain, lacks EF hands for Ca2+-binding, and is structurally similar to other CaMKs in mammal systems. Biochemical analyses have identified NtCaMK1 as a Ca2+/CaMK since NtCaMK1 phosphorylated itself and histone IIIs as substrate only in the presence of Ca2+/CaM with a Km of 44.5 microm and a Vmax of 416.2 nm min(-1) mg(-1). Kinetic analysis showed that the kinase not previously autophosphorylated had a Km for the synthetic peptide syntide-2 of 22.1 microm and a Vmax of 644.1 nm min(-1) mg(-1) when assayed in the presence of Ca2+/CaM. Once the autophosphorylation of NtCaMK1 was initiated, the phosphorylated form displayed Ca2+/CaM-independent behavior, as many other CaMKs do. Analysis of the CaM-binding domain (CaMBD) in NtCaMK1 with truncated and site-directed mutated forms defined a stretch of 20 amino acid residues at positions 913 to 932 as the CaMBD with high CaM affinity (Kd = 5 nm). This CaMBD was classified as a 1-8-14 motif. The activation of NtCaMK1 was differentially regulated by three tobacco CaM isoforms (NtCaM1, NtCaM3, and NtCaM13). While NtCaM1 and NtCaM13 activated NtCaMK1 effectively, NtCaM3 did not activate the kinase.  相似文献   

5.
Death-associated protein kinase is a calcium/calmodulin serine/threonine kinase, which positively mediates programmed cell death in a variety of systems. Here we addressed its mode of regulation and identified a mechanism that restrains its apoptotic function in growing cells and enables its activation during cell death. It involves autophosphorylation of Ser(308) within the calmodulin (CaM)-regulatory domain, which occurs at basal state, in the absence of Ca(2+)/CaM, and is inversely correlated with substrate phosphorylation. This type of phosphorylation takes place in growing cells and is strongly reduced upon their exposure to the apoptotic stimulus of C(6)-ceramide. The substitution of Ser(308) to alanine, which mimics the ceramide-induced dephosphorylation at this site, increases Ca(2+)/CaM-independent substrate phosphorylation as well as binding and overall sensitivity of the kinase to CaM. At the cellular level, it strongly enhances the death-promoting activity of the kinase. Conversely, mutation to aspartic acid reduces the binding of the protein to CaM and abrogates almost completely the death-promoting function of the protein. These results are consistent with a molecular model in which phosphorylation on Ser(308) stabilizes a locked conformation of the CaM-regulatory domain within the catalytic cleft and simultaneously also interferes with CaM binding. We propose that this unique mechanism of auto-inhibition evolved to impose a locking device, which keeps death-associated protein kinase silent in healthy cells and ensures its activation only in response to apoptotic signals.  相似文献   

6.
Human Ca(2+)-calmodulin (CaM) dependent protein kinase I (CaMKI) encodes a 370 amino acid protein with a calculated M(r) of 41,337. The 1.5 kb CaMKI mRNA is expressed in many different human tissues and is the product of a single gene located on human chromosome 3. CaMKI 1-306, was unable to bind Ca(2+)-CaM and was completely inactive thereby defining an essential component of the CaM-binding domain to residues C-terminal to 306. CaMKI 1-294 did not bind CaM but was fully active in the absence of Ca(2+)-CaM, indicating that residues 295-306 are sufficient to maintain CaMKI in an auto-inhibited state. CaMKI was phosphorylated on Thr177 and its activity enhanced approximately 25-fold by CaMKI kinase in a Ca(2+)-CaM dependent manner. Replacement of Thr177 with Ala or Asp prevented both phosphorylation and activation by CaMKI kinase and the latter replacement also led to partial activation in the absence of CaMKI kinase. Whereas CaMKI 1-306 was unresponsive to CaMKI kinase, the 1-294 mutant was phosphorylated and activated by CaMKI kinase in both the presence and absence of Ca(2+)-CaM although at a faster rate in its presence. These results indicate that the auto-inhibitory domain in CaMKI gates, in a Ca(2+)-CaM dependent fashion, accessibility of both substrates to the substrate binding cleft and CaMKI kinase to Thr177. Additionally, CaMKI kinase responds directly to Ca(2+)-CaM with increased activity.  相似文献   

