首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The size, distribution, and content of catalase-reactive microperoxisomes were studied cytochemically in slow-twitch oxidative (SO), fast-twitch oxidative glycolytic (FOG), and fast-twitch glycolytic (FG) fibers of soleus and extensor digitorum longus (EDL) rat muscles. Fiber types were classified on the basis of mitochondrial content and distribution, Z-band widths, and myofibril size and shape. Microperoxisomes were generally located between myofibrils at the I-bands. The absence of crystalloid inclusions prevented positive identification of microperoxisomes in nonreacted and aminotriazole-inhibited muscles. EDL and soleus SO fibers possessed the largest microperoxisomes, whereas FOG and FG fibers of the EDL contained small- to medium-sized microperoxisomes. Comparing either microperoxisome number per muscle fiber area or microperoxisome area per fiber area revealed significant differences between fiber types with this ranking: soleus SO greater than EDL SO greater than EDL FOG greater than EDL FG. The present observations demonstrate that the content of catalase-positive microperoxisomes is greatest in the oxidative muscle fiber types. These cytochemical findings account for the higher catalase activity in homogenates of soleus muscles as compared to that of EDL muscles, because the soleus contains more oxidative fibers than EDL.  相似文献   

2.
The central portion of the medial head of the gastrocnemius of control (normoxic and normothermic), hypoxia-, cold-, and cold plus hypoxia-acclimated guinea pigs was analyzed for capillary supply and fiber composition to elucidate changes in capillarity induced by environmental stresses. The muscle was cut at midbelly, frozen, sectioned, and stained for myosin ATPase. Fiber cross-sectional areas; percentages of slow-twitch oxidative (SO), fast-twitch oxidative-glycolytic (FOG), and fast-twitch glycolytic (FG) fibers; and numbers of capillaries around each fiber type were measured. Growth rates of all four guinea pig groups were similar. Capillarity was not affected by acclimation to hypoxia. Cold and cold plus hypoxia acclimation led to increased numbers of capillaries around the fiber in all three fiber types. In addition, significant increases in the percentage of FOG fibers and concomitant decreases in the percentage of FG fibers compared to controls were found in cold and in cold plus hypoxia indicating that a transformation of fiber type from FG to FOG had occurred. The increase in FOGs at the expense of the FGs did not occur in the guinea pigs grown in a hypoxic environment. The increased total capillarity in those muscles studied was the result of more capillaries around all fiber types and was not due to simple transformation of fibers.  相似文献   

3.
The populations of fiber types in hindlimb muscles of the tree shrew (Tupaia glis), lesser bushbaby (Galago senegalensis), and the slow loris (Nycticebus coucang) were described and an attempt was made to correlate populations of fiber types and locomotor patterns. Muscle fibers were assigned to one of the following groups: fast-twitch glycolytic (FG), fast-twitch oxidative-glycolytic (FOG), and slow-twitch oxidase (SO). Histochemical techniques for the demonstration of alkaline- and acid-stable ATPase, succinic dehydrogenase, and mitochondrial alpha-glycerophosphate dehydrogenase were used in the classification of muscle fibers. Results indicated that the FG fiber type is the predominant fiber type in muscles used for jumping, the FOG fiber type is predominant in muscles used for running, and the SO fiber type occurs in high percentages in postural muscles. The SO fiber was also the most common fiber in muscles of the slow loris-a species that exhibits a slow, deliberate, sustained locomotor pattern. Intramuscular regional variations in populations were seen in some larger muscles of the tree shrew, but not in the lesser bushbaby and slow loris. Our results did not support the contentions of others that analogous muscles in different species have similar populations of fiber types.  相似文献   

