首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Cell development in the root apical meristem is thought to be regulated by position-dependent information, but as yet, the underlying mechanism for this remains unknown. In order to examine the potential involvement of the symplasmic transmission of positional signals, plasmodesmatal frequency and distribution was quantitatively analyzed in root apical meristem cell walls ofArabidopsis thaliana during root development. A consistent distribution pattern of plasmodesmata was observed in the root apex over four weeks. While cells within initial tiers were uniformly interconnected, more symplasmic connections between the initial tiers and their immature-cell (primary-meristem) derivatives were observed than within the initial tiers. Immature cells were connected across transverse walls by primary plasmodesmata according to a tissue-specific pattern. Cells of the immature vascular tissue and cortex had the highest plasmodesmatal frequencies, followed by the immature epidermis and root cap. Although the numbers of plasmodesmata in transverse walls (primary plasmodesmata) was reduced in all tissues as the root aged, the tissue-specific distribution remained constant. The extent of symplasmic coupling across the boundaries of each tissue appeared to be limited by fewer secondary plasmodesmata in longitudinal walls. The frequency of all plasmodesmata decreased as the root aged. The primary plasmodesmata within each tissue increased at one week and then dramatically decreased with root age; the frequency of secondary plasmodesmata in longitudinal walls also decreased, but more gradually. These findings are discussed with respect to the roles likely played by plasmodesmata in facilitating transport of position-dependent information during root development.  相似文献   

2.
B. E. S. Gunning 《Planta》1978,143(2):181-190
Plasmodesmata were counted in the longitudinal and transverse walls in developmental sequences of merophytes in roots of Azolla pinnata R.Br. The differences between certain categories of longitudinal wall were traced to factors that govern the surface area of the cell plates, the density of plasmodesmata (number per unit area of cell plate), and the amount by which each type of plate expands. No evidence for secondary augmentation of plasmodesmatal numbers after the cell-plate stage of development was found, but plasmodesmata are lost from the walls of sieve and xylem elements during their differentiation. Losses caused by cell separation occur in other tissues. The relatively high density of plasmodesmata in transverse walls is based not so much on a high density in the cell plates as on the relatively low expansion that these walls undergo. There appears to be a compensatory mechanism that relates initial plasmodesmatal density to the future expansion of the cell plate. The root shows determinate growth, the apical cell dividing about 55 times. Beginning at about the 35th division there is a progressive failure to maintain the plasmodesmatal frequencies that were developed in earlier cell divisions in the apical cell. The divisions that occur within the later-produced merophytes also show progressive diminution of plasmodesmatal numbers. The result is that the apex of the root, and particularly the apical cell, becomes more and more isolated symplastically, a phenomenon which could account for its limited lifespan and the determinate growth pattern of the root.  相似文献   

3.
M. Melkonian 《Protoplasma》1979,98(1-2):139-151
Summary The ultrastructure of the freshwater flagellateTetraselmis cordiformis Stein (Chlorophyceae) was investigated. The general morphology could be described as typical prasinophycean (Prasinophyceae sensu Christensen) and the organism shares all generic characteristics ofPlatymonas West. The flagellar apparatus has been examined in detail. The four flagella emerge from an apical trough in the theca and are arranged in a zig-zag row. They are covered by three types of scales. Four cruciate flagellar roots of compound type are present. One part is microtubular (4-2-4-2 system) and the other prominent part is fibrillar with distinctive cross striations. The four roots are short and terminate at the bottom of the apical through, where they attach the flagellar apparatus to the theca. The four-stranded root shows no changes in root tubule configuration. In addition to the cruciate root system there are two massive rhizoplasts. The rhizoplasts exhibit different striation patterns along their length. Taxonomic implications and flagellar root system structure as it relates to current theories of evolution in green algae are discussed.  相似文献   

4.
The root structure in members of the Lemnaceae is important to plant researchers, because changes during cell differentiation can more easily be monitored in short roots with determinate growth. Here, the structural organization and cellular differentiation of the root system was assessed in the highly reducedSpirodela polyrhiza. While protected by a prophyllous sheath, rapid cell division occurred in the apical and vascular regions of the immature roots. Concentric rings of endodermis with Casparian strips, cortex, and epidermis enclosed a single vascular strand. The cytoplasmic density of the cortex was high at the apex, but decreased progressively along the root. The root root cap junction, closely attached at initiation, later became a distinct boundary layer filled with fibrillar materials. Chloroplasts were well distributed. Numerous plasmodesmata indicated the likely symplastic movement of ions and metabolites in the root system as well as further into the reduced plant body. A high cytoplasmic density at the apex and extreme vacuolization along the cortex provided possible explanations for the considerable distribution of weight along the roots of the plant body. These conditions probably enable the root tip to serve as a pendulum against water motion.  相似文献   