7.
Regulatory mechanisms of rat brain Ca2+/calmodulin-dependent protein kinase II (CaM-kinase II) were probed using a synthetic peptide (CaMK-(281-309] corresponding to residues 281-309 (alpha-subunit) which contained the calmodulin (CaM)-binding and inhibitory domains and also the initial autophosphorylation site (Thr286). Kinetic analyses indicated that inhibition of a completely Ca2+/CaM-independent form of CaM-kinase II by CaMK-(281-309) was noncompetitive with respect to peptide substrate (syntide-2) but was competitive with respect to ATP. Interaction of CaMK-(281-309) with the ATP-binding site was independently confirmed since inactivation of proteolyzed CaM-kinase II by phenylglyoxal (t1/2 = 7 min) was blocked by ATP analog plus Mg2+ or by CaMK-(281-309). In the presence of Ca2+/CaM, CaMK-(281-309) no longer protected against phenylglyoxal inactivation, consistent with our previous observations (Colbran, R.J., Fong, Y.-L., Schworer, C.M., and Soderling, T.R. (1988) J. Biol. Chem. 263, 18145-18151) that binding of Ca2+/CaM to CaMK-(281-309) 1) blocks its inhibitory property, and 2) enhances its phosphorylation at Thr 286. The present study also showed that phosphorylation of CaMK-(281-309) decreased its inhibitory potency at least 10-fold without affecting its Ca2+/CaM-binding ability. Thus, CaM-kinase II is inactive in the absence of Ca2+/CaM because an inhibitory domain within residues 281-309 interacts with the catalytic domain and blocks ATP binding. Autophosphorylation of Thr286 results in a Ca2+/CaM-independent form of the kinase by disrupting the inhibitory interaction with the catalytic domain.  相似文献   

8.
H Tokumitsu  M Iwabu  Y Ishikawa  R Kobayashi 《Biochemistry》2001,40(46):13925-13932
We have previously demonstrated that the alpha isoform of Ca(2+)/calmodulin-dependent protein kinase kinase (CaM-KKalpha) is strictly regulated by an autoinhibitory mechanism and activated by the binding of Ca(2+)/CaM [Tokumitsu, H., Muramatsu, M., Ikura, M., and Kobayashi, R. (2000) J. Biol. Chem. 275, 20090-20095]. In this study, we find that rat brain extract contains Ca(2+)/CaM-independent CaM-KK activity. This result is consistent with an enhanced Ca(2+)/CaM-independent activity (60-70% of total activity) observed with the recombinant CaM-KKbeta isoform. By using various truncation mutants of CaM-KKbeta, we have identified a region of 23 amino acids (residues 129-151) located at the N-terminus of the catalytic domain as an important regulatory element of the autonomous activity. A CaM-KKbeta deletion mutant of this domain shows a significant increase of Ca(2+)/CaM dependency for the CaM-KK activity as well as for the autophosphorylation activity. The activities of CaM-KKalpha and CaM-KKbeta chimera, in which autoinhibitory sequences were replaced by each other, were completely dependent on Ca(2+)/CaM, suggesting that the autoinhibitory regions of CaM-KKalpha and CaM-KKbeta are functional. These results establish for the first time that residues 129-151 of CaM-KKbeta participate in the release of the autoinhibitory domain from its catalytic core, resulting in generation of autonomous activity.  相似文献   

9.
A number of elongation factor-2 kinase (eEF-2K) mutants were constructed to investigate features of this kinase that may be important in its activity. Typical protein kinases possess a highly conserved lysine residue in subdomain II which follows the GXGXXG motif of subdomain I. Mutation of two lysine residues, K340 and K346, which follow the GXGXXG motif in eEF-2K had no effect on activity, showing that such a lysine residue is not important in eEF-2K activity. Mutation of a conserved pair of cysteine residues C-terminal to the GXGXXG sequence, however, completely inactivated eEF-2K. The eEF-2K CaM binding domain was localised to residues 77-99 which reside N-terminal to the catalytic domain. Tryptophan 84 is an important residue within this domain as mutation of this residue completely abolishes CaM binding and eEF-2K activity. Removal of approximately 130 residues from the C-terminus of eEF-2K completely abolished autokinase activity; however, removal of only 19 residues inhibited eEF-2 kinase activity but not autokinase activity, suggesting that a short region at the C-terminal end may be important in interacting with eEF-2. Likewise, removal of between 75 and 100 residues from the N-terminal end completely abolished eEF-2K activity.  相似文献   

