首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 102 毫秒
1.
Signal-induced turnover of membrane phospholipids represents a fundamental transducing mechanism that induces a signal cascade resulting in mobilization of calcium, activation of protein kinase C by diacylglycerol, release of arachidonic acid and stimulation of cyclic GMP production. In this pathway tumor-promoting phorbol esters such as phorbol myristate acetate (PMA) may substitute for diacylglycerol. The interferonlike antiviral effect of PMA described here suggests that the inositol phospholipid-diacylglycerol-protein kinase C signal-transducing mechanism may be involved in interferon action.  相似文献   

2.
Many cytoplasmic proteins, including Ca2+- and phospholipid-dependent protein kinase (protein kinase C) of polymorphonuclear leukocytes (PMNs) associate in Ca2+-dependent manner with phospholipid liposomes containing cardiolipin (CL), as in the case of phosphatidylserine (PS)-containing liposomes. A crude protein kinase C fraction was purified by association of the enzyme with CL-containing liposomes (flotation method). The partially purified protein kinase C from rat brain or guinea pig PMN was activated by the CL-containing liposomes in the presence of dioleoylglycerol (DG) and Ca2+. This activation was analogous to that of PS. The half maximum activity was obtained with 20 microM CL in the presence of 1 microM Ca2+ and 5 microM DG. Many of the cytoplasmic proteins which associate with CL-containing liposomes were preferentially phosphorylated by membrane-associated protein kinase C in the presence of DG and Ca2+. These results suggest that the association of cytoplasmic protein kinase C with the membrane has an important role in regulation of protein kinase C activity in relation to the association of other cytoplasmic proteins to the membrane.  相似文献   

3.
Maitotoxin (MTX) activates calcium channels and stimulates phosphoinositide breakdown in pheochromocytoma PC12 cells, while having no effect on basal levels of the cyclic nucleotides cAMP and cGMP. Atrial natriuretic factor (ANF) induces a dose-dependent accumulation of cGMP in PC12 cells through the activation of a membrane bound guanylate cyclase. Effects of ANF on cGMP are independent of extracellular concentrations of calcium. Since agents that activate phosphoinositide breakdown can indirectly affect cyclic nucleotide formation, the effects of MTX on ANF-mediated accumulation of cGMP was studied. MTX induces a dose-dependent inhibition of ANF-mediated accumulation of cGMP. The inhibition by MTX requires the presence of extracellular calcium, but is unaffected by the calcium channel blocker nifedipine. The inhibitory effect of MTX is not mimicked by the calcium ionophore ionomycin. A phorbol ester, PMA, which stimulates protein kinase C, also inhibits ANF-mediated accumulation of cGMP. Sodium nitroprusside induces large accumulations of cGMP in PC12 cells through the stimulation of a soluble guanylate cyclase. Neither MTX nor PMA inhibit nitroprusside-mediated accumulation of cGMP. The results indicate that in PC12 cells, protein kinase C activation, either directly with PMA, and indirectly with MTX through phosphoinositide breakdown and formation of diacylglycerol, leads to inhibition of ANF-mediated, but not nitroprusside-mediated accumulation of cGMP.  相似文献   

4.
Treatment of human or sheep erythrocytes with PMA (phorbol myristate acetate) enhanced [32P]phosphate labelling of membrane polypeptides of approx. 100, 80 and 46 kDa. The 80 kDa and 46 kDa polypeptides coincided with bands 4.1 and 4.9 respectively on Coomassie-Blue-stained gels. Similar but smaller effects were obtained by treating human cells with 1-oleoyl-2-acetyl-rac-glycerol (OAG), exogenous bacterial phospholipase C or ionophore A23187 + Ca2+, each of which treatments would be expected to raise the concentration of membrane diacylglycerol. In contrast, sheep cells, which do not increase their content of diacylglycerol when treated with phospholipase C or A23187 + Ca2+, only showed enhanced phosphorylation with OAG. Neither human nor sheep cells showed any enhanced [32P]phosphate labelling of phosphoproteins when treated with 1-mono-oleoyl-rac-glycerol. It is concluded that diacylglycerol from a variety of sources can activate erythrocyte protein kinase C, but that the most effective diacylglycerol is that derived from endogenous polyphosphoinositides. In contrast with bacterial phospholipase C and A23187, which stimulate synthesis of phosphatidate by increasing the cell-membrane content of diacylglycerol in human erythrocytes, PMA, OAG or 1-mono-oleoyl-rac-glycerol caused no change in phospholipid metabolism.  相似文献   