4.
Lizard skeletal muscle fiber types were investigated in the iliofibularis (IF) muscle of the desert iguana (Dipsosaurus dorsalis). Three fiber types were identified based on histochemical staining for myosin ATPase (mATPase), succinic dehydrogenase (SDH), and alphaglycerophosphate dehydrogenase (alphaGPDH) activity. The pale region of the IF contains exclusively fast-twitch-glycolytic (FG) fibers, which stain dark for mATPase and alphaGPDH, light SDH. The red region of the IF contains fast-twitch-oxidative-glycolytic (FOG) fibers, which stain dark for all three enzymes, and tonic fibers, which stain light for mATPase, dark for SDH, and moderate for alphaGPDH. Enzymatic activities of myofibrillar ATPase, citrate synthase, and alphaGPDH confirm these histochemical interpretations. Lizard FG and FOG fibers possess twitch contraction times and resistance to fatigue comparable to analogous fibers in mammals, but are one-half as oxidative and several times as glycolytic as analogous fibers in rats. Lizard tonic fibers demonstrate the acetylcholine sensitivity common to other vertebrate tonic fibers.  相似文献   

5.
The profiles of fiber types in hindlimb muscles from the tree shrew (Tupaia glis), lesser bushbaby (Galago senegalensis), and the slow loris (Nycticebus coucang) were determined using histochemical techniques. Fibers were classified as fast-twitch oxidative-glycolytic (FOG), fast-twitch glycolytic (FG), slow-twitch oxidative (SO), or fast-twitch oxidative (FO), according to reactions for alkaline-stable ATPase, acid-stable ATPase, alpha-glucan phosphorylase, reduced nicotinamide adenine dinucleotide diaphorase, succinate dehydrogenase, mitochondrial alpha-glycerophosphate dehydrogenase (MaGPDH), and beta-hydroxybutyric dehydrogenase, as well as glycogen staining by the periodic acid-Schiff technique. Prolonged dissection of numerous muscles was carried out on hindlimbs submersed in cold Tyrode's solution; such treatment had no qualitative effect on enzyme staining reactions, but it is not a suitable procedure if one wishes to stain for glycogen. Fast-twitch oxidative (FO) fibers are alkaline-stable ATPase-positive and possess low MalphaGPDH enzyme activity. These fibers have not been reported previously in any hindlimb muscles. No muscles of any species studies were homogeneous with respect to fiber type. Slow loris muscles lacked FG fibers. The majority of the muscles of the slow loris contained numerous SO fibers. The relationship between enzyme activities and locomotor pattern is discussed.  相似文献   

6.
The purpose of this study was to estimate the absolute and relative masses of the three types of skeletal muscle fibers in the total hindlimb of the male Sprague-Dawley rat (Rattus norvegicus). For six rats, total body mass was recorded and the following weights taken from dissection of one hindlimb: 32 individual major muscles or muscle parts, remaining skeletal musculature (small hip muscles and intrinsic foot muscles), bone, inguinal fat pad, and skin. The fibers from the 32 muscles or muscle parts (which constituted 98% of the hindlimb skeletal muscle mass) were classified from histochemistry as fast-twitch oxidative glycolytic (FOG), fast-twitch glycolytic (FG), or slow-twitch oxidative (SO), and their populations were determined. Fiber cross-sectional areas from the same muscles were measured with a digitizer. Mass of each of the fiber types within muscles and in the total hindlimb was then calculated from fiber-type population, fiber-type area, and muscle-mass data. Skeletal muscle made up 71% of the total hindlimb mass. Of this, 76% was occupied by FG fibers, 19% by FOG fibers, and 5% by SO fibers. Thus, the FG fiber type is clearly the predominant fiber type in the rat hindlimb in terms of muscle mass. Fiber-type mass data are compared with physiological (blood flow) and biochemical (succinate dehydrogenase activities) data for the muscles taken from previous studies, and it is demonstrated that these functional properties are closely related to the proportions of muscle mass composed of the various fiber types.  相似文献   

