首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial respiration was studied as a function of the total adenine nucleotide content of rat liver mitochondria. The adenine nucleotide content was varied by treating isolated mitochondria with pyrophosphate or by incubating pyrophosphate-treated mitochondria with ATP. Mitochondria with at least 4 nmol adenine nucleotides/mg protein maintained at least 80% of the State 3 activity of control mitochondria, which had approximately 10 nmol/mg protein. However, State 3 decreased rapidly once the adenine nucleotide content fell below 4 nmol/mg protein. Between 2 and 4 nmol adenine nucleotides/mg, State 3 was not limited by the maximal capacity of electron flow as measured by the uncoupled respiration. However, at very low adenine nucleotide levels (<2 nmol/mg), the uncoupled rates of respiration were markedly depressed. State 4 was not affected by changes in the mitochondrial adenine nucleotide content. Adenine translocase activity varied in almost direct correlation with changes in the adenine nucleotide content. Therefore, adenine translocase activity was more sensitive than State 3 to changes in total adenine nucleotides over the range of 4 to 10 nmol/mg protein. The results suggest that (i) State 3 is dependent on the level of intramitochondrial adenine nucleotides, particularly in the range below 4 nmol/mg protein, (ii) adenine translocase activity is not rate-limiting for oxidative phosphorylation in mitochondria with the normal complement of adenine nucleotides, however, at low adenine nucleotide levels, depressed State 3 rates may be explained in part by the low rate of ADP translocation, and (iii) a mechanism of net ATP uptake exists in mitochondria with low internal adenine nucleotides.  相似文献   

2.
Jill Rulfs  June R. Aprille 《BBA》1982,681(2):300-304
The adenine nucleotide content (ATP+ADP+AMP) of newborn rabbit liver mitochondria was 6.0±0.5 nmol/mg mitochondrial protein at birth, increased rapidly to 14.5±1.7 nmol/mg protein by 2 h postnatal, peaked at 6 h, then decreased gradually to 7.8±0.6 nmol/mg protein by 4 days postnatal. There was a strong positive correlation (r=0.82) between the total adenine nucleotide pool size and adenine nucleotide translocase activity in these mitochondria. In contrast, glutamate + malate-supported State 3 respiratory rates remained constant from birth through the first week of life. State 4 rates also remained constant, as did the respiratory control index and uncoupled respiratory rates. The following conclusions are suggested: (1) The maximum rate of translocase activity is limited by the intramitochondrial adenine nucleotide pool size. (2) In newborn rabbit liver mitochondria, the State 3 respiratory rate is not limited by either the adenine pool size or the maximum capacity for translocase-mediated adenine exchange. (3) In contrast to rat, rabbit liver mitochondria are fully functional at birth with regard to respiratory rates and oxidative phosphorylation. (4) The rapid postnatal accumulation of adenine nucleotides by liver mitochondria, now documented in two species, may be a general characteristic of normal metabolic adjustment in neonatal mammals.  相似文献   

3.
Net adenine nucleotide transport into and out of the mitochondrial matrix via the ATP-Mg/Pi carrier is activated by micromolar calcium concentrations in rat liver mitochondria. The purpose of this study was to induce net adenine nucleotide transport by varying the substrate supply and/or extramitochondrial ATP consumption in order to evaluate the effect of the mitochondrial adenine nucleotide pool size on intramitochondrial adenine nucleotide patterns under phosphorylating conditions. Above 12 nmol/mg protein, intramitochondrial ATP/ADP increased with an increase in the mitochondrial adenine nucleotide pool. The relationship between the rate of respiration and the mitochondrial ADP concentration did not depend on the mitochondrial adenine nucleotide pool size up to 9 nmol ADP/mg mitochondrial protein. The results are compatible with the notion that net uptake of adenine nucleotides at low energy states supports intramitochondrial ATP consuming processes and energized mitochondria may lose adenine nucleotides. The decrease of the mitochondrial adenine nucleotide content below 9 nmol/mg protein inhibits oxidative phosphorylation. In particular, this could be the case within the postischemic phase which is characterized by low cytosolic adenine nucleotide concentrations and energized mitochondria.  相似文献   