5.
Cysteine-rich domains (Cys-domains) are ~50–amino acid–long protein domains that complex two zinc ions and include a consensus sequence with six cysteine and two histidine residues. In vitro studies have shown that Cys-domains from several protein kinase C (PKC) isoforms and a number of other signaling proteins bind lipid membranes in the presence of diacylglycerol or phorbol ester. Here we examine the second messenger functions of diacylglycerol in living cells by monitoring the membrane translocation of the green fluorescent protein (GFP)-tagged first Cys-domain of PKC-γ (Cys1–GFP). Strikingly, stimulation of G-protein or tyrosine kinase–coupled receptors induced a transient translocation of cytosolic Cys1–GFP to the plasma membrane. The plasma membrane translocation was mimicked by addition of the diacylglycerol analogue DiC8 or the phorbol ester, phorbol myristate acetate (PMA). Photobleaching recovery studies showed that PMA nearly immobilized Cys1–GFP in the membrane, whereas DiC8 left Cys1–GFP diffusible within the membrane. Addition of a smaller and more hydrophilic phorbol ester, phorbol dibuterate (PDBu), localized Cys1–GFP preferentially to the plasma and nuclear membranes. This selective membrane localization was lost in the presence of arachidonic acid. GFP-tagged Cys1Cys2-domains and full-length PKC-γ also translocated from the cytosol to the plasma membrane in response to receptor or PMA stimuli, whereas significant plasma membrane translocation of Cys2–GFP was only observed in response to PMA addition. These studies introduce GFP-tagged Cys-domains as fluorescent diacylglycerol indicators and show that in living cells the individual Cys-domains can trigger a diacylglycerol or phorbol ester–mediated translocation of proteins to selective lipid membranes.  相似文献   

6.
Protein kinase C is known to be involved both in initiation and termination of cellular responses due to phosphoinositide breakdown. Here we report that in PC12 cells (a line of neurosecretory cells derived from a rat pheochromocytoma), pretreatment with nanomolar concentrations of phorbol myristate acetate, PMA, which is believed to specifically activate protein kinase C, inhibits the cytosolic-free Ca2+ concentration rise induced by depolarizing agents. In contrast, plasma membrane potential and 45Ca efflux from preloaded cells were unaffected by PMA pretreatment. Inhibition by PMA and diacylglycerol of the cytosolic-free Ca2+ concentration rise induced by depolarization was observed also in another cell line, the insulin secreting line RINm5F. These results raise the possibility that the voltage-gated Ca2+ channel is under inhibitory control by protein kinase C.  相似文献   