7.
The lizard family Phrynosomatidae comprises three subclades: the closely related sand and horned lizards, and their relatives the Sceloporus group. This family exhibits great variation in ecology, behavior, and general body plan. Previous studies also show that this family exhibits great diversity in locomotor performance abilities; as measured on a high-speed treadmill, sand lizards are exceptionally fast sprinters, members of the Sceloporus group are intermediate, and horned lizards are slowest. These differences are paralleled by differences in relative hindlimb span. To determine if muscle fiber-type composition also varies among the three subclades, we examined the iliofibularis (IF), a hindlimb muscle used in lizard locomotion, in 11 species of phrynosomatid lizards. Using histochemical assays for myosin ATPase, an indicator of fast-twitch capacity, and succinic dehydrogenase, denoting oxidative capacity, we classified fiber types into three categories based on existing nomenclature: fast-twitch glycolytic (FG), fast-twitch oxidative-glycolytic (FOG), and slow-twitch oxidative (SO). Sand lizards have a high proportion of FG fibers (64-70%) and a low proportion of FOG fibers (25-33%), horned lizards are the converse (FG fibers 25-31%, FOG fibers 56-66%), and members of the Sceloporus group are intermediate for both FG (41-48%) and FOG (42-45%) content. Hence, across all 11 species %FOG and %FG are strongly negatively correlated. Analysis with phylogenetically independent contrasts indicate that this negative relationship is entirely attributable to the divergence between sand and horned lizards. The %SO also varies among the three subclades. Results from conventional nested ANCOVA (with log body mass as a covariate) indicate that the log mean cross-sectional area of individual muscle fibers differs among species and is positively correlated with body mass across species, but does not differ significantly among subclades. The log cross-sectional area of the IF varies among species, but does not vary among subclades. Conversely, the total thigh muscle cross-sectional area does not vary among species, but does vary among subclades; horned lizards have slimmer thighs. Muscle fiber-type composition appears to form part of a coadapted suite of traits, along with relative limb and muscle sizes, that affect the locomotor abilities of phrynosomatid lizards.  相似文献   

8.
1. Cross sections from the middle of the gluteus medius were removed from 10 adult horses and used to evaluate changes in histochemically determined muscle fiber type and biochemically determined metabolic enzyme activities as a function of sample depth. 2. Muscle fiber types determined using histochemical methods for myosin ATPase (pH 9.4) and succinic dehydrogenase (SDH) activity indicated percent fast-twitch glycolytic (FG) muscle fibers decreased and slow-twitch oxidative (SO) fibers increased as a function of increasing sampling depth. 3. Percent histochemically determined fast-twitch oxidative glycolytic (FOG) fibers decreased slightly only in the deepest region of the gluteus medius. 4. Citrate synthase (CS) enzymatic activity, used as a marker for mitochondrial oxidative potential, increased 2.5-fold in activity per g of muscle protein from 1 to 8 cm sampling depth. 5. 3-hydroxyacyl-CoA dehydrogenase (HAD) enzymatic activity, used as a marker for lipid oxidation potential, increased 3-fold in activity per g of muscle protein when the depth increased from 1 to 8 cm. 6. Phosphorylase (PS) enzymatic activity, used as a marker for potential glycogen utilization, decreased 50% in activity per g of muscle protein when going from 1 to 8 cm. 7. Lactate dehydrogenase (LDH) enzymatic activity, used as a marker for anaerobic glycolytic potential, decreased about 50% in activity as the sampling depth increased from 1 to 8 cm. 8. In summary, the superficial portion of the equine gluteus medius was found to be more glycolytic and less aerobic in its metabolic profile than deeper regions. The muscle became progressively more aerobic and less glycolytic with increasing sampling depth.  相似文献   

9.
Summary The dependence of adenosine-triphosphatase (ATPase) and succinic dehydrogenase (SDH) histochemical reactions on the pH of the preincubation medium was studied in serial cross sections of 1- to 6-month-old rat extensor digitorum longus (EDL) and soleus (SOL) muscles.The use of a wide spectrum of pH values confirmed the previous results showing that: (1) according to their ATPase and SDH reactions 3 types of extrafusal muscle fibres, i.e., fast-twitch glycolytic (FG), fast-twitch oxidative-glycolytic (FOG) and slow-twitch oxidative (SO) and 3 types of intrafusal muscle fibres, i.e. typical and intermediate nuclear bag fibres and nuclear chain fibres were observed; (2) only acid preincubation (pH 4.35) is necessary to demonstrate the reversal of the ATPase reaction; while (3) alkali preincubation (pH 10.4) does not provide any new important information as compared with ATPase without preincubation. Furthermore, it was shown that: (4) fast-twitch muscle fibres exhibited high ATPase activity on preincubations at pH 4.9 to 10.4, slow-twitch fibres had very high ATPase activity on preincubation at pH 4.3 and 4.5; (5) after preincubation at pH 4.5 two types of FOG fibres were observed, differing in their ATPase activity; (6) in both muscles there were fibres with intermediate ATPase activity both after acid and/or alkali preincubations; (7) the intrafusal muscle fibres exhibited some specific characteristics when compared with extrafusal fibres.In contrast to the ATPase reactions, SDH activity was decreased equally, in both extra- and intrafusal fibres, with increasing acidity and alkality of the preincubation medium.  相似文献   