4.
Reactive oxygen species contribute to the tissue injury seen after reperfusion of ischemic myocardium. We propose that toxicity originates from the effect that mitochondrial peroxide metabolism has on substrate entry into oxidative pathways. To support our contention, cultured adult rat cardiomyocytes were incubated with physiological concentrations of peroxide. The cellular extract and incubation medium were analyzed for adenine nucleotides and purines by reverse-phase high-pressure liquid chromatography. Cellular glutathione efflux was determined by enzymatic analysis of the incubation medium. Pyruvate dehydrogenase (PDH) activity was determined in the cultured myocytes as well as in freshly isolated cardiac mitochondria using [1-C14]pyruvate. Extracellular glutathione rose 3.3-fold in response to small doses of peroxide (approximately 108 nmol/mg protein). Likewise, small quantities of peroxide reduced total cellular adenine nucleotides to 50-60% of control values with only a modest (0.95-0.91) reduction in energy charge [ATP + 1/2 ADP)/(ATP + ADP + AMP]. Peroxide-treated myocytes selectively release inosine and adenosine, as only these two purine degradation products were detected in the incubation medium. The most dramatic response was a peroxide dose-dependent inhibition of PDH activity in cultured myocytes as well as freshly isolated mitochondria; just 65 and 30 nmol peroxide/mg protein induced a 50% reduction in cellular and mitochondrial PDH activity, respectively. In conclusion, physiological quantities of peroxide potently inhibit PDH in cultured cardiomyocytes and isolated cardiac mitochondria. PDH inhibition blocks the aerobic oxidation of glucose and inhibits the oxidative phosphorylation of ADP, which in turn leads to cellular adenine nucleotide degradation.  相似文献   

5.
1. Uncoupled oxidative phosphorylation in isolated guinea pig brown-adipose-tissue mitochondria is reflected by a low phosphorylation state of adenosine phosphates in the mitochondrial matrix and in the extramitochondrial space during oxidation of succinate or glycerol 1-phosphate in the presence of serum albumin and 100 muM ADP. Recoupling of respiration and phosphorylation in the mitochondria is indicatdd by a dramatic increase in the phosphorylation state of adenine nucleotides in both compartments, when substrates inducing substrate level phosphorylation are respired. In this case ATP/ADP ratios in the extramitochondrial compartment are 10-15 times higher than in the mitochondrial matrix. 2. Recoupling mediated by substrate level phosphorylation depends on the presence of extramitochondrial adenosine phosphate and on intact adenine nucleotide translocation. In the presence of substrate level phosphorylation the amount of extramitochondrial ADP required to restore energy coupling can be extremely low (20 muM ADP or 10 nmol ADP/mg mitochondrial protein respectively). If substrate level phosphorylation is prevented by rotenone or in the presence of atractyloside, 20-50 times higher amounts of extramitochondrial adenine nucleotides are necessary to cause coupled oxidative phosphorylation. The recoupling effect of ATP is significantly stronger than that of ADP. 3. GDP (100 muM) causes a rapid increase of the ATP/ADP ratio in both compartments which is independent of substrate level phosphorylation as well as of the extramitochondrial adenosine phosphate concentration and the adenine nucleotide carrier. 4. The amount of extramitochondrial adenosine phosphate in guinea pig brown-adipose-tissue (18 nmol/mg mitochondrial protein or 2.5 mM respectively) would suffice for recoupling of oxidative phosphorylation mediated by substrate level phosphorylation under conditions in vitro; this suggests that substrate level phosphorylation is of essential importance in brown fat in vivo with respect to energy conditions in the tissue during different states of thermogenesis.  相似文献   