5.
An investigation was made of the meristematic activity of the apical cell, its immediate derivatives (merophytes), and of other selected cell populations of the root of Equisetum scirpoides Michx. The plane of the first division of a derivative of the apical cell is radiallongitudinal, which provides evidence that merophytes immediately adjacent to the apical cell cannot be the ultimate root initials. The apical cell is as active mitotically in roots 20–40 mm long as it is in roots that are 0.25–1 mm in length. The mitotic activity of the apical cell and of other cell populations was determined from the mitotic index, and from determination of the durations of the cell cycle and of mitosis of the apical cell by using the colchicine method of metaphase accumulation. Microspectrophotometric measurements of DNA content indicated that there was no consistent increase in DNA (endopolyploidy) in the apical cell or in the other meristematic cells as roots increased in length. Conclusion: there is no evidence that the apical cell becomes quiescent or undergoes endopolyploidy as a root increases in length.  相似文献   

6.
The meristematic activity of the apical cell and its derivatives (merophytes) in the unbranched, determinate roots of Azolla filiculoides Lam. was investigated. The plane of division of the apical cell indicates that it is the initial of each merophyte. The division plane of each newly formed merophyte is strictly periclinal to the root surface and provides confirmation that the immediate derivatives of the apical cell cannot be the ultimate root initials. The frequency of cell division as determined by the mitotic index, and by the duration of the cell cycle as determined by the colchicine method, confirmed the meristematic activity of the apical cell. As roots increase in length, the duration of the cell cycle in the total meristem increases, with the apical cell possessing the longest cell cycle, whereas the immediate derivatives maintain approximately the same cycle duration as in shorter roots. In determinate Azolla roots, cell division appears to play a major role up to a certain root length, then increase in length is produced mainly by cell elongation.  相似文献   

7.
T. Zhu  W. J. Lucas  T. L. Rost 《Protoplasma》1998,203(1-2):35-47
Summary As a foundation for studies on directional intercellular communication and its regulation in apical development, the network of plasmodesmata inArabidopsis root apical meristems was characterized by quantitative electron microscopy and dye-coupling analysis, using symplasmic probes, and real-time imaging in confocal laser scanning microscopy. A tissue-specific plasmodesmatal network, which interconnected the cells in the root apical meristem, was characterized by the following features, (a) Plasmodesmatal distribution and density were found to be tissue-specific, (b) Primary and secondary plasmodesmata were differentially grouped and regulated. Primary plasmodesmata were formed in large numbers in the transverse walls of each tissue, and were subject to deletion during cell differentiation. Secondary plasmodesmata were mostly distributed in longitudinal walls between cell files and common walls between neighboring tissues; they also provided a symplasmic path between different initial tiers in the meristem. Small fluorescent tracers moved through the plasmodesmatal network of the root apical meristem in two distinct phases. At low concentrations molecules trafficked in a non-tissue-specific manner, whereas at higher concentrations, their distribution reflected the presence of tissue-specific movement consistent with plasmodesmatal distribution. These findings are discussed in terms of the role of tissue-specific plasmodesmatal domains in the control of root development.  相似文献   

8.
R. M. Spanswick 《Planta》1972,102(3):215-227
Summary Electrical coupling between adjacent cells of Elodea canadensis has been demonstrated using a microelectrode technique in which the membrane potentials were recorded during the passage of a current pulse from the vacuole of one cell to the external solution. The changes in membrane potential resulting from the passage of the current may be simulated by an equivalent circuit in which the tonoplast:plasmalemma:plasmodesmata resistances are in the ratio 1.0:5.6:2.2. On this basis, the specific resistances are 3.1 k cm2 for the plasmalemma, 1.0 k cm2 for the tonoplast and 0.051 k cm2 for the junction between the cells. Although the plasmodesmata permit the passage of current, it is estimated that they have a resistance about 60 times higher than would be the case if they were completely open channels. Electrical coupling has also been demonstrated between parenchymal cells in oat coleoptiles and between cortical cells in maize roots. The significance of these findings is discussed in relation to the symplastic transport of ions and other small molecules and in relation to the quantitative measurement of membrane resistance in multicellular tissue.  相似文献   