7.
Two forms of protein kinase C (PKC) activity in cytosol of cultured rat mesangial cells have been characterized in vitro by using histone H1 or endogenous proteins as substrates. Histones H1-phosphorylation was significantly increased only when calcium, phosphatidylserine (PS) and 1,2-diacylglycerol (DAG) or phorbol myristate acetate (PMA) were present together in the incubation medium. EGTA, a calcium chelator, completely inhibited this activity. Upon hydroxyapatite chromatography (HPLC), the PKC activity was eluted as a main peak at 150 mM potassium phosphate with a shoulder at 180 mM. Both peaks corresponded to the type III PKC from rat brain and were identified as PKC alpha isoform by immunoblot analysis. In contrast with what was observed using histone H1, the increased phosphorylation of endogenous proteins in the presence of a mixture of Ca2+/PS, plus either DAG or PMA, was only partly reduced by EGTA. Moreover, the level of the PKC activity detected in the presence of EGTA was comparable to the level of kinase activity, measured in the presence of PS alone or associated with DAG or PMA. This suggests that mesangial cells contain PKC activity which does not absolutely require calcium. Polyacrylamide gel electrophoresis revealed that patterns of phosphorylated mesangial cell proteins are different depending on whether calcium was added or not. In the presence of calcium, PKC strongly phosphorylated the proteins of 53,000 molecular weight, a doublet of 37,000-39,000, the 24,000 and the triplet of 17,000-20,000-22,000 molecular weight. The addition of EGTA to the assays suppressed completely the labelling of most proteins; only the 20,000 molecular weight protein remained strongly labelled, while the 39,000 molecular weight band was only faintly visible. The same patterns of phosphorylations were obtained after omission of calcium in the assays containing only PS and DAG (or PMA). So, the main substrates of calcium-dependent PKC are proteins of 53,000, 39,000, 37,000, 22,000, 24,000 and 17,000 molecular weight while the protein of 20,000 molecular weight appears to be the main substrate of calcium-independent PKC. The existence in mesangial cells of at least two forms of PKC, which phosphorylate specific endogenous proteins, emphasizes the complexity of the phospholipid-dependent regulatory cascade and raises the possibility that actions of different regulators may be transduced through distinct PKC isozymes.  相似文献   

8.
The tumor-promoting phorbol ester, 12-O-tetradecanoyl-phorbol-13-acetate, causes a rapid, partial redistribution of 1,2-sn-diacylglycerol kinase from the cytosol to the particulate fraction of quiescent, starved Swiss 3T3 fibroblasts. We utilized exogenous dioleoylglycerol as substrate for the kinase. The inactive alpha form of the phorbol ester does not cause any change in diacylglycerol kinase localization, and depletion of protein kinase C (Ca2+/phospholipid-dependent enzyme) by chronic administration of phorbol ester blocks the redistribution. Phorbol ester has no direct effect on Swiss 3T3 membrane-bound diacylglycerol kinase nor does it directly effect cytosolic diacylglycerol kinase. When phorbol ester is added to Swiss 3T3 membranes in the presence of ATP, magnesium, and calcium, there is no activation of membrane-bound kinase, indicating that phorbol ester does not activate membrane-bound kinase through phosphorylation by protein kinase C. Reconstitution studies show that the soluble rat brain diacylglycerol kinase binds to diacylglycerol-enriched membranes, produced by treatment of red cell ghosts with phospholipase C or calcium, suggesting that cytosolic diacylglycerol kinase may be capable of translocation to the membrane in response to elevated substrate concentration in the intact cell. Stimulation of the cells with phorbol ester increases the total mass of diacylglycerol. In protein kinase C-depleted cells, addition of a cell-permeable synthetic diacylglycerol, dioctanoylglycerol, results in a partial redistribution of cytosolic diacylglycerol kinase to the membrane, by 5 min, also suggesting that the translocation of diacylglycerol kinase activity is regulated primarily by substrate concentration.  相似文献   

9.
The mechanism of phosphatidylcholine (PC) degradation stimulated by phorbol myristate acetate (PMA) was investigated in bovine pulmonary artery endothelial cells prelabeled with [methyl-3H]choline ([3H]choline) or [9,10-3H]myristic acid ([3H]myristic acid). Both labels were selectively incorporated into PC, and addition of PMA stimulated comparable losses of 3H from PC in cells prelabeled with [3H]choline or [3H]myristate. In cells prelabeled with [3H]choline, the loss of 3H from PC correlated with a rapid increase in intracellular free [3H]choline. The increase in intracellular [3H]choline stimulated by PMA was not preceded by an increase in any other 3H-labeled PC degradation product. PMA did not stimulate the formation of PC deacylation products in cells prelabeled with [3H]choline. In permeabilized cells prelabeled with [3H]choline, PMA stimulated the formation of [3H]choline but not [3H]phosphocholine. In intact cells prelabeled with [3H]myristate, the loss of 3H from PC induced by PMA correlated with the formation of [3H]phosphatidic acid ([3H]PA) and [3H]diacylglycerol. In the presence of ethanol, PMA stimulated the formation of [3H]phosphatidylethanol ([3H]PEt) at the expense of [3H]PA. The time-course of [3H]PEt formation was similar to the time-course of intracellular [3H]choline formation in cells stimulated with PMA. These data taken together support the notion that PC degradation in endothelial cells stimulated with PMA is mediated principally by phospholipase D. PC breakdown via phospholipase D was not observed in cells treated with phorbol esters incapable of interacting with protein kinase C. Activation of phospholipase D by phorbol esters was inhibited by long-term pretreatment of cells with PMA to down-regulate protein kinase C and by pretreatment of the cells with staurosporine. These data support the notion that activation of phospholipase D by phorbol esters is dependent upon protein kinase C.  相似文献   

