首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of a long-term application of sulphite, thiosulphate and sodium sulphate on the soil microflora and spruce seedlings was investigated in a pot experiment. Sulphur compounds decreased the concentration of bacteria, including thiobacilli, increased the concentration of microscopic fungi and sulphate-reducing bacteria; they inhibited respiration, nitrification and oxidation of thiosulphate, stimulated ammonification and oxidation of elemental sulphur. In certain cases the spruce rhizosphere exhibited just the opposite effect. In the rhizosphere the sulphate-reducing bacteria were suppressed together with thiobacilli, whose unit oxidative activity increased substantially. Growth of seedlings was inhibited by sulphite and stimulated by thiosulphate and sulphate. Sulphite, the effects of which were similar to those of sulphur dioxide immissions, was the most effective compound. In regions influenced by immissions the soil is apparently intoxicated by the absorbed sulphite.  相似文献   

2.
Effect of industrial immissions with high sulphur dioxide content on the upper horizons of spruce forest soils in NW Bohemia was investigated. The content of sulphates, oxidative activity towards sulphide, elemental sulphur, thiosulphate and sulphite, concentration and species representation of thiobacilli in horizons F, H and A in regions highly affected by immissions (two localities) and in regions relatively less influenced (three localities) were followed. In the affected areas the sulphur content in the soil was higher, the species representation of thiobacilli was similar and their concentration was higher, the ability of the soil to oxidize thiosulphate was inhibited and oxidation of elemental sulphur was stimulated. The oxidation of sulphide and sulphite was not significantly affected by the immissions. Changes caused by immissions could be observed only in horizons F and H and did not involve horizons A.  相似文献   

3.
The existing knowledge of the effects of industrial SO2 immissions on forest soil microflora is reviewed. Most Czechoslovak data were obtained in heavily polluted spruce stands in the Ore Mountain and in the Slavkov Forest (NW Bohemia). The industrial SO2 immissions soil. Pseudomonads yield to yellow-and red-pigmented microorganisms, among micromycetes there is a higher incidence of the generaRhizopus andMucor. The biochemical capabilities of the bacterial populations are reviewed: the immissions have a negative effect on the occurrence and efficiency of heterotrophic nitrifiers, increase the concentration of autotrophic as well as heterotrophic oxidizers of S0 and of sulfite-resistant bacteria. The soil activities of the C and N cycles are inhibited whereas the oxidation of S0 is stimulated. Changes in the soil of spruce stands are probably due to intoxication with sulfur dioxide (and possibly with sulfite) rather than to acidification. Replacement of withered spruce stands with mountain ash brings about a dramatic improvement of the soil microflora. Presented at the16th Congress of the Czechoslovak Microbiological Society, Banská Bystrica, October 21–23, 1983.  相似文献   

4.
The occurrence of biochemical activities of the sulphur cycle was followed in isolates of heterotrophic bacteria from the fermentative horizon of a spruce stand, a grass-covered withered spruce stand and of mountain ash and birch stand in the area strongly influenced by sulphur immissions. The occurrence of bacteria capable of reducing S0 to S2−, oxidizing S0 and S2O3 2− to SO4 2− and solubilizing S0 increased in the above order. The occurrence of producers of thiosulphate sulphurtransferase (rhodanese), thiosulphate oxidase and sulphite oxidase increased and the level of the production of these enzymes increased as well. Heterotrophic bacteria (mostly pseudomonads) from the grass-covered stands exhibit more activities of the sulphur cycle than bacteria from the spruce stand without ground vegetation.  相似文献   

5.
Three different methods were used for the monitoring of airborne microorganisms: (1). Cultivation of microbes trapped in a single-stage biological impactor directly on a solid agar nutrient medium (meat-pepton agar, Sabouraud's agar, blood agar) in Petri dishes. The repeated yearly course of concentrations of cultivable organisms, or colony-forming units (CFU), was obtained by long-run measurements. (2) Aeresol was trapped by impact on membrane filters, and the microorganisms were cultivated by placing the filters on the agar media as above. (3) Direct microorganism counting in a fluorescence microscope; air was sampled in a four-stage impactor where the aerosol was trapped on microscope slides, and the microorganisms were subsequently stained with fluorescent dyes (fluorescein diacctate, 4;6-diamidino-2-phenylindole and, particular, ethidium bromide).

The highest microorganism counts were obtained by using the fluorescence method, the direct cultivation method gave counts an order of magnitude lower, and the method of cultivation on filters gave values approximately 10 times lower than the conventional cultivation.