10.
Chin D  Schreiber JL  Means AR 《Biochemistry》1999,38(46):15061-15069
Segments of the autoregulatory domain of MK, a catalytically active fragment of the monomeric smooth muscle myosin light chain kinase (smMLCK) (residues 472-972), were replaced with their counterparts from a homologous but multimeric enzyme, calmodulin-dependent protein kinase II (CaM KII). Chimeric proteins in which both the autoregulatory and oligomerization domains of CaM KII (residues 281-478) were substituted for residues 781-972 of smMLCK, MK(CK281-478), or only the autoregulatory domain of CaM KII (residues 281-315) was exchanged for residues 781-813 of smMLCK, MK(CK281-315), exhibited significant enzymatic activity in the absence of Ca(2+)/CaM. In contrast, both MK and a chimeric protein in which the C-terminal half of the autoregulatory domain of smMLCK was replaced with CaM KII residues 301-315, MK(CK301-315), were inactive in the absence of Ca(2+)/CaM. These results indicate that the sequence of the N-terminal half of the autoregulatory domain of smMLCK is important for complete autoinhibition of its enzymatic activity. All proteins bound to Ca(2+)/CaM, and the chimeric proteins MK(CK281-478) and MK(CK281-315) were activated by Ca(2+)/CaM with activation constants (K(CaM)) and maximal enzymatic activities comparable to those of the wild-type MK enzyme. This demonstrates that the entire autoregulatory domain of CaM KII can replace that of smMLCK in its ability to promote efficient CaM-dependent activation of the smMLCK enzyme. However, the inability of the chimeric protein MK(CK301-315) to be activated by Ca(2+)/CaM suggests that replacement of only the C-terminal half of the autoregulatory domain of smMLCK, while still retaining the ability to bind Ca(2+)/CaM, also substitutes residues that prevent activation of the enzyme by Ca(2+)/CaM.  相似文献   

11.
The Cdc2 protein kinase requires cyclin binding for activity and also binds to a small protein, Suc1. Charged-to-alanine scanning mutagenesis of Cdc2 was used previously to localize cyclin A- and B- and Suc1-binding sites (B. Ducommun, P. Brambilla, and G. Draetta, Mol. Cell. Biol. 11:6177-6184, 1991). Those sites were mapped by building a Cdc2 model based on the crystallographic coordinates of the catalytic subunit of cyclic AMP-dependent protein kinase (cAPK) (D. R. Knighton, J. Zheng, L. F. Ten Eyck, V. A. Ashford, N.-H. Xuong, S. S. Taylor, and J. M. Sowadski, Science 253:407-414, 1991). On the basis of this model, additional mutations were made and tested for cyclin A and Suc1 binding and for kinase activity. Mutations that interfere with cyclin A binding are localized primarily on the small lobe near its interface with the cleft and include an acidic patch on the B helix and R-50 in the highly conserved PSTAIRE sequence. Two residues in the large lobe, R-151 and T-161, influence cyclin binding, and both are at the surface of the cleft near its interface with the PSTAIRE motif. Cyclin-dependent phosphorylation of T-161 in Cdc2 is essential for activation, and the model provides insights into the importance of this site. T-161 is equivalent to T-197, a stable phosphorylation site in cAPK. On the basis of the model, cyclin binding very likely alters the surface surrounding T-161 to allow for T-161 phosphorylation. The two major ligands to T-197 in cAPK are conserved as R-127 and R-151 in Cdc2. The equivalent of the third ligand, H-87, is T-47 in the PSTAIRE sequence motif. Once phosphorylated, T-161 is predicted to play a major structural role in Cdc2, comparable to that of T-197 in cAPK, by assembling the active conformation required for peptide recognition. The inhibitory phosphorylation at Y-15 also comes close to the cleft interface and on the basis of this model would disrupt the cleft interface and the adjacent peptide recognition site rather than prevent ATP binding. In contrast to cyclin A, both lobes influence Suc1 binding; however, the Suc1-binding sites are far from the active site. Several mutants map to the surface in cAPK, which is masked in part by the N-terminal 40 residues that lie outside the conserved catalytic core. The other Suc1-binding site maps to the large lobe near a 25-residue insert and includes R-215.  相似文献   