10.
Phorbol myristate acetate receptors in human polymorphonuclear neutrophils   总被引:6,自引:0,他引:6  
Resting or phorbol myristate acetate (PMA)-pretreated neutrophils were disrupted by nitrogen cavitation and were fractionated on Percoll density gradients to identify the subcellular location of PMA receptors. Receptors were found in the cytoplasm of resting cells; neither primary nor secondary granules bound [3H]PMA, and the few binding sites located in non-granule membrane fractions appeared to reflect cytosolic contamination. Contrastingly, PMA-pretreated cells lost cytosolic receptors; greater than 80% of PMA-binding sites were associated with non-granule membranes. Protein kinase C activity similarly shifted from cytosol to membranes after PMA treatment. Indeed, protein kinase C and PMA receptors co-sedimented on Percoll gradients, co-eluted from Ultragel AcA 44 columns loaded with neutrophil cytoplasm, and were identically influenced by various phospholipids. Finally, PMA, mezerein, diacylglycerol, and dialkylglycerol activated protein kinase C with potencies that paralleled their respective abilities to stimulate neutrophil aggregation responses and inhibit [3H]PMA binding to whole cells or cytosol. These results fit a model of stimulus-response coupling wherein exogenous PMA or endogenous diacylglycerol solvate in cellular membranes. Cytosolic protein kinase C binds to the intramembranous ligand, forming an active, membrane-associated complex that phosphorylates nearby elements involved in triggering aggregation and other responses.  相似文献   

11.
In rats, prostaglandins (PGs) have an essential role in the decidual cell reaction (DCR), but their mechanism of action at the cellular level within the endometrium is at present uncertain. To test the hypothesis that both protein kinase C activation and calcium mobilization mediate the action of PGs within the endometrium during decidualization, the phorbol ester phorbol 12-myristate 13-acetate (PMA) or the synthetic diacylglycerol 1-oleoyl-2-acetyl-glycerol (OAG), activators of protein kinase C in vitro, and the calcium ionophore A23187, which causes calcium mobilization, were infused, alone or combined, into the uterine lumen of rats sensitized for the DCR. The results obtained indicate that both PMA and OAG have an inhibitory effect on the DCR in rats. The calcium ionophore A23187, although having no apparent effect by itself, had a synergistic effect with PMA, but not with OAG, in inhibiting the DCR. The intrauterine infusion of PMA and/or A23187 had no effect on the increase in endometrial vascular permeability (EVP), which precedes the DCR. The inhibitory effect of PMA or PMA plus A23187 on decidualization is probably not mediated by a decrease in uterine PG synthesis, as assessed by the measurement of uterine prostaglandin E concentrations at various times during the intraluminal infusion. These data suggest that activation of protein kinase C can modulate the DCR.  相似文献   