6.
Ethidium bromide (23 nmol/mg of protein) was found to be a potent inhibitor of oxidative phosphorylation, as determined by loss of respiratory control through the inhibition of the ADP-induced state-3 rate of oxygen uptake. A time latency for complete loss of respiratory control was noted, after which 2,4-dinitrophenol (DNP) was ineffective in overcoming this inhibition. In the absence of EDTA, ethidium bromide produced an apparent uncoupling, as evidenced by an increase of state-4 rates of oxygen uptake and loss of respiratory control. As low as 8 nmol of ethidium bromide/mg of protein stimulated mitochondrial adenosine triphosphatase (ATPase) for 5 min. Two to three times this amount of ethidium bromide reduced the amount Pi released. Preincubation of mitochondria with ethidium bromide prevented subsequent release of Pi during incubation with ATP. Likewise, preincubation inhibited the DNP-activated ATPase. The uptake of low levels of [14C]ADP preincubated with ethidium bromide (14 nmol/mg of protein) and succinate or α-ketoglutarate could apparently be reversed, with loss of radioactivity beginning several minutes after addition of the radioactive nucleotide. Inhibition of oxidative phosphorylation by ethidium bromide may be due to modification of the adenine nucleotide transport system in mitochondria. The production of apparently swollen mitochondria treated in vitro with ethidium bromide and substrates necessary for oxidative phosphorylation, as seen in electron micrographs, further indicates that the compound is capable of acting directly upon mouse liver mitochondrial function and structure.  相似文献   

7.
The relationship between the respiration rate and the intra- and extramito-chondrial adenine nucleotides was investigated in isolated rat liver mitochondria.

For the determination of adenine nucleotide patterns in both compartments a new procedure was developed, based on the evaluation of these metabolites from incubation of various amounts of mitochondria under identical stationary states of oxidative phosphorylation. These identical states were adjusted by addition of appropriate amounts of hexokinase to a glucose-containing incubation mixture.

Adenine nucleotides were measured in aliquots of the total extract of the incubation mixture without any separation. The concentrations of the adenine nucleotides in both compartments were obtained from a plot of the total concentration of these species versus mitochondrial protein. Disturbances of this method by unspecific efflux of adenine nucleotides could be excluded.

The results obtained for the total adenine nucleotide content (12 nmol · mg−1 protein) and the intramitochondrial [ATP]/[ADP] ratio (about 4 in the resting state) are in good agreement with data obtained by other methods.

Strong evidence is provided for a decrease of the intramitochondrial [ATP]/[ADP] ratio with increasing rate of oxygen consumption. Therefore it is not necessary to assume a microcompartmentation of the intramitochondrial adenine nucleotide pool in respect to the ATPase reaction and the adenine nucleotide translocation.  相似文献   


8.
Arnost Horak  Helena Horak  Mary Packer 《BBA》1987,890(3):302-309
Submitochondrial particles were prepared from pea cotyledon mitochondria by sonication in a medium containing 5 mM MgCl2. The resulting particles (Mg2+-submitochondrial particles) catalyzed oxidative phosphorylation at the rate of 100–200 nmol ATP formed / min per mg protein. Treatment of Mg2+-submitochondrial particles with 3.0 M urea resulted in a preparation of highly resolved particles with low ATPase activity and no capacity for oxidative phosphorylation. However, the resulting membranes were not capable of reconstitution of oxidative posphorylation with the purified mitochondrial F1-ATPase. Urea particles capable of reconstitution of oxidative phosphorylation could be prepared by extracting Mg2+-submitochondrial particles with concentrations of urea ranging from 1.7 to 2.0 M. We have used 1.9 M urea for large-scale preparation of urea particles that could be stored in liquid nitrogen without any loss of reconstitution capacity. The residual oxidative phosphorylation rate of these particles was 6–8 nmol ATP / min per mg protein and this rate could increase to 60–70 nmol ATP / min per mg protein on incubation with saturating amounts of purified mitochondrial F1-ATPase. In contrast to the mitochondrial F1, purified activated pea chloroplast CF1 was unable to stimulate ATP synthesis in 1.9 M urea particles.  相似文献   