12.
Ca2+/calmodulin-dependent protein kinase (Ca2+/CaM kinase I), which phosphorylates site I of synapsin I, has been highly purified from bovine brain. The physical properties and substrate specificity of Ca2+/CaM kinase I were distinct from those of all other known Ca2+/CaM kinases. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the purified enzyme preparation consisted of two major polypeptides of Mr 37,000 and 39,000 and a minor polypeptide of Mr 42,000. In the presence of Ca2+ and calmodulin (CaM), all three polypeptides bound CaM, were autophosphorylated on threonine residues, and were labeled by the photoaffinity label 8-azido-ATP. Peptide maps of the three autophosphorylated polypeptides were very similar. The Stokes radius and the sedimentation coefficient of the enzyme were, respectively, 31.8 A and 3.25 s. A molecular weight of 42,400 and a frictional ratio of 1.38 were calculated from the above values, suggesting that Ca2+/CaM kinase I is a monomer. It is possible that the polypeptides of lower molecular weight are derived from the polypeptide of Mr 42,000 by proteolysis; alternatively, the polypeptides may represent isozymes of Ca2+/CaM kinase I. Synapsin I (site I) was the best substrate tested (Km, 2-4 microM) for Ca2+/CaM kinase I. Of many additional proteins tested, only protein III (a phosphoprotein related to synapsin I) and smooth muscle myosin light chain were phosphorylated. Ca2+/CaM kinase I was found in highest concentration in brain, where it showed widespread regional and subcellular distributions. In addition, the enzyme had a widespread and predominantly cytosolic tissue distribution. The widespread neuronal and tissue distribution of Ca2+/CaM kinase I suggests that other substrates might exist for this enzyme in both neuronal and non-neuronal tissues.  相似文献   

13.
The molecular conformation of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) from the rat forebrain and cerebellum was studied by means of EM using a quick-freezing technique. Each molecule appeared to be composed of two kinds of particles, with one larger central particle and smaller peripheral particles and had shapes resembling that of a flower with 8 or 10 "petals". A favorable shadowing revealed that each peripheral particle had a thin link to the central particle. We predicted that the 8-petal molecules and 10-petal molecules were octamers and decamers of CaM kinase II subunits, respectively, each assembled with the association domains of subunits gathered in the center, and the catalytic domains in the peripheral particles. Binding of antibodies to the enzyme molecules suggested that molecules with 8 and 10 peripheral particles were homopolymers composed only of beta subunit and of alpha subunit, respectively, specifying that CaM kinase II consists of homopolymer of either alpha or beta subunits.  相似文献   

14.
Ca(2+)/calmodulin-dependent protein kinase kinase (CaM-KK) is a novel member of the CaM kinase family, which specifically phosphorylates and activates CaM kinase I and IV. In this study, we characterized the CaM-binding peptide of alphaCaM-KK (residues 438-463), which suppressed the activity of constitutively active CaM-KK (84-434) in the absence of Ca(2+)/CaM but competitively with ATP. Truncation and site-directed mutagenesis of the CaM-binding region in CaM-KK reveal that Ile(441) is essential for autoinhibition of CaM-KK. Furthermore, CaM-KK chimera mutants containing the CaM-binding sequence of either myosin light chain kinases or CaM kinase II located C-terminal of Leu(440), exhibited enhanced Ca(2+)/CaM-independent activity (60% of total activity). Although the CaM-binding domains of myosin light chain kinases and CaM kinase II bind to the N- and C-terminal domains of CaM in the opposite orientation to CaM-KK (Osawa, M., Tokumitsu, H., Swindells, M. B., Kurihara, H., Orita, M., Shibanuma, T., Furuya, T., and Ikura, M. (1999) Nat. Struct. Biol. 6, 819-824), the chimeric CaM-KKs containing Ile(441) remained Ca(2+)/CaM-dependent. This result demonstrates that the orientation of the CaM binding is not critical for relief of CaM-KK autoinhibition. However, the requirement of Ile(441) for autoinhibition, which is located at the -3 position from the N-terminal anchoring residue (Trp(444)) to CaM, accounts for the opposite orientation of CaM binding of CaM-KK compared with other CaM kinases.  相似文献   

