首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Stimulation of Phosphoinositide Hydrolysis by Serotonin in C6 Glioma Cells   总被引:2,自引:3,他引:2  
5-Hydroxytryptamine (serotonin or 5-HT) stimulated the incorporation of 32Pi into phosphatidylinositol (PI) but not into polyphosphoinositides in C6 glioma cells with an EC50 of 1.2 X 10(-7) M. The phosphoinositide response was blocked by the 5-HT2 antagonists ketanserin and spiperone but inhibited only partly by methysergide and mianserin. Atropine, prazosin, and yohimbine did not block the response, whereas fluphenazine and haloperidol did so partially but also inhibited basal incorporation by approximately 30%. The 5-HT1A agonist 8-hydroxy-2(di-n-propylamino)tetralin did not cause stimulation. Incubation with 5-HT (1 microM) for 1 h increased the incorporation of [2-3H]myoinositol into all phosphoinositides but not into inositol phosphates (IPs). Li+ alone at 10 mM increased labeling in inositol bisphosphate (IP2) and trisphosphate (IP3), whereas labeling in IP and phosphoinositides remained unaltered. Addition of 5-HT had no effect on this increase. Mn2+ at 1 mM enhanced labeling in PI, PI-4-phosphate, lyso-PI, glycerophosphoinositol, and IP, but the presence of 5-HT again did not cause further stimulation. 5-HT also stimulated the release of IPs in cells prelabeled with [2-3H]myo-inositol, incubated with LiCl (10 mM) and inositol (10 mM), and then exposed to 5-HT (1 microM). Radioactivity in IP2 and IP3 was very low, was stimulated approximately 50% as early as 30 s, and remained elevated for at least 20 min. Radioactivity in IP was at least 10 times as high as in IP3 but was increased only from 3 min on with a peak at 20 min, when the elevation was approximately 40 times that in IP3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The effect of nerve growth factor on the metabolism of arachidonic acid and the hydrolysis of phosphatidylinositol in PC12 cells was examined. Addition of nerve growth factor to PC12 cells isotopically labeled with [3H]arachidonic acid caused an increased release of radioactivity. In a similar manner, treatment of PC12 cells prelabeled with [3H]inositol increased inositol monophosphate accumulation in the presence of LiCl. Stimulation of [3H]arachidonic acid release by nerve growth factor was concentration dependent, attaining a maximum at 0.5 nM. Concentrations of nerve growth factor above 0.5 nM caused less than maximal stimulation. In contrast, nerve growth factor-stimulated accumulation of [3H]inositol monophosphate exhibited a sigmoidal dose-response curve with an apparent maximum at 8 nM. Increased accumulation of [3H]inositol monophosphate could be detected as early as 60 s after nerve growth factor addition, whereas nerve growth factor-stimulated release of [3H]arachidonic acid was not observed until 5 min after nerve growth factor treatment. The nerve growth factor-stimulated release of [3H]arachidonic acid was independent of extracellular calcium concentration. Increased [3H]inositol monophosphate accumulation elicited by nerve growth factor was dependent on the presence of extracellular calcium. These results suggest that the increased metabolism of arachidonic acid and the enhanced hydrolysis of phosphatidylinositol are separately regulated by nerve growth factor.  相似文献   

3.
Acetylcholine Turnover and Compartmentation in Rat Brain Synaptosomes   总被引:2,自引:1,他引:1  
Abstract: The turnover of acetylcholine (ACh) in rat brain synaptosomes and its compartmentation in the labile bound and stable bound pools were investigated. The P2 fraction from rat brain was subjected to three sequential incubations, each terminated by centrifugation followed by determination of ACh concentrations by gas chromatography-mass spectrometry (GCMS): (1) Depletion phase: Incubation of synaptosomes at 37°C for 10 min in Na+-free buffer containing 35 mM-KCl reduced the content of both labile bound and stable bound ACh by 40%. (2) Synthesis phase: Incubation at 37°C with 2 μ M -[2H4]choline resulted in accumulation of labeled and unlabeled ACh in both compartments. Addition of an anticholinesterase had little effect on stable bound ACh but greatly increased the content of labile bound ACh. This excess accumulated ACh was probably due to inhibition of intracellular acetylcholinesterase (AChE), because negligible uptake of ACh from the medium was observed. The effects on ACh synthesis of altered cation concentrations and metabolic inhibitors were examined. (3) Release phase: The tissue was incubated in the presence of 35 mM-KCl, 40 μM-paraoxon, and 20 μM-hemicholinium-3 (HC-3) (to inhibit further synthesis of ACh). Measurements of the compartmental localization of ACh at several time points indicated that ACh was being released from the labile bound fraction. In support of this conclusion, 20 mM-Mg2+ reduced ACh release and increased the labile bound ACh concentration.  相似文献   