10.
The dependence of adenosine-triphosphatase (ATPase) and succinic dehydrogenase (SDH) histochemical reactions on the pH of the preincubation medium was studied in serial cross sections of 1- to 6-month-old rat extensor digitorum longus (EDL) and soleus (SOL) muscles. The use of a wide spectrum of pH values confirmed the previous results showing that: (1) according to their ATPase and SDH reactions 3 types of extrafusal muscle fibres, i.e., fast-twitch glycolytic (FG), fast-twitch oxidative-glycolytic (FOG) and slow-twitch oxidative (SO) and 3 types of intrafusal muscle fibres, i.e. typical and intermediate nuclear bag fibres and nuclear chain fibres were observed; (2) only acid preincubation (pH 4.35) is necessary to demonstrate the reversal of the ATPase reaction; while (3) alkali preincubation (pH 10.4) does not provide any new important information as compared with ATPase without preincubation. Furthermore, it was shown that: (4) fast-twitch muscle fibres exhibited high ATPase activity on preincubations at pH 4.9 to 10.4, slow-twitch fibres had very high ATPase activity on preincubation at pH 4.3 and 4.5; (5) after preincubation at pH 4.5 two types of FOG fibres were observed, differing in their ATPase activity; (6) in both muscles there were fibres with intermediate ATPase activity both after acid and/or alkali preincubations; (7) the intrafusal muscle fibres exhibited some specific characteristics when compared with extrafusal fibres. In contrast to the ATPase reactions, SDH activity was decreased equally, in both extra- and intrafusal fibres, with increasing acidity and alkality of the preincubation medium.  相似文献   

11.
Contractile properties and innervation patterns were determined in identified single fibers from the iliofibularis muscle of the desert iguana, Dipsosaurus dorsalis. Single fibers from both the red and white regions of the iliofibularis muscle were dissected along their length under oil and a portion was mounted on transducers for determination of maximum isometric tension (Po) and unloaded shortening velocity (Vmax) using the slack test method. Fibers were chemically skinned and activated by high Ca++. The remaining portion of the muscle fiber was mounted on a glass slide and histochemically treated to demonstrate myosin ATPase activity. Fibers studied functionally could therefore be classified as fast or slow according to their myosin ATPase activity, and they could also be classified metabolically according to the region of the muscle from which they were dissected. Fast-twitch glycolytic (FG) fibers from the white region and fast-twitch oxidative, glycolytic (FOG) and slow fibers from the red region had shortening velocities at 25 degrees C of 7.5, 4.4, and 1.5 l X s-1, respectively. Po did not differ in the three fiber types, averaging 279 kN X m-2. In a second experiment, 10 microns sections were examined every 30 microns through the proximal-most 7.5 mm of the iliofibularis muscle for motor endplates. Sections were stained to demonstrate regions of acetylcholinesterase activity. Fibers with visible endplates were classified in serial sections by histochemical treatment for myosin ATPase and succinic dehydrogenase. All slow fibers examined (n = 22) exhibited multiple endplates, averaging one every 725 microns.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The degree of minced rat muscle regeneration in the absence of nerve fibers was compared with that of normal regenerates between one and 270 days postoperatively. Up to around 30 days, the number of muscle fibers and their morphology were comparable in both normal innervated and denervated regenerates; both showed clear cross striations and peripherally located nuclei. Histochemically, SDH and myofibrillar ATPase (pH=9.4) reactions were positive, but there were no typical signs of fiber types in either case of regeneration. The only consistent difference in the early period was the smaller fiber cross sectional areas in denervated regenerates than in innervated ones. Starting about 40 days, the muscle fibers in innervated regenerates became differentiated into different fiber types (fast-twitch-oxidative-glycolytic, FOG., fast-twitch-glycolytic, FG., slow-twitch-oxidative, SO.) but there were no such activities in denervated regenerates, although their SDH and myofibrillar ATPase reactions remained positive for a long time. Degenerating muscle fibers could no longer be identified in innervated regenerates. In the denervated regenerates, however, muscle fibers underwent atrophic or degenerative changes and were replaced by connective tissue. The complete disappearance of muscle fibers varied with individual regenerates. In some cases, it occurred about 90 days and in others, traces of muscle fibers could still be seen as late as 150 days postoperatively. Thus, nerves seem to be important primarily in the late phase of regeneration; namely, differentiation of fiber types and maintenance of the structural integrity of muscle fibers.  相似文献   