High variations in the airborne CFU concentrations over the year were observed in Prague. Over the winter season the variations in the amounts of airborne bacteria and other micromycetes as well as the amounts themselves were lower than in the remaining seasons. In the spring and in the summer, the concentrations of yeasts and other micromycetes were highest, whereas in the autumn the concentrations of the microorganisms decreased. Among the bacteria cultivated form the airborne aerosol, the genera Micrococcus, Bacillus, Neisseria and Corynebacterium predominated. The prevailing genera of micromycetes were Penicillium, Aspergillus and Cladosporium.

The concentrations of microorganisms in free air were also affected by the local weather conditions, temperature in particular, the overall air pollution by aerosols was of minor importance in this respect.  相似文献   

6.
The effect of the herbicide Bentanex, especially of its effective component bentazone, on selected soil bacteria and fungi, on their growth and reproduction and on some important physiological activities ensuring a regular nutrient cycle in nature was investigated. Bentazone affected growth and reproduction of soil bacteria and micromycetes in dependence on the concentration and species of the microorganism. Physiological and biochemical activities of bacteria with respect to nitrogen fixation, nitrification and CO2 production were negatively influenced by high concentrations of the herbicide. These concentrations were used to observe the effect on selected activities of soil microorganisms and were much higher than those actually used in agriculture. Translated by Č. Novotny  相似文献   

7.
Microbial characterization during composting of municipal solid waste   总被引:29,自引:0,他引:29  
This study investigates the prevailing physico-chemical conditions and microbial community; mesophilic bacteria, yeasts and filamentous fungi, bacterial spores, Salmonella and Shigella as well as faecal indicator bacteria: total coliforms, faecal coliforms and faecal Streptococci, present in a compost of municipal solid waste. Investigations were conducted in a semi-industrial pilot plant using a moderate aeration during the composting process. Our results showed that: (i) auto-sterilization induced by relatively high temperatures (60–55°C) caused a significant change in bacterial communities. For instance, Escherichia coli and faecal Streptococci populations decreased, respectively, from 2×107 to 3.1×103 and 107 to 1.5×103 cells/g waste dry weight (WDW); yeasts and filamentous fungi decreased from 4.5×106 to 2.6×103 cells/g WDW and mesophilic bacteria were reduced from 5.8×109 to 1.8×107 bacteria/g WDW. On the other hand, the number of bacterial spores increased at the beginning of the composting process, but after the third week their number decreased notably; (ii) Salmonella disappeared completely from compost by the 25th day as soon as the temperature reached 60°C; and (iii) the bacterial population increased gradually during the cooling phase. While Staphylococci seemed to be the dominant bacteria during the mesophilic phase and at the beginning of the thermophilic phase, bacilli predominated during the remainder of the composting cycle. The appearance of gram-negative rods (opportunistic pathogens) during the cooling phase may represent a serious risk for the sanitary quality of the finished product intended for agronomic reuse. Compost sonication for about 3 min induced the inactivation of delicate bacteria, in particular gram-negatives. By contrast, gram-positive bacteria, especially micrococcus, spores of bacilli, and fungal propagules survived, and reached high concentrations in the compost.  相似文献   

8.
Relatively high most probable number (MPN) counts of chemolithotrophic nitrite oxidizers were present in water-saturated soils compared with MPNs and activity of ammonia oxidizers. These high numbers of nitrite oxidizers were confirmed by fluorescent antibody counts and potential activity measurements. Application of different nitrite concentrations in the MPN procedure discriminated within the community of nitrite oxidizers and revealed a large number of nitrite-sensitive nitrite oxidizers and a subcommunity of nitrite-insensitive nitrite oxidizers. The size of this subcommunity was small but corresponded with the low numbers of ammonium oxidizers. Numbers of nitrite-sensitive nitrite oxidizers outnumbered the ammonia oxidizing bacteria by 2–4 orders of magnitude in these soils. The possibility is discussed that the fraction of the nitrite-insensitive cells was active as aerobic nitrite oxidizers, whereas the nitrite-sensitive cells represented an inactive group of nitrite oxidizers growing as heterotrophs or as anaerobes reducing nitrite. In this situation, both MPN enumerations at a low nitrite concentration and activity measurements could give false information about the size of the in situ nitrite-oxidizing community.  相似文献   