15.
Among the neuronal binding partners of calmodulin (CaM) are Munc13 proteins as essential presynaptic regulators that play a key role in synaptic vesicle priming and are crucial for presynaptic short-term plasticity. Recent NMR structural investigations of a CaM/Munc13-1 peptide complex have revealed an extended structure, which contrasts the compact structures of most classical CaM/target complexes. This unusual binding mode is thought to be related to the presence of an additional hydrophobic anchor residue at position 26 of the CaM binding motif of Munc13-1, resulting in a novel 1-5-8-26 motif. Here, we addressed the question whether the 1-5-8-26 CaM binding motif is a Munc13-related feature or whether it can be induced in other CaM targets by altering the motif''s core residues. For this purpose, we chose skeletal muscle myosin light chain kinase (skMLCK) with a classical 1-5-8-14 CaM binding motif and constructed three skMLCK peptide variants mimicking Munc13-1, in which the hydrophobic anchor amino acid at position 14 was moved to position 26. Chemical cross-linking between CaM and skMLCK peptide variants combined with high-resolution mass spectrometry yielded insights into the peptides'' binding modes. This structural comparison together with complementary binding data from surface plasmon resonance experiments revealed that skMLCK variants with an artificial 1-5-8-26 motif cannot mimic CaM binding of Munc13-1. Apparently, additional features apart from the spacing of the hydrophobic anchor residues are required to define the functional 1-5-8-26 motif of Munc13-1. We conclude that Munc13 proteins display a unique CaM binding behavior to fulfill their role as efficient presynaptic calcium sensors over broad range of Ca2+ concentrations.  相似文献   

16.
The FK506-binding protein 38 (FKBP38) affects neuronal apoptosis control by suppressing the anti-apoptotic function of Bcl-2. The direct interaction between FKBP38 and Bcl-2, however, requires a prior activation of FKBP38 by the Ca2+ sensor calmodulin (CaM). Here we demonstrate for the first time that the formation of a complex between FKBP38 and CaM-Ca2+ involves two separate interaction sites, thus revealing a novel scenario of target protein regulation by CaM-Ca2+. The C-terminal FKBP38 residues Ser290-Asn313 bind to the target protein-binding cleft of the Ca2+-coordinated C-terminal CaM domain, thereby enabling the N-terminal CaM domain to interact with the catalytic domain of FKBP38 in a Ca2+-independent manner. Only the latter interaction between the catalytic FKBP38 domain and the N-terminal CaM domain activates FKBP38 and, as a consequence, also regulates Bcl-2.  相似文献   

17.
In order to identify molecular features of the calmodulin (CaM) activated adenylate cyclase of Bordetella pertussis, a truncated cya gene was fused after the 459th codon in frame with the alpha-lacZ' gene fragment and expressed in Escherichia coli. The recombinant, 604 residue long protein was purified to homogeneity by ion-exchange and affinity chromatography. The kinetic parameters of the recombinant protein are very similar to that of adenylate cyclase purified from B.pertussis culture supernatants, i.e. a specific activity greater than 2000 mumol/min mg of protein at 30 degrees C and pH 8, a KmATP of 0.6 mM and a Kd for its activator, CaM, of 0.2 nM. Proteolysis with trypsin in the presence of CaM converted the recombinant protein to a 43 kd protein with no loss of activity; the latter corresponds to the secreted form of B.pertussis adenylate cyclase. Site-directed mutagenesis of residue Trp-242 in the recombinant protein yielded mutants expressing full catalytic activity but having altered affinity for CaM. Thus, substitution of an aspartic acid residue for Trp-242 reduced the affinity of adenylate cyclase for CaM greater than 1000-fold. Substitution of a Gln residue for Lys-58 or Lys-65 yielded mutants with a drastically reduced catalytic activity (approximately 0.1% of that of wild-type protein) but with little alteration of CaM-binding. These results substantiated, at the molecular level, our previous genetic and biochemical studies according to which the N-terminal tryptic fragment of secreted B.pertussis adenylate cyclase (residues 1-235/237) harbours the catalytic site, whereas the C-terminal tryptic fragment (residues 235/237-399) corresponds to the main CaM-binding domain of the enzyme.  相似文献   

18.
Molecular dynamics studies of the N-domain (amino acids 1-77; CaM(1-77)) of Ca2+-loaded calmodulin (CaM) show that a solvent exposed hydrophobic cleft in the crystal structure of CaM exhibits transitions from an exposed (open) to a buried (closed) state over a time scale of nanoseconds. As a consequence of burying the hydrophobic cleft, the R(g) of the protein is reduced by 1.5 A. Based on this prediction, x-ray scattering experiments were conducted on this domain over a range of concentrations. Models built from the scattering data show that the R(g) and general shape is consistent with the simulation studies of CaM(1-77). Based on these observations we postulate a model in which the conformation of CaM fluctuates between two different states that expose and bury this hydrophobic cleft. In aqueous solution the closed state dominates the population, while in the presence of peptides, the open state dominates. This inherent flexibility of CaM may be the key to its versatility in recognizing structurally distinct peptide sequences. This model conflicts with the currently accepted hypothesis based on observations in the crystal structure, where upon Ca2+ binding the hydrophobic cleft is exposed to solvent. We postulate that crystal packing forces stabilize the protein conformation toward the open configuration.  相似文献   