9.
Cinch is a morphogenetically active herbicide that inhibits primary root growth and induces abnormal ``nodule-like' lateral roots on Arabidopsis thaliana seedlings. Using 200 nm Cinch, the early stages of lateral root formation occurred along the apical half of the root axis; but once emerged, they were inhibited from further growth. Second-order lateral roots formed at the base of stunted first-order lateral roots after 5 days of Cinch treatment. Results from Cinch experiments suggested that pericycle cells are determined in the meristem to be potential sites of lateral root formation, and the developmental transition point between emerged lateral roots and subsequent growth is inhibited. Results using 2,4-dichlorophenoxyacetic acid and 2,3,5-triiodobenzoic acid suggest that Cinch is not a chemical analog of auxin. Received August 8, 1997; accepted February 23, 1998  相似文献   

10.
The distribution of plasmodesmata in the root tip of maize   总被引:1,自引:1,他引:0  
B. E. Juniper  P. W. Barlow 《Planta》1969,89(4):352-360
Summary The distribution of plasmodesmata in different regions of the root apex of Zea mays has been analysed from electron micrographs. There are many more plasmodesmata traversing transverse walls than across longitudinal walls in all the regions studied. When the number of plasmodesmata per unit cell volume is calculated, cells in non-dividing tissue have a considerably lower value than cells in dividing tissue. Evidence for the transport of materials between cells via plasmodesmata is summarised. If it is accepted that plasmodesmata do act as channels for intercellular communication then we believe that their pattern of distribution may be a contributory factor to the process of cell differentiation.  相似文献   

11.
Ormenese S  Havelange A  Deltour R  Bernier G 《Planta》2000,211(3):370-375
 The frequency of plasmodesmata increases in the shoot apical meristem of plants of Sinapis alba L. induced to flower by exposure to a single long day. This increase is observed within all cell layers (L1, L2, L3) as well as at the interfaces between these layers, and it occurs in both the central and peripheral zones of the shoot apical meristem. The extra plasmodesmata are formed only transiently, from 28 to 48 h after the start of the long day, and acropetally since they are detectable in L3 4 h before they are seen in L1 and L2. These observations indicate that (i) in the Sinapis shoot apical meristem at floral transition, there is an unfolding of a single field with increased plasmodesmatal connectivity, and (ii) this event is an early effect of the arrival at this meristem of the floral stimulus of leaf origin. Since (i) the wave of increased frequency of plasmodesmata is 12 h later than the wave of increased mitotic frequency (A. Jacqmard et al. 1998, Plant cell proliferation and its regulation in growth and development, pp. 67–78; Wiley), and (ii) the increase in frequency of plasmodesmata is observed in all cell walls, including in walls not deriving from recent divisions (periclinal walls separating the cell layers), it is concluded that the extra plasmodesmata seen at floral transition do not arise in the forming cell plate during mitosis and are thus of secondary origin. Received: 4 October 1999 / Accepted: 23 December 1999  相似文献   

12.
First-order branch roots of field-grown Zea mays L. were examined by optical and electron microscopy. They were small-scale versions of nodal roots except for the usual retention of a live epidermis throughout their length. The Casparian strips and suberized lamellae of hypodermis and endodermis developed closer to the root tip than reported for main roots (in the zone 0.5 to 5.5 cm from the tip for the hypodermis, and 0.5 to 4 cm for the endodermis), in branches retaining an apical meristem. The hydrophobic deposits were in place to the distal ends of determinate branches. All hydrophobic deposits were fully formed before the late metaxylem elements were mature. Gaps in the suberized lamellae of both hypodermis and endodermis may permit apoplastic diffusion of solutes through these layers. Pit frequency in the outer tangential walls of the hypodermis and endodermis was 0.3 per 100 μm2, and 0.6 to 0.7 per 100 μm2, respectively, in both branch and main roots. Numbers of plasmodesmata per pit in the branches were 60 and 30 in the hypodermis and endodermis, respectively. Water fluxes from published data were used to calculated the possible flux through plasmodesmata on a symplastic path. Values up to 0.2 pl h?1 for the hypodermis and twice this for the endodermis were obtained.  相似文献   