9.
A Vlsch  W F Nader  H K Geiss  G Nebe    C Birr 《Applied microbiology》1990,56(8):2430-2435
Two different serotypes of the genus Nitrosomonas were isolated from samples of the sewage plant Heidelberg. These nitrifiers were enumerated in activated sludge of various other sewage plants after immunofluorescent labeling and staining with propidium iodide by flow cytometry. The concentrations of these serotypes of Nitrosomonas spp. were in the range of 0.1 to 2%. Also, a test for the determination of the activity of ammonia-oxidizing bacteria was developed. Nitrite-oxidizing bacteria were specifically inhibited with sodium chlorate, and the activity of ammonia-oxidizing bacteria could be calculated from the increase of nitrite. Concentrations and activities of ammonia oxidizers were measured for a period of 6 months in the sewage plant Heidelberg. With one exception, activities and concentrations of ammonia-oxidizing bacteria decreased and increased in parallel.  相似文献   

10.
Two different serotypes of the genus Nitrosomonas were isolated from samples of the sewage plant Heidelberg. These nitrifiers were enumerated in activated sludge of various other sewage plants after immunofluorescent labeling and staining with propidium iodide by flow cytometry. The concentrations of these serotypes of Nitrosomonas spp. were in the range of 0.1 to 2%. Also, a test for the determination of the activity of ammonia-oxidizing bacteria was developed. Nitrite-oxidizing bacteria were specifically inhibited with sodium chlorate, and the activity of ammonia-oxidizing bacteria could be calculated from the increase of nitrite. Concentrations and activities of ammonia oxidizers were measured for a period of 6 months in the sewage plant Heidelberg. With one exception, activities and concentrations of ammonia-oxidizing bacteria decreased and increased in parallel.  相似文献   

11.
Very little is known regarding the ecology of Nitrosospira sp. strain AF-like bacteria, a unique group of ammonia oxidizers within the Betaproteobacteria. We studied the response of Nitrosospira sp. strain AF-like ammonia oxidizers to changing environmental conditions by applying molecular methods and physiological measurements to Californian grassland soil manipulated in the laboratory. This soil is naturally high in Nitrosospira sp. strain AF-like bacteria relative to the much-better-studied Nitrosospira multiformis-like ammonia-oxidizing bacteria. Increases in temperature, soil moisture, and fertilizer interacted to reduce the relative abundance of Nitrosospira sp. strain AF-like bacteria, although they remained numerically dominant. The overall abundance of ammonia-oxidizing bacteria increased with increasing soil moisture and decreased with increasing temperature. Potential nitrification activity was altered by interactions among temperature, soil moisture, and fertilizer, with activity tending to be higher when soil moisture and temperature were increased. The increase in potential nitrification activity with increased temperature was surprising, given that the overall abundance of ammonia-oxidizing bacteria decreased significantly under these conditions. This observation suggests that (i) Nitrosospira sp. strain AF-like bacteria may respond to increased temperature with an increase in activity, despite a decrease in abundance, or (ii) that potential nitrification activity in these soils may be due to organisms other than bacteria (e.g., archaeal ammonia oxidizers), at least under conditions of increased temperature.  相似文献   

12.
As a consequence of Earth's surface oxygenation, ocean geochemistry changed from ferruginous (iron(II)‐rich) into more complex ferro‐euxinic (iron(II)‐sulphide‐rich) conditions during the Paleoproterozoic. This transition must have had profound implications for the Proterozoic microbial community that existed within the ocean water and bottom sediment; in particular, iron‐oxidizing bacteria likely had to compete with emerging sulphur‐metabolizers. However, the nature of their coexistence and interaction remains speculative. Here, we present geochemical and microbiological data from the Arvadi Spring in the eastern Swiss Alps, a modern model habitat for ferro‐euxinic transition zones in late Archean and Proterozoic oceans during high‐oxygen intervals, which enables us to reconstruct the microbial community structure in respective settings for this geological era. The spring water is oxygen‐saturated but still contains relatively elevated concentrations of dissolved iron(II) (17.2 ± 2.8 μM) and sulphide (2.5 ± 0.2 μM) with simultaneously high concentrations of sulphate (8.3 ± 0.04 mM). Solids consisting of quartz, calcite, dolomite and iron(III) oxyhydroxide minerals as well as sulphur‐containing particles, presumably elemental S0, cover the spring sediment. Cultivation‐based most probable number counts revealed microaerophilic iron(II)‐oxidizers and sulphide‐oxidizers to represent the largest fraction of iron‐ and sulphur‐metabolizers in the spring, coexisting with less abundant iron(III)‐reducers, sulphate‐reducers and phototrophic and nitrate‐reducing iron(II)‐oxidizers. 16S rRNA gene 454 pyrosequencing showed sulphide‐oxidizing Thiothrix species to be the dominating genus, supporting the results from our cultivation‐based assessment. Collectively, our results suggest that anaerobic and microaerophilic iron‐ and sulphur‐metabolizers could have coexisted in oxygenated ferro‐sulphidic transition zones of late Archean and Proterozoic oceans, where they would have sustained continuous cycling of iron and sulphur compounds.  相似文献   