13.
We used acid digestion and glycogen depletion to determine fascicle organization, fiber morphology, and physiological and anatomical features of individual motor units of an in-series muscle, the pectoralis (pars thoracicus) of the pigeon (Columba livia). Most fascicles are attached at one end to connective tissue. Average fiber length in the four regions examined range from 42% to 66% of average fascicle length. More than 65% of fibers are blunt at one end of a fascicle and taper intrafascicularly. Fibers with blunt–blunt endings range from 13% to 31% of the population in different regions; taper–taper fibers range from 2% to 17%. Pigeon pectoralis fibers are distinguished histochemically into fast-twitch glycolytic (FG) and fast-twitch oxidative-glycolytic (FOG) populations. Three units composed of FG fibers (FG units) contract more quickly than three units composed of FOG fibers (FOG units) (range 31–37 vs 47–62 msec), produce more tetanic force (0.11–0.32 vs 0.02–0.05 N) and are more fatigable (<18% initial force vs >50% after repeated stimulation). Most motor units are confined to one of the four muscle regions. Territory of two FOG units is <30% of parent fascicle length. Territories of other units spanned parent fascicles; most fibers in these units do not extend the full fascicle length. Compared to FG units, FOG units have lower maximum innervation ratios and density indices (ratio of depleted/total FOG fibers in territory 8–14% vs 58–76% for FG units). These differences support the hypothesis that FG units are organized to produce substantial force and power for takeoff, landing and other ballistic movements whereas FOG units are suited for sustained flight when power requirements are reduced. Implications of findings for understanding the control of in-series muscles and the use of connective tissue elastic elements during wing movements are discussed. J.Morphol. 236:179–208, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
The effect of growth on the capillarity and fiber type composition of the diaphragm, soleus and extensor digitorum longus (EDL) muscles of rats weighing between 55 and 330 g have been studied. Muscle samples obtained from the anesthetized rat were rapidly frozen and sliced transversely in a cryostat. The sections were stained histochemically by the SDH method and the myosin ATPase method after preincubation at pH 4.3 to typify fibers (FG, FOG and SO fibers). To visualize capillaries, the myosin ATPase method after preincubation at pH 4.0 was used. The percentage of FOG fibers decreased in all muscles with growth. While the FG and SO fibers increased in the diaphragm, SO fibers increased in the soleus, and FG fibers increased in the EDL. The capillary density showed a hyperbolic decrease with growth in all muscles, while the number of capillaries around each fiber increased in all muscles with growth. It is concluded that growth causes the changing properties of the motoneurons and the new capillary formation in the diaphragm muscle, as well as the soleus and EDL muscles.  相似文献   