12.
A series of studies was conducted to evaluate the effects of phorbol esters and a diacylglycerol analog on basal and hormone-stimulated steroidogenesis in granulosa cells from the largest preovulatory follicle of the domestic hen. Agents that previously have been shown to activate protein kinase C, such as the tumor-promoting phorbol ester, phorbol 12-myristate 13-acetate (PMA), and the synthetic diacylglycerol analog, 1-oleoyl-2-acetylglycerol (OAG), suppressed luteinizing hormone (LH)-induced progesterone (PMA at levels of 10 and 100 ng/tube; OAG at levels of 10 and 25 micrograms/tube), and androgen (10 and 100 ng PMA; 25 micrograms OAG) production, but had no effect on basal levels of either steroid. Furthermore, PMA decreased the ability of vasoactive intestinal peptide to induce steroidogenesis, suggesting that protein kinase C activation may generally modulate the activity of hormones that act via the adenylyl cyclase/cyclic 3',5'-adenosine monophosphate (cAMP) second messenger system. In further support of this proposal was the finding that PMA and OAG decreased the production of cAMP in response to LH, and attenuated the steroidogenic response in granulosa cells exposed to 10 mM 8-bromo-cAMP. By contrast, the induction of calcium mobilization using a calcium ionophore (A23187; 0.5-2.0 microM) stimulated progesterone and androgen production without increasing intracellular levels of cAMP, and this stimulatory effect on steroidogenesis was not inhibited by the presence of 100 ng PMA/tube. From these data, we suggest that the activation of protein kinase C in granulosa cells of the hen may provide a physiological mechanism by which receptor-mediated steroidogenesis, involving the adenylyl cyclase second messenger system, is modulated.  相似文献   

13.
de Jong K  Rettig MP  Low PS  Kuypers FA 《Biochemistry》2002,41(41):12562-12567
We have shown previously that red blood cells (RBCs) can be induced to influx Ca(2+) when treated with lipid mediators, such as lysophosphatidic acid and prostaglandin E(2), that are released during clot formation. Since calcium loading of RBCs can lead to both protein kinase C (PKC) activation and phosphatidylserine (PS) exposure, we decided to investigate the possible linkage between PKC activation and membrane PS scrambling using phorbol 12-myristate-13-acetate (PMA), a commonly used activator of PKC. Treatment of RBCs with PMA in a calcium-containing buffer caused immediate PS exposure in an RBC subpopulation. The size of the subpopulation did not change upon further incubation, indicating that not all RBCs are equally susceptible to this treatment. Using a fluorescent indicator, we found a subpopulation of RBCs with elevated intracellular calcium levels. In the absence of extracellular calcium, no PS exposure was found. However, we did find cells with high levels of calcium that did not expose PS, and a variable percentage of PS-exposing cells that did not show elevated calcium concentrations. Inhibition of PKC with either calphostin C, a blocker of the PMA binding site, or chelerythrine chloride, an inhibitor of the active site, diminished the level of formation of PS-exposing cells. However, the inhibitors had different effects on calcium internalization, indicating that a high calcium concentration alone was not responsible for inducing PS exposure in the absence of PKC activity. Moreover, PKC inhibition could prevent PS exposure induced by calcium and ionophore treatment of RBCs. We conclude that PKC is implicated in the mechanism of membrane phospholipid scrambling.  相似文献   

