首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Protease C1 (E.C. 3.4.21.25), the soybean (Glycine max L. Merrill) proteolytic enzyme responsible for initiating the degradation of soybean storage proteins in seedling cotyledons appears at even higher levels in seedling leaves. This was manifested at the mRNA level through northern blot analysis, at the protein level through western blot analysis, through determination of enzyme activity, and also through isolation and partial sequencing of active leaf enzyme. Comparison of cDNA and amino acid sequences, as well as characterization of enzyme activity, is consistent with the leaf enzyme being identical to or highly similar to the cotyledon enzyme. Protease C1 mRNA and protein are also present in stems of soybean seedlings, but is very low to absent in the roots. This presence in the aerial tissues is consistent with the higher steady state level of gene expression at both the mRNA and protein levels when the seedlings are grown in a 12-h light: 12-h dark photoperiod as compared to seedlings grown in continuous darkness. Transfer of dark-grown seedlings to light is followed by marked elevation in protease C1 protein as seen in western blots.  相似文献   

2.
An extracellular, halophilic, alkalithermophilic serine protease from the halo-alkaliphilic Alkalibacillus sp. NM-Da2 was purified to homogeneity by ethanol precipitation and anion-exchange chromatography. The purified protease was a monomeric enzyme with an approximate molecular mass of 35 kDa and exhibited maximal activity at 2.7 M NaCl, pH55 °C 9 and 56 °C. The protease showed great temperature stability, retaining greater than 80 % of initial activity after 2 h incubation at 55 °C. The protease was also extremely pH tolerant, retaining 80 % of initial activity at pH55 °C 10.5 after 30 min incubation. Protease hydrolyzed complex substrates, displaying activity on yeast extract, tryptone, casein, gelatin and peptone. Protease activity was inhibited at casein concentrations greater than 1.2 mg/mL. The enzyme was stable and active in 40 % (v/v) solutions of isopropanol, ethanol and benzene and was stable in the presence of the polysorbate surfactant Tween 80. Activity was stimulated with the oxidizing agent hydrogen peroxide. Inhibition with phenyl methylsulfonylfluoride indicates it is a serine protease. Synthetic saline wastewater treated with the protease showed 50 % protein removal after 5 h. Being halophilic, alkaliphilic and thermophilic, in addition to being resistant to organic solvents, this protease has potential for various applications in biotechnological and pharmaceutical industries.  相似文献   

3.
Pseudomonas aeruginosa produces the extracellular enzyme protease, which plays an important role in the development of the infectious process caused by this microorganism. Protease is produced in three types, I, II and III, with protease II being responsible for 75% of the total proteolytic activity of protease. The molecular mass of protease II has been determined by different methods; the values obtained are 23000 and 39500. This discrepancy may be associated with an autodigestion of the enzyme or with the presence in the periplasm of its producer of a nonactive precursor whose activation may lead to a change in the molecular mass. Pseudomonas aeruginosa protease is capable of cleaving high-molecular proteins into low-molecular ones, which are taken up by the microbial cell and serve as a source of nutrition. When injected into the bloodstream of animals, purified protease produces haemorrhagic lesions in internal organs; its subcutaneous injection provokes haemorrhage in the skin and subcutaneous tissues. Manifestation of high P. aeruginosa virulence on a model of burnt mouse skin requires that not only exotoxin A but also protease be produced. The protease is immunogenic and has, in toxoid form, been used experimentally in a multicomponent vaccine.  相似文献   

4.
In the present study, we have demonstrated that membrane-free extracts of etiolated shoots of Phaseolus coccineus seedlings show tocopherol oxidase activity. For this reaction, presence of membrane lipids, such as lecithin and mixture of plant lipids was required. The rate of the reaction was the highest for α-tocopherol and decreased in the order α ? β > γ > δ tocopherols. In the case of α-tocopherol, the main oxidation product was α-tocopherolquinone, while for the other tocopherol homologues the dominant products were other derivatives. When the enzyme activity was measured in leaves, hypocotyls and roots of etiolated seedlings of P. coccineus, the oxidase activity was the highest in extracts of leaves and decreased towards the roots where no activity was detected. The effect of hydrogen peroxide and of different inhibitors on the reaction suggest that tocopherol oxidase does not belong to peroxidases or flavin oxidases but rather to multi-copper oxidases, such as polyphenol oxidases or laccases. On the other hand, catechol, the well-known substrate of polyphenol oxidases and laccases, was not oxidized by the enzyme, indicating a high substrate specificity of the tocopherol oxidase.  相似文献   

5.
The isoelectric points of three proteases (I, II and III), separated from culture supernatants of Pseudomonas aeruginosa strain PAKS-I by isoelectric focusing, were 8.5, 6.6 and 4.5 respectively. Collagenase activity was not detected. More than 75% of the extracellular protease activity of this strain was due to protease II. This enzyme also possessed elastase activity. When purified by ammonium sulphate precipitation, isoelectric focusing and gel chromatography, protease II showed one band on disc electrophoresis and one band on conventional immunoelectrophoresis. The pH optimum, stability and effect of inhibitors and substrate concentration were examined. The molecular weight was 23000 +/- 5000. Protease II was lethal for mice when injected intraperitoneally at a high dose (minimum lethal dose 0.1 mg). Dermonecrosis and subcutaneous haemorrhages were produced in new-born mice upon subcutaneous injection of 10 microgram protease II. A sensitive test for cytotoxicity showed no evidence of cytoplasmic membrane damage to HeLa cells or human diploid embryonic lung fibroblasts by protease II. Morphological changes similar to those produced by trypsin were found.  相似文献   