4.
Hydrolysis of Inositol Trisphosphate by Purified Rat Brain Myelin   总被引:1,自引:0,他引:1  
Abstract: Highly purified rat brain myelin was found to hydrolyze inositol 1,4,5-trisphosphate to inositol 1.4-bisphosphate, but subsequent hydrolysis of the latter, characteristic of whole brainstem, did not occur. Inositol 1,4,5-trisphosphate 5-phosphatase in myelin was ∼ 33% of the level in microsomes and 127% that of the cytosolic fraction from brainstem. The myelin and microsomal enzymes had similar properties, as follows: activation by saponin, requirement for Mg2+ and similar Kact (0.16 and 0.13 mM), Km (8.7 ± 2.5 and 7.0 ± 1.0 μM), and pH optima (6.6-6.8). Vmax values were 11.2 ± 1.0 and 26.3 ± 2.0 nmol/mg/min for myelin and microsomes, respectively. A possible role for this enzyme in phosphoinositide-mediated signal transduction within myelin and its subcompartments is discussed.  相似文献   

5.
The effect of acetylcholine on the incorporation of P32 into the individual phosphatides in slices of various structures of the nervous system has been studied. There was a marked stimulation of P32 incorporation into phosphoinositide and phosphatidic acid, but not into phosphatidyl choline and phosphatidyl ethanolamine, in the cat stellate and celiac ganglia in vitro. Acetylcholine stimulated P32 incorporation into certain phosphatides, primarily phosphoinositide and phosphatidic acid, in several structures of the cat and guinea pig brain; there was little or no effect of acetylcholine on phosphatide turnover in the inferior corpora quadrigsemina and cerebellar cortex. The suggestion is made that the phospholipid effect can best be explained as being concerned with the active transport of sodium ions out of the cell across the postsynaptic membrane of cholinergic neurons in response to acetylcholine.  相似文献   

6.
Abstract: The present study was initiated to examine the effects of ATP on acetylcholine (ACh) synthesis. The exposure of superior cervical ganglia to ATP increased ACh stores by 25%, but this effect was also evident with ADP, AMP, and adenosine, but not with βγ-methylene ATP, a nonhydrolyzable analogue of ATP, or with inosine, the deaminated product of adenosine. Thus, we attribute the enhanced ACh content caused by ATP to the presence of adenosine derived from its hydrolysis by 5′-nucleotidase. The adenosine-induced increase of tissue ACh was not the consequence of an adenosine-induced decrease of ACh release. The extra ACh remained in the tissue for more than 15 min after the removal of adenosine, but it was not apparent when ganglia were exposed to adenosine in a Ca2+-free medium. Incorporation of radiolabelled choline into [3H]ACh was also enhanced in the presence of adenosine, suggesting an extracellular source of precursor. Moreover, the synthesis of radiolabelled forms of phosphorylcholine and phospholipid was not reduced in adenosine's presence, suggesting that the extra ACh was not likely derived from choline destined for phospholipid synthesis. Aminophylline did not prevent the adenosine effect to increase ACh content; this effect was blocked by dipyridamole, but not by nitrobenzylthioinosine (NBTI). In addition, two benzodiazepine stereoisomers known to inhibit stereoselectively the NBTI-resistant nucleoside transporter displayed a similar stereoselective ability to block the effect of adenosine. Together, these results argue that adenosine is transported through an NBTI-resistant nucleoside transporter to exert an effect on ACh synthesis. The extra ACh accumulated as a result of adenosine's action was releasable during subsequent preganglionic nerve stimulation, but not in the presence of vesamicol, a vesicular ACh transporter inhibitor. We conclude that the mobilization of ACh is enhanced as a result of adenosine pretreatment.  相似文献   