13.
Very little is known regarding the ecology of Nitrosospira sp. strain AF-like bacteria, a unique group of ammonia oxidizers within the Betaproteobacteria. We studied the response of Nitrosospira sp. strain AF-like ammonia oxidizers to changing environmental conditions by applying molecular methods and physiological measurements to Californian grassland soil manipulated in the laboratory. This soil is naturally high in Nitrosospira sp. strain AF-like bacteria relative to the much-better-studied Nitrosospira multiformis-like ammonia-oxidizing bacteria. Increases in temperature, soil moisture, and fertilizer interacted to reduce the relative abundance of Nitrosospira sp. strain AF-like bacteria, although they remained numerically dominant. The overall abundance of ammonia-oxidizing bacteria increased with increasing soil moisture and decreased with increasing temperature. Potential nitrification activity was altered by interactions among temperature, soil moisture, and fertilizer, with activity tending to be higher when soil moisture and temperature were increased. The increase in potential nitrification activity with increased temperature was surprising, given that the overall abundance of ammonia-oxidizing bacteria decreased significantly under these conditions. This observation suggests that (i) Nitrosospira sp. strain AF-like bacteria may respond to increased temperature with an increase in activity, despite a decrease in abundance, or (ii) that potential nitrification activity in these soils may be due to organisms other than bacteria (e.g., archaeal ammonia oxidizers), at least under conditions of increased temperature.  相似文献   

14.
The influence of species of Acetobacter and Gluconobacter upon growth of the wine yeasts Saccharomyces cerevisiae, Kloeckera apiculata and Candida stellata was examined during mixed culture in grape juice. Acetobacter pasteurianus, A. aceti and Gluconobacter oxydans grew in conjunction with yeasts during juice fermentation. As determined by viable counts, yeast growth was only slightly impaired by the presence of bacteria. However, as judged by the concentrations of glucose, fructose, ethanol, glycerol, acetaldehyde, ethyl acetate, iso -amyl alcohol and organic acids in the fermented juice, acetic acid bacteria significantly influenced the alcoholic fermentation by yeasts.  相似文献   

15.
16.
微生态制剂改善对虾养殖池塘底质的效果   总被引:8,自引:0,他引:8  
研究了在117 d的养殖周期中微生态制剂对南美白对虾池塘底质的改良效果.结果表明,与对照组相比,施用微生态制剂可使底质中总氮、总磷和硫化物的含量显著下降;总菌数量无显著变化,而芽孢杆菌、氨化细菌以及硫氧化细菌、硫还原细菌、弧菌数量差异显著,其中弧菌数量在施用微生态制剂处理和对照条件下分别为3.65×103 cfu·g-1和1.16×105 cfu·g-1.表明施用微生态制剂可以减少氮、磷、硫等营养物质的积累,改善池塘底质的菌相,为南美白对虾的健康养殖提供良好的池塘底质环境.  相似文献   

17.
Dietary influence of kefir on microbial activities in the mouse bowel   总被引:3,自引:0,他引:3  
AIMS: In this work the microflora present in kefir, a fermented milk product, was studied together with the effect of kefir administration on different groups of indigenous bacteria of mouse bowel. METHODS AND RESULTS: Kefir microflora was composed of lactic acid bacteria, acetic acid bacteria and yeasts. Yeast population was composed of Saccharomyces cerevisiae, S. unisporus, Candida kefir, Kluyveromyces marxianus and K. lactis. The streptococci levels in kefir treated mice increased by 10-fold and the levels of sulfite-reducing clostridia decreased by 100-fold. The number of lactic acid bacteria increased significantly. CONCLUSIONS: The administration of kefir significantly increased the lactic acid bacteria counts in the mucosa of the bowel. Ingestion of kefir specifically lowered microbial populations of Enterobacteriaceae and clostridia. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first long-term study about the effects of the kefir administration on the intestinal microflora of mice.  相似文献   