9.
The total adenine nucleotide content of rat liver mitochondria was varied in vitro over a wide range in order to investigate a possible relationship between net changes in the total matrix ATP + ADP + AMP content and the overall rate of citrulline synthesis. Isolated mitochondria were specifically depleted of matrix adenine nucleotides by incubating with inorganic pyrophosphate (G. K. Asimakis and J. R. Aprille, 1980, Arch. Biochem. Biophys.203, 307–316); alternatively, matrix adenine nucleotides were increased by incubating mitochondria with 1 mm ATP at 30 °C. No exogenous ATP or ADP was included in the subsequent incubations for the determination of citrulline synthesis. Rates varied from 0.1 to 1.6 μmol citrulline/mg protein/h as a linear function of total adenine nucleotide content in the range 2–15 nmol (ATP + ADP + AMP)/mg protein. Further increases in the matrix ATP + ADP + AMP content caused no further increase in citrulline synthesis rates. Changes in the total adenine nucleotide content were reflected in proportional changes in both the ATP and ADP content of the matrix. The ATPADP ratio did not change significantly. Therefore, the variations in citrulline synthesis were most simply explained as the effect of different concentrations of ATP on the activity of carbamoyl-phosphate synthetase. It was concluded that net changes in the total adenine nucleotide content can contribute to the control of citrulline synthesis. These findings are significant in the context of recent evidence which shows that the matrix adenine nucleotide pool size is under hormonal control.  相似文献   

10.
AICA riboside (5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside) has been extensively used in cells to activate the AMPK (AMP-activated protein kinase), a metabolic sensor involved in cell energy homoeostasis. In the present study, we investigated the effects of AICA riboside on mitochondrial oxidative; phosphorylation. AICA riboside was found to dose-dependently inhibit the oligomycin-sensitive JO2 (oxygen consumption rate) of isolated rat hepatocytes. A decrease in P(i) (inorganic phosphate), ATP, AMP and total adenine nucleotide contents was also observed with AICA riboside concentrations >0.1 mM. Interestingly, in hepatocytes from mice lacking both alpha1 and alpha2 AMPK catalytic subunits, basal JO2 and expression of several mitochondrial proteins were significantly reduced compared with wild-type mice, suggesting that mitochondrial biogenesis was perturbed. However, inhibition of JO2 by AICA riboside was still present in the mutant mice and thus was clearly not mediated by AMPK. In permeabilized hepatocytes, this inhibition was no longer evident, suggesting that it could be due to intracellular accumulation of Z nucleotides and/or loss of adenine nucleotides and P(i). ZMP did indeed inhibit respiration in isolated rat mitochondria through a direct effect on the respiratory-chain complex I. In addition, inhibition of JO2 by AICA riboside was also potentiated in cells incubated with fructose to deplete adenine nucleotides and P(i). We conclude that AICA riboside inhibits cellular respiration by an AMPK-independent mechanism that likely results from the combined intracellular P(i) depletion and ZMP accumulation. Our data also demonstrate that the cellular effects of AICA riboside are not necessarily caused by AMPK activation and that their interpretation should be taken with caution.  相似文献   

11.
To define more clearly the interactions between mitochondrial creatine kinase and the adenine nucleotide translocase, the outer membrane of rat heart mitochondria was removed by digitonin, producing an inner membrane-matrix (mitoplast) preparation. This mitoplast fracton was well-coupled and contained a high specific activity of mitochondrial creatine kinase. Outer membrane permeabilization was documented by the loss of adenylate kinase, a soluble intermembrane enzyme, and by direct antibody inhibition of mitochondrial creatine kinase activity. With this preparation, we documented four important aspects of functional coupling. Kinetic studies showed that oxidative phosphorylation decreased the value of the ternary enzyme-substrate complex dissociation constant for MgATP from 140 to 16 microM. Two approaches were used to document the adenine nucleotide translocase specificity for ADP generated by mitochondrial creatine kinase. Exogenous pyruvate kinase (20 IU/ml) could not readily phosphorylate ADP produced by creatine kinase, since added pyruvate kinase did not markedly inhibit creatine + ATP-stimulated respiration. Additionally, when ADP was produced by mitochondrial creatine kinase, the inhibition of the translocase required 2 nmol of atractyloside/mg of mitoplast protein, while only 1 nmol/mg was necessary when exogenous ADP was added. Finally, the mass action ratio of the mitochondrial creatine kinase reaction exceeded the apparent equilibrium constant when ATP was supplied to the creatine kinase reaction by oxidative phosphorylation. Overall, these results are consistent with much data from intact rat heart mitochondria, and suggest that the outer membrane plays a minor role in the compartmentation of adenine nucleotides. Furthermore, since the removal of the outer membrane does not alter the unique coupling between oxidative phosphorylation and mitochondrial creatine kinase, we suggest that this cooperation is the result of protein-protein proximity at the inner membrane surface.  相似文献   