7.
Abstract: Muscarinic cholinergic and α1-adrenoceptor-mediated stimulation of phosphoinositide hydrolysis in rat cerebral cortex were compared by measuring carbachol- and noradrenaline-induced accumulation of various intermediates of the phosphoinositide cycle. Unlike carbachol, noradrenaline in the presence of guanosine 5'- O -(3-thiotriphosphate) did not stimulate phospholipase C activity in brain cortical membranes. In cortical slices, the efficacy of noradrenaline to stimulate accumulation of 3H-inositol phosphates and [32P]phosphatidic acid was 2.5 to threefold that of carbachol. However, noradrenaline was less effective than carbachol in stimulating accumulation of [3H]CDP-diacylglycerol and resynthesis of phosphatidylinositol. This was not due to calcium inhibition of CTP:phosphatidate cytidyltransferase or to different lithium requirements for carbachol- and noradrenaline-stimulated accumulation of [3H]CDP-diacylglycerol. The noradrenaline-induced unbalance of the phosphoinositide cycle, which was most apparent at relatively high concentrations of calcium (2.5 m M ) in the incubation buffer, was qualitatively reproduced with ionomycin. The use of the α1a-subtype-selective adrenoceptor antagonists WB4101 and 5-methylurapidil revealed a single α1a-like component mediating the effects of noradrenaline. Our results suggest that the primary mechanism for phospholipase C activation by brain α1 adrenoceptors involves an increase in intracellular calcium concentration.  相似文献   

8.
Acetylcholine Releases Prostaglandins from Brain Slices Incubated In Vitro   总被引:5,自引:3,他引:2  
A variety of neurotransmitters elicit a phosphoinositide response in the CNS; however, their effects on prostaglandin (PG) formation in the brain are not well characterized. In the present study, we investigated the effect of acetylcholine (ACh) on the synthesis of PGs E and F in slices from various regions of guinea pig brain incubated in glucose-fortified Krebs-Henseleit bicarbonate saline. Slices were prewashed in the presence of 1% albumin to reduce basal PG levels followed by incubation for 30 min at 37 degrees C in the presence or absence of ACh. Under these conditions, 5 mM ACh significantly increased the efflux of PGE and PGF from brain regions enriched in muscarinic cholinergic receptors, i.e., cerebral cortex, temporal cortex, corpus striatum, and hippocampus. Depolarization by 45 mM KCl also significantly enhanced PG synthesis, and the relative magnitude of the effect was similar to that of ACh. The stimulation of PG synthesis by ACh was inhibited by 20 microM atropine, whereas the K+-induced stimulation was not. The effects of potassium and ACh were additive at maximally effective ACh concentrations, an observation that suggests that ACh and K+ increase PG efflux through independent mechanisms. Norepinephrine, histamine, and serotonin, three other neurotransmitters that evoke a phosphoinositide response in the brain, were ineffective in stimulating PG release from brain cortex slices.  相似文献   

9.
Abstract: The direct effect of melatonin and related agonists on Li+-amplified phosphoinositide breakdown was studied in chick brain slices prelabeled with myo-[2-3H]-inositol. The melatonin receptor agonist 6-chloromelatonin (10–100 µM) increased, in a concentration-dependent manner, the accumulation of inositol phosphates (IP) in chick brain slices. This effect of 6-chloromelatonin (10 µM) was rapid as transient increases in IP3/IP4 (maximal increase, 29% at 20 s) and IP2 levels (maximal increase, 36% at 1 min) were observed, followed by a slower but sustained increase in IP1 level (30% at 5 min), when the amount of IP3/IP4 and IP2 had already been decreased to the control level. The phosphoinositide response elicited by 6-chloromelatonin (10 µM) was dependent on the presence of extracellular calcium. Direct stimulation of membrane phospholipase C by 6-chloromelatonin (10 µM) in isolated myo-[2-3H]inositol-prelabeled optic tectum membranes was dependent on the presence of guanosine-5′-O-(3-thio)triphosphate (1 µM), thus suggesting that G protein(s) link melatonin receptor activation to phospholipase C stimulation. The competitive melatonin receptor antagonist luzindole (10–100 µM) inhibited in a concentration-dependent manner the IP1 accumulation stimulated by 6-chloromelatonin (10–100 µM); however, it did not affect the accumulation stimulated by 5-hydroxytryptamine (10 µM). By contrast, methysergide (10 µM) completely inhibited 5-hydroxytryptamine (10 µM)-, but not 6-chloromelatonin (10 µM)-, induced IP1 accumulation. Melatonin receptor agonists increased IP1 accumulation in a concentration-dependent manner reaching different maximal responses. N-Acetyl-5-hydroxytryptamine was more potent than melatonin in increasing IP1 accumulation, suggesting activation of a melatonin receptor site other than the ML-1 melatonin receptor (i.e., N-acetyl-5-hydroxytryptamine ≥ melatonin). In conclusion, these results demonstrate that activation of a melatonin receptor with pharmacological characteristics different from those of the ML-1 subtype leads to activation of the phospholipase C-mediated signal transduction pathway.  相似文献   