18.
S ummary . Methods are described for enumerating the micro-organisms occurring on damp grain (18–35% moisture content) after harvesting and after sealed and open storage.
The microflora of 41 samples of damp grain at harvesting and 137 samples after sealed storage on farms have been examined. The latter included 25 samples from experimental storage, including polythene bags, and 51 samples from stores where spoilage had occurred or advice was sought.
A remarkably consistent population level of bacteria, moulds and yeasts was found on damp grain at harvesting. This information was used as a convenient basis for comparisons with results from grain after storage. Bacteria were initially present at 1–10 × 106/g, but the level generally diminished during anaerobic storage. Also coli-aerogenes bacteria died out but lactobacilli increased. Strict anaerobes ( Clostridium spp.) did not develop. Moulds originally present in small numbers normally decreased but while total yeasts often remained at the ingoing number, there was a change from non-myceliated to myceliated species, numbers of which sometimes increased further.
If thermophilic yeasts and moulds or Streptomycetaceae were present in large numbers, the grain had been subjected to aeration and had heated. Sometimes mould growth appeared to cause binding of the grain, but in other instances myceliated yeasts were implicated.  相似文献   

19.
AIMS: The objective of this study was to investigate the effects of free molecular and bound forms of sulphur dioxide and oxygen on the viability and culturability of a selected strain of Acetobacter pasteurianus and a selected strain of Brettanomyces bruxellensis in wine. METHODS AND RESULTS: Acetic acid bacteria and Brettanomyces/Dekkera yeasts associated with wine spoilage were isolated from bottled commercial red wines. One bacterium, A. pasteurianus strain A8, and one yeast, B. bruxellensis strain B3a, were selected for further study. The resistance to sulphur dioxide and the effect of oxygen addition on these two selected strains were determined by using plating and epifluorescence techniques for monitoring cell viability in wine. Acetobacter pasteurianus A8 was more resistant to sulphur dioxide than B. bruxellensis B3a, with the latter being rapidly affected by a short exposure time to free molecular form of sulphur dioxide. As expected, neither of these microbial strains was affected by the bound form of sulphur dioxide. The addition of oxygen negated the difference observed between plate and epifluorescence counts for A. pasteurianus A8 during storage, while it stimulated growth of B. bruxellensis B3a. CONCLUSIONS: Acetobacter pasteurianus A8 can survive under anaerobic conditions in wine in the presence of sulphur dioxide. Brettanomyces bruxellensis B3a is more sensitive to sulphur dioxide than A. pasteurianus A8, but can grow in the presence of oxygen. Care should be taken to exclude oxygen from contact with wine when it is being transferred or moved. SIGNIFICANCE AND IMPACT OF THE STUDY: Wine spoilage can be avoided by preventing growth of undesirable acetic acid bacteria and Brettanomyces/Dekkera yeasts through the effective use of sulphur dioxide and the management of oxygen throughout the winemaking process.  相似文献   

20.
New procedures for the preservation stage of ripe olives from Hojiblanca cultivar were studied. An aerobic fermentative process was used with initial pH correction (0.3% acetic acid) and various NaCl concentrations: 6, 3 and 0% (w/v) in tap water. Treatments were carried out at industrial level and the spontaneous changes monitored. At initial salt concentrations of 6 and 3% (w/v) NaCl, pH rose progressively, reaching 4.3 at equilibrium maintaining during this period a constant free lactic acidity of around 0.4% (w/v). When the initial solution was tap waste, however, the pH decreased rapidly to stabilize at about 3.7, and lactic acidity increased continuously to reach values over 1% (w/v) at the end of the preservation process. In all treatments aeration effectively purged the carbon dioxide from the preservation brines, preventing shrivelling of olives. The microbial growth was strongly influenced by the initial NaCl concentration. At 6 and 3%, only yeasts grew, the most abundant being Pichia membranaefaciens, P. vini, P. fermentans and Hansenula polymorpha. However, when there was no NaCl, lactic acid bacteria colonized the solution. Lactobacillus plantarum and Pediococcus inopinatus were the only species found. In this case there was a co-existence between yeasts and lactic acid bacteria. As the treatment that supported lactic acid bacteria achieved the best final pH and acidity for olive stability, it may help to overcome the obstacles to a lactic fermentative process during the preservation stage of ripe olives from the Hojiblanca cultivar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号