14.
Forskolin, an activator of adenylate cyclase, stimulates adrenocorticotropin (ACTH) release and increases proopiomelanocortin mRNA levels in anterior pituitary cells by enhancing cyclic AMP (cAMP)-dependent protein kinase activity. The phorbol ester phorbol 12-myristate 13-acetate (PMA) evokes these same responses from anterior pituitary cells by activating protein kinase C. Both protein kinases most likely induce their cellular effects by catalyzing the phosphorylation of specific proteins. To elucidate the mechanisms by which cAMP-dependent protein kinase and protein kinase C promote ACTH secretion and synthesis, the phosphoproteins regulated by forskolin and PMA were identified in the cell line AtT-20, which consists of a homogeneous population of corticotrophs. Phosphoproteins were analyzed in different subcellular fractions by two-dimensional polyacrylamide gel electrophoresis and autoradiography. Forskolin increased phosphate incorporation into two proteins in the cytoplasmic fraction of 24 kilodaltons (kd) (pI 6.8) and 40 kd (pI 5.8), two proteins in the plasma membrane fraction of 32 kd (pI 8.3) and 60 kd (pI 8), and one protein in the nuclear fraction of 20 kd (pI 8.7). Insertion of the inhibitor of cAMP-dependent protein kinase into the AtT-20 cells, using a liposome technique, blocked the rise in phosphate incorporation induced by forskolin. PMA also stimulated phosphate incorporation into proteins in AtT-20 cells. PMA increased the phosphorylation of three cytoplasmic proteins of 25 kd (pI 7.6), 40 kd (pI 5.8), and 40 kd (pI 8.1) as well as two membrane proteins of 32 kd (pI 8.3) and 60 kd (pI 8) and one nuclear protein of 20 kd (pI 6.3).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The neutrophil oxidative burst is characterized by increased cellular O2 consumption due to the activation of a membrane-associated superoxide-generating NADPH-oxidase. The response is triggered by a variety of stimuli, including opsonized zymosan, formylmethionylleucinephenylalanine (FMLP), arachidonate, short-chain diacylglycerols, and phorbol myristate acetate (PMA). We herein demonstrate that incubation of cells with sphinganine or sphingosine blocks or reverses activation by these agonists. The inhibition is reversible, does not affect cell viability, and does not affect another complex cell function, phagocytosis. Inhibitory concentrations of sphinganine did not significantly affect cytoplasmic calcium levels or FMLP-generated calcium transients. Structural requirements for inhibition of the oxidative burst include a long aliphatic chain and an amino-containing head-group, and there is modest specificity for the native (erythro) isomer of sphinganine. Inhibition involves stimulus-induced activation mechanisms rather than a direct effect on the NADPH oxidase, since sphinganine did not inhibit NADPH-dependent superoxide generation in isolated membranes containing the active enzyme. Activation by FMLP, diacylglycerol, PMA, opsonized zymosan, and arachidonate was blocked by the same concentrations of sphinganine, indicating that these agonists share a common inhibited step. Three lines of evidence indicate that this step involves protein kinase C. First, in a micelle system and in platelets, long-chain bases are inhibitors of this enzyme (Hannun, Y., Loomis, C., Merrill, A., and Bell, R. M. (1986) J. Biol. Chem. 261, 12604-12609). Second, sphinganine blocks PMA-stimulated incorporation of 32PO4 into neutrophil proteins. Third, sphinganine inhibits the binding of [3H]phorbol dibutyrate to its cellular receptor, known to be protein kinase C. We suggest that long-chain bases function as physiologic modulators of cellular regulatory pathways involving protein kinase C.  相似文献   

16.
Human neutrophils treated with phorbol 12-myristate 13-acetate (PMA) or dioctanoylglycerol exhibited a large (10-fold), sustained accumulation of the mass of diradylglycerol, beginning 1 min after stimulation and continuing for 30 to 60 min. Phorbol dibutyrate was less potent than PMA in stimulating diradylglycerol accumulation, whereas the 4-alpha analogs of PMA and phorbol dibutyrate were inactive. Submaximal concentrations of PMA (0.5 to 2.5 nM) plus the calcium ionophore, ionomycin (15 to 60 nM), led to synergistic accumulation of diradylglycerols. Chlorpromazine and sphingosine, inhibitors of protein kinase C, blocked PMA-stimulated accumulation of diradylglycerol with IC50 concentrations of 32 and 9 microM, respectively, paralleling their inhibition of PMA-stimulated O2- production. These compounds also inhibited the ionomycin-stimulated accumulation of diradylglycerols. A third protein kinase C inhibitor, H-7, was less effective, inhibiting PMA-stimulated accumulation of diradylglycerol by 25% at 100 microM. Differential sensitivity to alkaline hydrolysis suggests that diradylglycerols that accumulate in response to PMA or ionomycin stimulation are composed of a mixture of two distinct diglyceride species, diacylglycerols and alkylacylglycerols. Whereas diacylglycerol may activate cellular protein kinase C, the importance of the production of alkylacylglycerols is uncertain.  相似文献   