13.
Using Agrobacterium rhizogenes, Astragalus sinicus plants were transformed with the kidney bean pal5 gene coding for phenylalanine-ammonia lyase (PAL). The hairy root culture thus obtained manifested enhanced PAL activity and lignin content in the cell walls; in addition, the transformed cells differed from the wild-type ones in several electrophysiological indices. In particular, the diffusion component of the total membrane potential of plasmalemma increased in the pal-transformed roots. The authors presume that the volume density of the protein-related negative charge of the cytoplasm increases in the transformed root cells along with changes in the cytoplasmic pH and pCa2+, the extent of coupling of these two indices, and the hydraulic conductivity of plasmodesmata.  相似文献   

14.
Lei Ding  Jian-Kang Zhu 《Planta》1997,203(3):289-294
Arabinogalactan-proteins (AGPs) are abundant plant proteoglycans that react with (β-d-Glc)3 but not (β-d-Man)3 Yariv reagent. We report here that treatment with (β-d-Glc)3 Yariv reagent caused inhibition of root growth of Arabidopsis thaliana (L.) Heynh. seedlings. Moreover, the treated roots exhibited numerous bulging epidermal cells. Treatment with (β-d-Man)3 Yariv reagent did not have any such effects. These results indicate a role for AGPs in root growth and control of epidermal cell expansion. Because treatment with (β-d-Glc)3 Yariv reagent phenocopies the reb1 (root epidermal cell bulging) mutant of Arabidopsis, AGPs were extracted from the reb1-1 mutant and compared with those of the wild type. The reb1-1 roots contained an approximately 30% lower level of AGPs than the wild type. More importantly, while the profile of AGPs from wild-type roots showed two major peaks upon crossed electrophoresis, the profile of AGPs from reb1-1 roots exhibited only one of the major peaks. Therefore, the reb1 phenotype appears to be a result of defective or missing root AGPs. Taken together, this pharmacological and genetic evidence strongly indicates a function of AGPs in the control of root epidermal cell expansion. Received: 13 February 1997 / Accepted: 1 April 1997  相似文献   

15.
S. F. Baum  T. L. Rost 《Protoplasma》1996,192(3-4):178-188
Summary We investigated the development of the root cap and protoderm inArabidopsis thaliana root tips.A. Thaliana roots have closed apical organization with the peripheral root cap, columella root cap and protoderm developing from the dermatogen/calyptrogen histogen. The columella root cap arises from columella initials. The initials for the peripheral root cap and protoderm are arranged in a collar and the initiation event for these cells occurs in a sequential pattern that is coordinated with the columella initials. The resulting root cap appears as a series of interconnected spiraling cones. The protoderm, in three-dimensions, is a cylinder composed of cell files made up of packets of cells. The number of cell files within the protoderm cylinder increases as the root ages from one to two weeks. The coordinated division sequence of the dermatogen/calyptrogen and the increase in the number of protoderm cell files are both features of post-embryonic development within the primary root meristem.Abbreviations RCP root cap/protoderm - CI columella initial - PI protoderm initial  相似文献   

16.
T. Zhu  T. L. Rost 《Protoplasma》2000,213(1-2):99-107
Summary Plasmodesmata frequency and distribution in root cap cells ofArabidopsis thaliana root tips were characterized during four weeks after germination to understand the symplasmic control of apoptosis. Apoptotic cells in some of the root apical-meristem cells and in root cap cells were identified by the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling reaction and characterized by electron microscopy. Starting at the second week after germination, cells in the outermost layers of the root cap showed typical apoptotic features, including nuclear DNA fragmentation, chromatin condensation, cytoplasmic vacuolation, and organelle destruction. Intercellular connections, indicated by the frequency and number of plasmodesmata per cell length, were significantly reduced in the walls of outer root cap cells. This shows that cells become symplasmically isolated during the apoptosis process. In apoptotic root cap cells, the majority of nonfunctional plasmodesmata were observed to be associated with degenerated endoplasmic reticulum; this state was prior to the detection of any nuclear DNA fragmentation. Other nonfunctional plasmodesmata were sealed by heterogeneous cell wall materials. However, in immature epidermal and cortical cells in 4-week-old arrested roots the endoplasmic reticulum associated with plasmodesmata became disconnected as a result of protoplast condensation and shrinkage. No degenerated endoplasmic reticulum was observed in these cells. These observations suggest that the apoptotic processes in the root body and the root cap are different.  相似文献   