10.
Abstract: Phosphatidylinositol bisphosphate hydrolysis, leading to the production of myo -inositol trisphosphate and diacylglycerol, may play a significant role in the pathogenesis of hypoxic-ischemic brain injury. We used tritiated myo -inositol phosphate (3H-IP) accumulation as a means to quantitate phosphoinositide hydrolysis in prelabeled astroglial cultures subjected to combined glucose-oxygen deprivation. Astroglial cultures exposed to combined glucose-oxygen deprivation had significantly greater 3H-IP accumulation compared with cultures exposed to control conditions. To delineate the role of the metabotropic glutamate receptor in astroglial phosphoinositide hydrolysis during combined glucose-oxygen deprivation, we studied the effects of two metabotropic glutamate receptor antagonists, 2-amino-3-phosphonopropionic acid and (+)-methyl-4-carboxyphenylglycine. 2-Amino-3-phosphonopropionic acid attenuated the accumulation of 3H-IP during combined glucose-oxygen deprivation but acted as an agonist under control conditions. (+)-Methyl-4-carboxyphenylglycine had no effect on 3H-IP accumulation during combined glucose-oxygen deprivation or under control conditions. These results suggest that activation of astroglial phosphoinositide hydrolysis during combined glucose-oxygen deprivation may be mediated, at least in part, by the metabotropic glutamate receptor.  相似文献   

11.
Abstract: An existing method for measuring acetylcholine (ACh) and choline (Ch) is shown to be useful formeasuring the turnover rate of ACh in mouse brain. Methl-[3H]Ch is injected into mice. They are killed atdifferent times by microwave irradiation and Ch and AChextracted and separated by reverse-phase HPLC. Ch andACh are converted to hydrogen peroxide by a post-column enzyme reaction. Hydrogen peroxide, which isdirectly related to the tissue content of Ch or ACh, isdetermined electrochemically. The fractions that corre-spond to the detector response for Ch and ACh are col-lected for the measurement of radioactivity. In this wayspecific radioactivities of endogenous Ch and ACh areestimated in the same sample. We used the specific ra-dioactivity values determined by this procedure to esti-mate the turnover of ACh for striatum, cerebral cortex, and hippocampus of the mouse.  相似文献   

12.
Phosphatidic acid (PA) from swine and beef RBCs was isolated by chromatography on silicic acid columns. It comprised about 1 per cent of the total lipid phosphate in RBCs, but was eluted nearly pure from columns. An uncharacterized inositide accounted for 5 to 10 per cent of the phosphate in the PA-containing fraction. When cells were incubated with HP32O4=, the fraction containing PA became more radioactive than any of the other fractions obtained. However, analysis of the labeled material by paper chromatography showed that most of the P32 was in the inositide, not in PA. With the assumption of kinetic homogeneity for cellular PA, compartmental analysis of the kinetics of tracer incorporation showed that PA turnover is 3 to 4 orders of magnitude too slow to account for sodium extrusion by these cells.  相似文献   