15.
We studied the fiber types and contractile properties of the extensor digitorum longus (EDL) and soleus (SOL) muscles from young adult mice, rats and guinea pigs, and the correlation between these two parameters. Individual fibers in both muscles were classified as fast-twitch glycolytic (FG), fast-twitch oxidative glycolytic (FOG) or slow-twitch oxidative (SO) fibers according to Peter et al., and type II B, II A, or I fibers according to Brooke & Kaiser. Contractile properties were measured in situ at 37 degrees C. The isometric twitch contraction time (CT) and one-half relaxation time (1/2 RT) tended to be shortened in proportion to the area occupied by type II fibers, and type II B fibers. However, the differences between CT and fiber types were not always uniform among the three species. The CT of the rat EDL, in spite of its higher proportion of type II B fibers about 10% was the same as that of the guinea-pig EDL. The SOL of the mouse, composed of about 50% type I (SO) fibers, had a CT about as short as that of the EDL. In the case of the classification by Peter et al., the relationship between the percentage of subgroups of fast-twitch fibers and the CT or 1/2 RT, but not the resistance to fatigue, was not obvious. The resistance to fatigue tended to be enhanced in proportion to the area occupied by FOG in the EDL and by SO (type I) in the SOL. These results suggest that the contractile properties of individual fibers identified histochemically are distinct among animal species, producing interspecies differences in fiber types along with different contractile properties. However, it may be possible to compare the difference between fiber types and CT or 1/2 RT in the classification based on the pH lability of myosin ATPase, and also the difference between fiber types and resistance to fatigue in the classification based on the oxidative enzyme.  相似文献   

16.
Summary The ultrastructure of fast-twitch-oxidative-glycolytic (FOG), fasttwitch-glycolytic (FG) and slow-twitch-oxidative (SO) fibers in plantaris and soleus muscles of normal and streptozotocin-diabetic rats was studied. In the diabetic animals, the mitochondria of FOG and SO fibers showed a loss of cristae and an increase in electron-dense granules. There was also an increased number of lipid droplets in close proximity to the mitochondria and the nuclei, and a separation of individual muscle nuclei to form satellite cells. Higher incidences of surface projections and sarcoplasmic splittings at the nuclear region were noticed in SO fibers. The FG fibers showed some disorientation of the T-tubular system. It is concluded that streptozotocin-diabetes has differential effects on the fine structure of the three fiber types of rat skeletal muscle.Supported by USPHS Grant AM 18280-04, Boston University Grant GRS-405-BI, and a grant-in-aid award from Sigma Xi Society  相似文献   

17.
Histochemical analysis of five muscles from the water monitor, Varanus salvator, identified three major classes of fibers based on histochemical activities of the enzymes myosin ATPase (mATPase), succinic dehydrogenase (SDH), and alpha-glycerophosphate dehydrogenase (alpha GPDH). Fast-twitch, glycolytic (FG) fibers were the most abundant fiber type and exhibited the following reaction product intensities: mATPase, dark; SDH, light; alpha GPDH, moderate to dark. Fast-twitch, oxidative, glycolytic (FOG) fibers were characteristically mATPase, dark; SDH, light; alpha GPDH, moderate to dark. The third class of fibers had the following histochemical characteristics: mATPase, light; SDH, moderate to dark; alpha GPDH, light. These fibers were considered to be either slow twitch, or tonic, and oxidative (S/O). Pyruvate kinase (PK), alpha GPDH, and citrate synthase (CS) activities were measured in homogenates of the same muscles studied histochemically. There was a positive relationship between both PK and alpha GPDH activities and the percentage of glycolytic fiber types within a muscle. Likewise, CS activities were greater in muscles high in FOG and S/O content. Based on CS activities, Varanus S/O fibers were eight-fold more oxidative than FG fibers within the same muscle. PK/CS ratios suggested that FG fibers possess high anaerobic capacity, similar to the iguanid lizard Dipsosaurus. The fiber type composition of the gastrocnemius muscle, relative to that of other lizard species, suggests that varanid lizards may possess a greater proportion of FOG and S/O fibers than other lizards.  相似文献   