17.
Despite the high number of studies on the fine structure of brown algal cells, only limited information is available on the intercelluar transportation of molecules via plasmodesmata in brown algae. In this study, plasmodesmatal permeability of Halopteris congesta was examined by observing the translocation of microinjected fluorescent tracers of different molecular sizes. The tip region of H. congesta consists of a cylindrical apical cell, while the basal region is multiseriate. Fluorescein isothiocyanate‐dextran (FD; 3, 10, and 20 kDa) and recombinant green fluorescent protein (27 kDa) were injected into the apical cell and were observed to diffuse into the neighboring cells. FD of 40 kDa was detected only in the injected apical cell. The plasmodesmatal size exclusion limit was considered to be more than 20 kDa and less than 40 kDa. The extent of translocation of 3 and 10 kDa FD from the apical to neighboring cells 2 h postinjection was estimated based on the fluorescence intensity. It was suggested that the diffusing capacity of plasmodesmata varied according to molecular size. In order to examine acropetal and/or basipetal direction of molecular movement, 3 and 10 kDa FD were injected into the third cell from the apical cell. Successive observations indicated that the diffusion of fluorescence in the acropetal direction took longer than that in the basipetal direction. No ultrastructural difference in plasmodesmata was noted among the cross walls.  相似文献   

18.
Nutrient availability and temporal variation of physical stress are usually higher in organic soil layers than in mineral soils. Individual roots within the fine-root system adjust anatomical, morphological, and turnover characteristics to soil conditions, for example nutrient availability and physical stresses. We investigated anatomical traits, including cork formation and passage and protoxylem cell numbers, in cross-sections of individual fine roots of the conifer Chamaecyparis obtusa (Siebold & Zucc.) growing under different soil conditions. The fine-root systems in different soil layers were compared by sampling ingrowth cores buried for 1 year and filled with organic and mineral soil substrates. The number of exodermal passage cells was lower in roots from organic soils than in those from mineral soils, suggesting that apical roots tend to be more stress-tolerant in the organic layer than in mineral soils. In contrast, both root tip and specific root tip density were higher in roots from organic soils than in those from mineral soil layers. The proportion of roots with two strands of protoxylem (diarch) was greater in organic (90%) than in mineral (25%) soils. Thus, although the absorptivity of individual apical roots decreases in organic layers, the absorptivity of the entire fine-root system of C. obtusa may be increased as a result of the increase in apical root density and the proportion of ephemeral roots. We found that the fine-root system had simultaneous plasticity in density, anatomy, and architecture in response to complex soil conditions.  相似文献   

19.
The flagellar root system of zoospores in two species ofChlorosarcinopsis (C. minuta andC. spec.) has been studied in detail. The biflagellate zoospores show a cruciate root system, two of the four microtubular roots containing two microtubules, the other two four microtubules. The flagellar apparatus is otherwise identical with that ofChlamydomonas reinhardi as described byRingo (1967). Evidence is presented that the genusChlamydomonas is characterized by a bilateral symmetric root system (4-2-4-2) rather than a system with four equally numbered roots (i.e. 4-4-4-4). It is suggested that a root system with four identical cruciate roots is not present in any biflagellate algal cell. The taxonomic significance of cruciate root systems in green algae is discussed refering to the identical root systems ofChlorosarcinopsis andChlamydomonas.  相似文献   

20.
In higher plants, the root-shoot axis established during embryogenesis is extended and modified by the development of primary and lateral apical meristems. While the structure of several shoot apical meristems has been deduced by combining histological studies with clonal analysis, the application of this approach to root apical meristems has been limited by a lack of visible genetic markers. We have tested the feasibility of using a synthetic gene consisting of the maize transposable elementActivator (Ac) inserted between a 35S CaMV promoter and the coding region of a -glucuronidase (GUS) reporter gene as a means of marking cell lineages in roots. The GUS gene was activated in individual cells byAc excision, and the resulting sectors of GUS-expressing cells were detected with the histochemical stain X-Gluc. Sectors in lateral roots originated from bothAc excision in meristematic cells and from parent root sectors that bisect the founder cell population for the lateral root initial. Analysis of root tip sectors confirmed that the root cap, and root proper have separate initials. Large sectors in the body of the lateral root encompassed both cortex and vascular tissues. The number of primary initial cells predicted from the size and arrangement of the sectors observed ranged from two to four and appeared to vary between roots. We conclude that transposon-based clonal analysis using GUS expression as a genetic marker is an effective approach for deducing the functional organization of root apical meristems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号