19.
The complete amino acid sequence of the 61-kDa calmodulin-dependent, cyclic nucleotide phosphodiesterase (CaM-PDE) from bovine brain has been determined. The native protein is a homodimer of N alpha-acetylated, 529-residue polypeptide chains, each of which has a calculated molecular weight of 60,755. The structural organization of this CaM-PDE has been investigated with use of limited proteolysis and synthetic peptide analogues. A site capable of interacting with CaM has been identified, and the position of the catalytic domain has been mapped. A fully active, CaM-independent fragment (Mr = 36,000), produced by limited tryptic cleavage in the absence of CaM, represents a functional catalytic domain. N-Terminal sequence and size indicate that this 36-kDa fragment is comprised of residues 136 to approximately 450 of the CaM-PDE. This catalytic domain encompasses a approximately 250 residue sequence that is conserved among PDE isozymes of diverse size, phylogeny, and function. CaM-PDE and its PDE homologues comprise a unique family of proteins, each having a catalytic domain that evolved from a common progenitor. A search of the sequence for potential CaM-binding sites revealed only one 15-residue segment with both a net positive charge and the ability to form an amphiphilic alpha-helix. Peptide analogues that include this amphiphilic segment were synthesized. Each was found to inhibit the CaM-dependent activation of the enzyme and to bind directly to CaM with high affinity in a calcium-dependent manner. This site is among the sequences cleaved from a 45-kDa chymotryptic fragment that has the complete catalytic domain but no longer binds CaM. These results indicate that residues located between position 23 and 41 of the native enzyme contribute significantly to the binding of CaM although the involvement of residues from additional sites is not excluded.  相似文献   

20.
Calmodulin (CaM) and Ca(2+)/CaM-dependent protein kinase II (CaM kinase) are tightly associated with cardiac sarcoplasmic reticulum (SR) and are implicated in the regulation of transmembrane Ca(2+) cycling. In order to assess the importance of membrane-associated CaM in modulating the Ca(2+) pump (Ca(2+)-ATPase) function of SR, the present study investigated the effects of a synthetic, high affinity CaM-binding peptide (CaM BP; amino acid sequence, LKWKKLLKLLKKLLKLG) on the ATP-energized Ca(2+) uptake, Ca(2+)-stimulated ATP hydrolysis, and CaM kinase-mediated protein phosphorylation in rabbit cardiac SR vesicles. The results revealed a strong concentration-dependent inhibitory action of CaM BP on Ca(2+) uptake and Ca(2+)-ATPase activities of SR (50% inhibition at approximately 2-3 microM CaM BP). The inhibition, which followed the association of CaM BP with its SR target(s), was of rapid onset (manifested within 30 s) and was accompanied by a decrease in V(max) of Ca(2+) uptake, unaltered K(0.5) for Ca(2+) activation of Ca(2+) transport, and a 10-fold decrease in the apparent affinity of the Ca(2+)-ATPase for its substrate, ATP. Thus, the mechanism of inhibition involved alterations at the catalytic site but not the Ca(2+)-binding sites of the Ca(2+)-ATPase. Endogenous CaM kinase-mediated phosphorylation of Ca(2+)-ATPase, phospholamban, and ryanodine receptor-Ca(2+) release channel was also strongly inhibited by CaM BP. The inhibitory action of CaM BP on SR Ca(2+) pump function and protein phosphorylation was fully reversed by exogenous CaM (1-3 microM). A peptide inhibitor of CaM kinase markedly attenuated the ability of CaM to reverse CaM BP-mediated inhibition of Ca(2+) transport. These findings suggest a critical role for membrane-bound CaM in controlling the velocity of Ca(2+) pumping in native cardiac SR. Consistent with its ability to inhibit SR Ca(2+) pump function, CaM BP (1-2.5 microM) caused marked depression of contractility and diastolic dysfunction in isolated perfused, spontaneously beating rabbit heart preparations. Full or partial recovery of contractile function occurred gradually following withdrawal of CaM BP from the perfusate, presumably due to slow dissociation of CaM BP from its target sites promoted by endogenous cytosolic CaM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号