13.
The objective of these experiments was to determine whether preincubating hippocampal slices with choline provides precursor that can be used during a subsequent incubation to support or enhance the synthesis of acetylcholine (ACh). Slices were preincubated for 60 min with 0, 10, 25, or 50 microM choline, washed, resuspended, and then incubated for 10 min in choline-free buffer containing 4.74 (Krebs-Ringer bicarbonate, KRB) or 25 mM KCl. The tissue contents of ACh and choline were determined prior to and after the preincubation, as well as after the incubation; the amounts of ACh and choline released were measured, and ACh synthesis was calculated. Preincubation in the absence of choline increased the tissue content of ACh to 242% of original levels; preincubation with 10 microM choline did not lead to a further increase, but preincubation with 25 or 50 microM choline increased the ACh content to 272% of original levels, significantly greater than that of slices preincubated with either 0 or 10 microM choline. When tissues were subsequently incubated for 10 min with either KRB or 25 mM KCl, ACh release from slices preincubated with 50 microM choline was greater than from slices preincubated with 0, 10, or 25 microM choline. Incubation of slices with KRB did not alter the tissue content of ACh, but when tissues were incubated with 25 mM KCl, the ACh content of slices preincubated with 0 or 10 microM choline decreased significantly, whereas that of slices preincubated with 25 or 50 microM choline did not.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Abstract: At intervals ranging from 1 to 10 min after injection of 32Pi into rat brain, myelin was prepared and separated into three subfractions: heavy, medium, and light. The radioactivity of total phospholipids and polyphospho-inositides (PPI) was then determined. There was rapid incorporation of 32Pi into PPI, which contained 50–70% of the radioactivity among total brain lipids and more than 70% among myelin lipids. The myelin fraction had incorporated 32Pi into total recovered PPI in the order of medium > heavy > light fraction: however, the order of relative specific radioactivities was heavy > light > medium. Labeling of the PPI precursors, phosphatidic acid (PA) and phos-phatidylinositol (PI), was considerably lower in the purified myelin than in total brain. The di- (DPI) and triphosphoinositides (TPI) in heavy myelin exchanged 32Pi at rates 2 to 3 times faster than those in medium and light myelin. DPI of all subfractions of myelin exchanged much faster than TPI. The results show that the most active phosphate turnover of myelin PPI occurs in the heavy myelin fraction (probably largely consisting of myelin appurtenant regions). However, medium and light myelin (most probably representing the closely packed layers of myelin sheaths) also showed rapid turnover of PPI.  相似文献   

15.
The effect of lanthanum ions (La3+) on the release of acetylcholine (ACh) from longitudinal muscle strips of the guinea pig ileum with the myenteric plexus attached was investigated. After an exposure of the tissue to 2 mM LaCl3 for 18 min the rate of ACh release was increased approximately eightfold and the increased release lasted for more than 100 min. The augmented release of ACh was accompanied by enhanced synthesis. At the end of the experiments (102 min after LaCl3 had been removed), when the release of ACh was still more than six times higher than in controls, the content of ACh was the same in La3+-treated and untreated tissues. Electrical field stimulation failed to cause a further increase in the release of ACh from La3+-pretreated preparations whereas ouabain released considerable more ACh when compared to controls. It is concluded from this difference that electrical stimulation and ouabain release ACh from different pools.  相似文献   

16.
In the presence of 1 mM spermine, accumulations of 3H labelled inositol phosphates elicited by quisqualate (100 microM) and 1-aminocyclopentane-trans-1,3-dicarboxylate (t-ACPD, 300 microM) were significantly enhanced by 21 and 26%, respectively, without a significant alteration in the accumulation elicited by L-glutamate (10 mM) or DL-alpha-amino-3-hydroxy-5-methyl-4-isoxalone propionate (10 microM). Analysis of concentration-response data indicated that the presence of spermine led to an increase in the maximal response to t-ACPD without altering the EC50 value. The stimulatory effect of spermine on the accumulation of t-ACPD-elicited 3H-inositol phosphates was not reversed by ifenprodil or diethylenetriamine (putative polyamine site antagonists), by agents that activate or inhibit protein kinase C, or by calcium channel blockade, but was abolished in the presence of elevated extracellular calcium ion concentration. We conclude that spermine enhances the phosphoinositide turnover in guinea pig cerebral cortical slices elicited by the "metabotropic" excitatory amino acid receptor. The site through which the action of spermine is mediated remains to be defined, but it is apparently distinct from that suggested to modulate N-methyl-D-aspartate receptor activity.  相似文献   