12.
Adenine nucleotides and respiration were assayed with rat kidney mitochondria depleted of adenine nucleotides by pyrophosphate treatment and by normothermic ischemia, respectively, with the aim of identifying net uptake of ATP as well as elucidating the contribution of adenine nucleotide loss to the ischemic impairment of oxidative phosphorylation. Treatment of rat kidney mitochondria with pyrophosphate caused a loss of adenine nucleotides as well as a decrease of state 3 respiration. After incubation of pyrophosphate-treated mitochondria with ATP, Mg2+ and phosphate, the content of adenine nucleotides increased. We propose that kidney mitochondria possess a mechanism for net uptake of ATP. Restoration of a normal content of matrix adenine nucleotides was related to full recovery of the rate of state 3 respiration. A hyperbolic relationship between the matrix content of adenine nucleotides and the rate of state 3 respiration was observed. Mitochondria isolated from kidneys exposed to normothermic ischemia were characterized by a decrease in the content of adenine nucleotides as well as in state 3 respiration. Incubation of ischemic mitochondria with ATP, Mg2+ and phosphate restored the content of adenine nucleotides to values measured in freshly-isolated mitochondria. State 3 respiration of ischemic mitochondria reloaded with ATP recovered only partially. The rate of state 3 respiration increased by ATP-reloading approached that of uncoupler-stimulated respiration measured with ischemic mitochondria. These findings suggest that the decrease of matrix adenine nucleotides contributes to the impairment of ischemic mitochondria as well as underlining the occurrence of additional molecular changes of respiratory chain limiting the oxidative phosphorylation.  相似文献   

13.
In anoxic perfused liver, conversion of fructose to lactate was greatly increased to about 3 mumol/min per g liver. This increase in lactate implied that the same amount of ATP was also produced. The rate of metabolism of glucose was less than 10% of that of fructose, as judged by rate of production of lactate. In anoxic liver perfused with fructose, the ATP levels of both the tissue and mitochondria remained high, despite lack of oxygen, thus preventing enzyme leakage and preserving processes requiring ATP, such as bile excretion and urea formation. The mitochondrial oxidative phosphorylation capacity of anoxic liver perfused with fructose was also unimpaired. Spectral analysis of light transmitted through the liver revealed that the mitochondrial electron transfer system was in the completely reduced state during anoxia, indicating that the mitochondria were incapable of synthesizing ATP. These results suggest that fructose metabolism during anoxia resulted in sufficient production of ATP for maintaining the physiological functions of the cells and the oxidative phosphorylation capacity of their mitochondria.  相似文献   