18.
The distribution and morphology of motoneurons innervating specific types of muscle fibers in the levator scapulae superior (LSS) muscle complex of the bullfrog (Rana catesbeiana) and tiger salamander (Ambystoma tigrinum) were studied by retrograde labelling with cholera toxin-conjugated horseradish peroxidase (CT-HRP). The LSS muscle complex in both of these amphibians has a segregated pattern of muscle-fiber types (tonic; fast oxidative-glycolytic twitch [FOG]; fast glycolytic twitch [FG]) along an anteroposterior axis. The entire motor pool was labelled by injection of CT-HRP into the whole LSS muscle complex. The motoneurons innervating specific fiber types were labelled by injection of CT-HRP into certain muscle regions. The organization of the motoneuron pool of the LSS complex of both species was arranged in two columns—one ventrolateral and one medial. In bullfrogs, the ventrolateral column contains motoneurons innervating FG and tonic fiber types and the medial column contains motoneurons innervating FOG fiber types. In tiger salamanders, the ventrolateral column contains motoneurons innervating FG fiber types and the medial column contains motoneurons innervating FOG and tonic fiber types. The different motoneuron types also have different soma sizes and patterns of dendritic arborization. In both species, FG motoneurons are the largest, whereas FOG motoneurons are intermediate in size and tonic motoneurons are the smallest. In bullfrogs, the main dendrites of FG motoneurons extend into the dorsolateral and the ventrolateral gray matter of the spinal cord, whereas the dendrites of FOG motoneurons extend into the ventral and medial cord. In the tiger salamander, dendrites of FG motoneurons extend into the ventrolateral spinal cord and dendrites of the FOG motoneurons extend more generally into the ventral cord. Dendrites of tonic motoneurons in both amphibians were small and short, and difficult to observe. These results establish that motoneurons innervating different types of muscle fibers in the LSS muscle complex are segregated spatially and display consistent morphological differences. © 1993 Wiley-Liss, Inc.  相似文献   

19.
The purpose of this study was to determine histologically the distribution of microspheres (MSs) (14 micron), and hence the relative distribution of blood flow, in rat plantaris muscle relative to the fiber types (fast-twitch-oxidative-glycolytic [FOG], fast-twitch-glycolytic [FG], and slow-twitch-oxidative [SO]). Three conditions were investigated: 1) preexercise standing; 2) treadmill locomotion at 15 m/min (fast walking); and 3) treadmill locomotion at 60 m/min (moderate galloping). The MS suspension (containing 1 x 10(6) MSs) was infused into the ascending aorta via a catheter in the carotid artery under each of the 3 conditions so that MSs were distributed to the tissues in proportion to their respective blood flows. Sections (20 micron) of the plantaris muscle were cut and assayed for reduced nicotinamide adenine dinucleotide tetrazolium reductase (NADH-TR) and myofibrillar adenosine triphosphatase (ATPase) activities so the fibers could be typed as SO, FOG, or FG. MSs were located in the NADH-TR sections, and the fibers next to the MSs were classified and counted. The observed numbers of fibers of each type in each condition that were adjacent to MSs were compared to the predicted number of adjacent fibers based on the assumption the MSs were randomly distributed in the tissue. This analysis demonstrated that MSs (and blood flows) were preferentially distributed to SO fibers during preexercise, to SO and FOG fibers during slow locomotion, and to FOG fibers during fast locomotion. The data support the contention that blood flow is distributed in muscles of conscious animals as functions of fiber type and exercise intensity.  相似文献   

20.
Studies of medium- and large-bodied avian species have suggested that variation in flight muscle composition is related to differences in flight behavior. For example, slow-twitch or tonic fibers are generally found only in the flight muscles of non-volant or soaring/gliding birds. However, we know comparatively little about fiber composition of the muscles of the smallest birds. Here we describe the fiber composition of muscles from the wings, shoulders, and legs of two small avian species, which also display very high wingbeat frequencies: Anna's hummingbirds (Calypte anna) and zebra finches (Taeniopygia guttata). All flight muscles examined in both species contained exclusively fast oxidative glycolytic (FOG) fibers. These unique results suggest that fast oxidative fibers are both necessary and sufficient for the full range of flight behaviors in these small-bodied birds. Like all other studied birds, the zebra finch gastrocnemius, a tarsometatarsal extensor, contained a mixture of FOG (27.1%), slow oxidative (SO, 12.7%), and fast glycolytic (FG, 60.2%) fibers. By contrast, the hummingbird gastrocnemius lacked FG fibers (85.5% FOG, 14.5% SO), which may reflect the reduced role of the hindlimb during take-off. We further hypothesize that thermogenic requirements constrain fiber type heterogeneity in these small endothermic vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号