17.
Decreases in Amino Acid and Acetylcholine Metabolism During Hypoxia   总被引:1,自引:4,他引:1  
Abstract: Hypoxia impairs brain function by incompletely defined mechanisms. Mild hypoxia, which impairs memory and judgment, decreases acetylcholine (ACh) synthesis, but not the levels of ATP or the adenylate energy charge. However, the effects of mild hypoxia on the synthesis of the glucosederived amino acids [alanine, aspartate, γ-amino butyric acid (GABA), glutamate, glutamine, and serine] have not been characterized. Thus, we examined the incorporation of [U-14C]glucose into these amino acids and ACh during anemic hypoxia (injection of NaNO2), hypoxic hypoxia (15 or 10% O2), and hypoxic hypoxia plus hypercarbia (15 or 10% O2 with 5% CO2). In general, the synthesis of the amino acids and of ACh declined in parallel with each type of hypoxia we studied. For example, anemic hypoxia (75 mg/kg of NaNO2) decreased the incorporation of [U-14C]glucose into the amino acids and into ACh similarly. [Percent inhibition: ACh (57.4), alanine (34.4), aspartate (49.2), GABA (61.9). glutamine (59.2), glutamate (51.0), and serine (36.7)]. A comparison of several levels (37.5, 75, 150, 225 mg/kg of NaNO2) of anemic hypoxia showed a parallel decrease in the flux of glucose into ACh and into the amino acids whose synthesis depends on mitochondrial oxidation: GABA (r= 0.98), glutamate (r= 0.99), aspartate (r= 0.96), and glutamine (r= 0.97). The synthesis of the amino acids not dependent on mitochondrial oxidation did not correlate as well with changes in ACh metabolism: serine (r= 0.68) and alanine (r= 0.76). The decreases in glucose incorporation into ACh and into the amino acids with hypoxic hypoxia (15% or 10% O2) or hypoxic hypoxia with 5% CO2 were very similar to those with the two lowest levels of anemic hypoxia. Thus, any explanation of the brain's sensitivity to a decrease in oxygen availability must include the alterations in the metabolism of the amino acid neurotransmitters as well as ACh.  相似文献   

18.
Abstract: Rats that Received intracranial injections of [3H]leucine at 14 days of age were killed on days 17, 24, 38, 55, and 89 post-injection. Brains were homogenized and the myelin membranes separated in a sucrose density gradient. At day 17 sodium dodecylsulfate polyacrylamide gels of water-shocked, delipidated membrane fractions showed a difference in the specific activity of myelin proteins across the gradient. A decrease in specific activity was found in all of the proteins in the denser fractions, compared with the lighter fractions. As time after injection progressed, the difference became more pronounced; a two- to threefold decrease in specific activity was seen across the gradient in the various myelin proteins. The proteins of the lightest membrane fractions retained their high specific activity throughout the experiment in spite of extensive new myelin synthesis. Taking this new myelin into account, the decrease in specific activity in the denser myelin fractions could be explained by isotope dilution. Therefore, proteins present in at least some of the myelin are essentially stable.  相似文献   

19.
Previous studies on the origin of myelin phosphoinositides involved in signaling mechanisms indicated axon to myelin transfer of phosphatidylinositol followed by myelin-localized incorporation of axon-derived phosphate groups into phosphatidylinositol 4-monophosphate and phosphatidylinositol 4,5-bisphosphate. This is in agreement with other studies showing the presence of phosphorylating activity in myelin that converts phosphatidylinositol into the mono-and diphospho derivatives. It was also found that the second messenger, inositol 1,4,5-trisphosphate, is hydrolyzed to inositol 1,4-bisphosphate by a myelin-localized enzyme. The present study was undertaken to determine the locus of the remaining reactions leading to formation of free inositol and completion of the cycle by resynthesis of phosphatidylinositol. The latter reaction was found to occur preferentially in isolated axons, and to a limited extent if at all in myelin. On the other hand, hydrolytic reactions which sequentially convert inositol 1,4,5-trisphosphate to inositol 1,4-bisphosphate, inositol 1-phosphate, and free inositol were found to occur more prominently in myelin. Thus, restoration of phosphoinositides following signal-induced breakdown of PIP2 in myelin is seen as requiring metabolic interplay between myelin and axon.  相似文献   

20.
A simple, reliable method was developed for measuring brain acetylcholine (ACh) turnover using HPLC methodology. Mice were injected intravenously with [3H]choline ([3H]Ch), and the turnover rate of ACh was calculated from the formation of [3H]ACh. Ch and ACh were separated from phosphorylcholine and from other radioactive compounds using tetraphenylboron extraction and counterion/reverse-phase chromatography. Endogenous Ch and ACh were quantified electrochemically through hydrogen peroxide production in a postcolumn reactor containing covalently bonded ACh esterase and Ch oxidase. Labeled Ch and ACh were quantified in the same sample by collecting the chromatographic fractions for radioactive content determinations. The method is rapid, well adapted to large series, and highly reproducible, with recoveries of 72.1% for Ch and 79.3% for ACh. The turnover value in mouse cerebral hemispheres was 16.02 nmol g-1 min-1 and decreased to 9.94 nmol g-1 min-1 in mice treated with oxotremorine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号