14.
J R Aprille 《FASEB journal》1988,2(10):2547-2556
The ATP-Mg/Pi carrier in liver mitochondria can catalyze the exchange of ATP-Mg on one side of the inner membrane for Pi on the other. This mechanism allows for net uptake or release of ATP-Mg from mitochondria and thus regulates the matrix ATP + ADP + AMP pool size. In isolated mitochondria, carrier activity is stimulated by submicromolar concentrations of calcium, suggesting that calcium may regulate transport rates in vivo. Whenever the carrier is active, the direction of any net changes in the matrix adenine nucleotide pool size is determined mainly by the extent to which the prevailing ATP-Mg concentration gradient deviates from an equilibrium related to delta pH through the phosphate concentration gradient. Thus it seems that in the cell, energy status (reflected by ATP:ADP ratios in the cytoplasm and matrix) determines whether calcium-mediated hormone activation of the carrier will produce an increase or a decrease in the matrix adenine nucleotide content. Consequent variations in the absolute concentrations of ATP, ADP, and AMP in the matrix may contribute to the selective regulation of those metabolic activities in the cell that have adenine nucleotide dependent steps localized to the mitochondrial compartment (gluconeogenesis, urea synthesis, mitochondrial biogenesis, and even oxidative phosphorylation).  相似文献   

15.
Both levels of total adenine nucleotides, ATP, AMP, ATP/ADP ratio and phosphate potential of cell and cytosol and the intensity of mitochondrial oxidation (fatty acid beta-oxidation in particular) and phosphorylation are elevated in the liver of db/db mice as compared with control. Presumably these alterations corresponding to the total activation of metabolic processes in db/db mice are mediated by hyperinsulinemia. Nicotinamide treatment (2.5 mg/100 g body weight, 14 days, i.m.) elicits further increase of ATP and total adenine nucleotide levels, cytosolic phosphate potential and activation of mitochondrial oxidation and phosphorylation. The findings obtained can be used for explanation of nicotinamide inhibition of gluconeogenesis, diacylglycerol and phosphoacylglycerol biosynthesis in the liver of db/db mice.  相似文献   

16.
1. High efficiency of oxidative phosphorylation and a good respiratory control in liver, heart and somatic muscle mitochondria of the lamprey (Lampetra fluviatilis) were observed when the particles were isolated in a complex sucrose medium containing EDTA, heparin and nicotinamide. The coupling properties of these mitochondria were further improved by including serum albumin in the incubation medium. 2. The content of total adenine nucleotides in lamprey mitochondria was between 4 and 6 nmoles/mg protein. The translocation of these nucleotides across mitochondrial membrane was stimulated by serum albumin. 3. Lamprey mitochondrial phospholipids contain a large proportion (64-72%) of polyunsaturated fatty acids. 4. Electron micrographs of mitochondria from lamprey liver, heart and somatic muscle are presented.  相似文献   

17.
Compartmentation and NMR visibility of mitochondrial adenine nucleotides were quantitated in isolated rat liver mitochondria respiring on succinate and glutamate in vitro at 8 and 25 degrees C. Intra- and extramitochondrial nucleotides were discriminated by adding the chelator trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (CDTA). T1 values of about 0.2-0.3 s for magnesium-bound matrix nucleotides were determined. Adenine nucleotide T1 values were influenced by the ionic environment; only magnesium-free ATP T1's were affected by temperature. Intra- and extramitochondrial adenine nucleotide ratios were varied in ATP-loaded mitochondria with added ATP and phosphate using the mitochondrial inhibitors oligomycin and carboxyatractyloside, and adenine nucleotides were quantitated by using NMR and enzymatic analysis. There was good agreement between matrix ATP concentrations (magnesium-bound ATP) calculated by using NMR and standard biochemical techniques. Although matrix ADP could be detected by NMR, it was difficult to quantitate accurately by NMR. The data indicate that mitochondrial ATP is NMR-visible in isolated mitochondria in vitro.  相似文献   