17.
18.
Human HeLa cells and murine L(S) cells are highly sensitive to the cytocidal activity of tumor necrosis factor (TNF) when simultaneously treated with the inhibitor of protein synthesis cycloheximide. This cytocidal activity of TNF was inhibited up to 90% in both cell lines after a 15-60-min pretreatment with 3-10 ng/ml of phorbol 12-myristate 13-acetate (PMA). This inhibition was long lasting for HeLa cells but transient for L(S) cells. The protection afforded by PMA was most effective when the cells were pretreated with this phorbol ester, but it decreased when PMA was added together with TNF or after TNF addition. This finding suggested that PMA interfered with one of the early steps in the mechanism of action of TNF. A pretreatment with the calcium ionophore A23187 also reduced the cytocidal activity of TNF in both HeLa and L(S) cells to about the same extent. Treatment of these cells with either PMA or A23187 significantly decreased the binding of 125I-TNF to cell surface receptors. This decrease paralleled the time course and dose-response of the inhibition of cytocidal activity. In addition, treatment of HeLa cells with 1-oleyl-2-acetyl-glycerol (OAG) also induced a rapid loss of TNF binding capacity. Since OAG, PMA, and A23187 are all activators of protein kinase C (Ca2+/phospholipid-dependent enzyme), these results suggest that this kinase is involved in modulation of TNF sensitivity. Furthermore, depletion or inhibition of protein kinase C antagonized PMA-induced effects on TNF cytotoxicity and binding to receptors. Internalization of bound TNF was not significantly affected by PMA treatment, and Scatchard analysis of binding data indicated that PMA decreased TNF receptor binding affinity rather than the number of TNF-binding sites. These findings suggest that protein kinase C may have a physiological role in mediating TNF sensitivity.  相似文献   

19.
The following two processes related to astrocytes are thought to depend on intercellular coupling through gap junctions: the spatial buffering of K+o and the spread of calcium waves in the astrocytic syncytium. We have used the following two independent methods to measure the open state of gap junctions: injection of lucifer yellow, and optical calcium imaging of calcium waves in response to probing the cells with a micropipette. The spread of lucifer yellow and calcium waves was inhibited if the cells were treated with either phorbol 12-myristate 13-acetate (PMA) or a synthetic diacylglycerol that activates protein kinase C. Down-regulation of protein kinase C by a 24-h treatment with PMA inhibited the uncoupling effect of PMA, supporting a direct involvement of protein kinase C in the regulation of astroglial gap junctions. Purinergic P2Y receptors, which are coupled to the inositol phospholipid pathway, are expressed by most astroglia in culture. Activation of the P2Y purinergic receptor with the selective agonist 2-methylthio-ATP uncoupled astroglia in a manner similar to the effect of treatment with PMA. Modulation of gap junctional conductance could isolate specific pathways within the astrocytic syncytium to form an extraneuronal information transfer network in brain.  相似文献   

20.
Receptor mediated internalization of 125I-ANF (99-126) and the underlying mechanism was studied in PC12 cells. Phosphorylation of PC12 cell plasma membrane proteins at 0 degrees C or 37 degrees C was not altered in presence of ANF (99-126) or c-ANF (4-23). Exposure of cells to phorbol 12-myristate 13-acetate (PMA, 100 ng/ml) did not alter the endocytic rate or extent of 125I-ANF (99-126) internalization. When cells were treated with a combination of PMA and the calcium ionophore A23187, internalization was not stimulated. Incubation with A23187 (10 microM) alone decreased 125I-ANF (99-126) internalization by 22% in Ca2+ containing medium. Cell surface binding increased 10% in the presence of Ca2+ compared to Ca2+ free medium, irrespective of the presence of A23187. Ca2+ appears to play an important role in the binding of ANF to the receptor and initiation of ligand-receptor complex internalization. Activation of protein kinase C or receptor phosphorylation is not an essential step in initiating ANF receptor internalization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号