18.
To investigate whether or not the mitochondrial intermembrane space together with the extramitochondrial space form a homogeneous pool for adenine nucleotides, rat-heart mitochondria were studied in reconstituted systems with pyruvate kinase and ADP-producing enzymes with varied localization. In the hexokinase system, ADP is produced extramitochondrially by added yeast hexokinase, whereas in the creatine kinase system mitochondrial creatine kinase is responsible for ADP regeneration in the intermembrane space. The dependence of mitochondrial respiration on the extramitochondrial [ATP]/[ADP] ratio in both systems was investigated experimentally and by means of computer simulation. Near the resting state, higher [ATP]/[ADP] ratios were found in the creatine kinase system than in the hexokinase system at the same rate of respiration. This and the maintaining of a substantial creatine kinase-stimulated respiration in the presence of pyruvate kinase in excess is explained by a two-compartment model considering diffusion limitations of adenine nucleotides. A diffusion rate constant of (8.7 +/- 4.7) 10(4) microliters X mg-1 X min-1 for ADP and ATP was estimated, resulting in rate-dependent concentration differences up to 13.7 microM AdN between the extramitochondrial space and the AdN-translocator at the maximum rate of oxidative phosphorylation of rat-heart mitochondria. The results support the assumption that ADP diffusion towards the AdN-translocator is limited if its extramitochondrial concentration is low, resulting in a dynamic compartmentation of adenine nucleotides in the mitochondrial intermembrane space.  相似文献   

19.
Mitochondria can initiate apoptosis by releasing cytochrome c after undergoing a calcium-dependent permeability transition (MPT). Although the MPT is enhanced by oxidative stress and prevented by adenine nucleotides such as adenosine 5'-diphosphate (ADP), the hypothesis has not been tested that oxidants regulate the effects of exogenous adenine nucleotides on the MPT and cytochrome c release. We found that cytochrome c release from intact rat liver mitochondria depended strictly on pore opening and not on membrane potential, and that MPT-enhancing oxidative stress also augmented cytochrome c release. At low oxidative stress, micromolar (ADP) and low adenosine 5'-triphosphate (ATP)/ADP ratio inhibited the MPT and cytochrome c release, whereas ATP or high ATP/ADP had only a slight effect. In freshly isolated mitochondria, the time to half-maximal MPT was related to the log of the ATP/ADP ratio. This function was shifted to shorter times by oxidative stress which decreased ADP protection and caused ATP to accelerate the calcium-dependent MPT. By comparison, mitochondria treated with reducing agents and those isolated from septic rats were protected from the MPT by both nucleotides. These results indicate that oxidation-sensitive site(s) in the membrane regulate the effects of adenine nucleotides on the MPT. The oxidant-based differences in the effects of ADP and ATP on the pore support the novel hypothesis that failure of the cell to consume ATP and provide adequate ADP at the adenine nucleotide transporter during oxidative stress predisposes to cytochrome c release and initiation of apoptosis.  相似文献   

20.
Adenine nucleotide transport over the carboxyatractyloside-insensitive ATP-Mg/Pi carrier was assayed in isolated rat liver mitochondria with the aim of investigating a possible regulatory role for Ca2+ on carrier activity. Net changes in the matrix adenine nucleotide content (ATP + ADP + AMP) occur when ATP-Mg exchanges for Pi over this carrier. The rates of net accumulation and net loss of adenine nucleotides were inhibited when free Ca2+ was chelated with EGTA and stimulated when buffered [Ca2+]free was increased from 1.0 to 4.0 microM. The unidirectional components of net change were similarly dependent on Ca2+; ATP influx and efflux were inhibited by EGTA in a concentration-dependent manner and stimulated by buffered free Ca2+ in the range 0.6-2.0 microM. For ATP influx, increasing the medium [Ca2+]free from 1.0 to 2.0 microM lowered the apparent Km for ATP from 4.44 to 2.44 mM with no effect on the apparent Vmax (3.55 and 3.76 nmol/min/mg with 1.0 and 2.0 microM [Ca2+]free, respectively). Stimulation of influx and efflux by [Ca2+]free was unaffected by either ruthenium red or the Ca2+ ionophore A23187. Calmodulin antagonists inhibited transport activity. In isolated hepatocytes, glucagon or vasopressin promoted an increased mitochondrial adenine nucleotide content. The effect of both hormones was blocked by EGTA, and for vasopressin, the effect was blocked also by neomycin. The results suggest that the increase in mitochondrial adenine nucleotide content that follows hormonal stimulation of hepatocytes is mediated by an increase in cytosolic [Ca2+]free that activates the ATP-Mg/Pi carrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号