6.
The entomopathogenic fungus Verticillium lecanii is a well-known biocontrol agent. V. lecanii produces subtilisin-like serine protease (Pr1), which is important in the biological control activity of some insect pests by degrading insect cuticles. In this study, a subtilisin-like serine protease gene VlPr1 was cloned from the fungus and the VlPr1 protein was expressed in Escherichia coli. The VlPr1 gene contains an open reading frame (ORF) interrupted by three short introns, and encodes a protein of 379 amino acids. Protein sequence analysis revealed high homology with subtilisin serine proteases. The molecular mass of the protease was 38 kDa, and the serine protease exhibited its maximal activity at 40°C and pH 9.0. Protease activity was also affected by Mg2+ and Ca2+ concentration. The protease showed inhibitory activity against several plant pathogens, especially towards Fusarium moniliforme.  相似文献   

7.
This study was undertaken to observe the effects of hydrogen peroxide on Cryptosporidium parvum oocysts with respect to protease activity in comparison to known protease inhibitors. In assessing the possible mechanisms of action of hydrogen peroxide, treatment effectiveness was analyzed using 3 assays and the potential roles of proteases and cations were considered. Treatment of C. parvum oocysts with hydrogen peroxide inhibited protease activity up to 50% compared with untreated controls. Treatment of oocysts with chemicals that affect sulfhydryls, including N-ethylmaleimide and dithiolthreitol, inhibited protease activity by >90%. Treatment of oocysts with these chemicals, along with the protease inhibitors, phenylmethylsulfonyl fluoride (PMSF), ethylenediamine-tetraacetic acid, and cystatin, inhibited protease activity as well as in vitro excystation and infection in a cell culture assay. Several mechanisms may result in the successful inhibition of infection and excystation by hydrogen peroxide treatment, including: oxidation of oocyst wall proteins or lipids, chelating of cations necessary for infection, or hydroxyl radical-induced DNA damage to sporozoites, or both.  相似文献   

8.
Summary An alkaline protease, previously isolated from a symbiotic bacterium found in the gland of Deshayes of marine shipworm, was evaluated as a cleansing additive. The protease nearly doubled the cleaning power of a standard phosphate detergent at temperatures up to 50°C as determined by fabric swatch assays. The enzyme was, however, ineffective at 70°C. In both fresh and seawater, it was also an efficient presoak. The cleaning power of a non-phosphate detergent was significantly improved by added protease, independent of the pH range 10 to 12. The enzyme degraded lysozyme, the major protein contaminant of contact lenses, more extensively than subtilisin and was effective in solutions containing hydrogen peroxide, often employed to sterilize lenses. The protease was unusually stable in sodium perborate, as well as hydrogen peroxide, and retained good activity in the presence of sodium hypochloride.  相似文献   

9.
Proteolytic bacteria isolated from municipal solid wastes (MSW) were identified as Serratia marcescens A3 and Pseudomonas putida A2 based on 16S rDNA sequencing. Protease produced through fermentation of organic MSW by these bacteria under some optimized physicochemical parameters was partially purified and characterized. The estimated molecular mass of the partially purified protease from S. marcescens and P. putida was approximately 25 and 38 kDa, respectively. Protease from both sources showed low Km 0.3 and 0.5 mg ml?1 and high Vmax 333 and 500 µmole min?1 at 40?°C, and thermodynamics analysis suggested formation of ordered enzyme-substrate (E-S) complexes. The activation energy (Ea) and temperature quotient (Q10) of protease from S. marcescens and P. putida were 16.2 and 19.9 kJ/mol, and 1.4 and 1.3 at temperature range from 20 to 40 °C, respectively. Protease of the both bacterial isolates was serine and cysteine type. The protease retained approximately 97% of activity in the presence of sodium dodecyl sulphate. It was observed that the purified protease of S. marcescens could remove blood stains from white cotton cloth and degrade chicken flesh remarkably. Our study revealed that organic MSW can be used as raw materials for bacterial protease production and the protease produced by S. marcescens A3 might be potential for applications.  相似文献   

10.
Protease activities were detected in quiescent and germinating spores of the ostrich fern (Matteuccia struthiopteris [L.] Todaro). Peak endopeptidase, aminopeptidase, and carboxypeptidase activities were detected 12 to 24 hours after spores began imbibing under light. There was a correlation between activities of proteases, the onset of a decline in levels of soluble protein, and an increase in levels of free amino acids. The earliest visible event of spore germination, breakage of the spore coat and protrusion of a rhizoid cell, was observed after peak protease activity, 48 to 72 hours after the start of imbibition. Results of this study demonstrate similarities in the pattern of protease activities during germination of ostrich fern spores to those of some seeds.  相似文献   

11.
Sulfite oxidizing activities are known since years in animals, microorganisms, and also plants. Among plants, the only enzyme well characterized on molecular and biochemical level is the molybdoenzyme sulfite oxidase (SO). It oxidizes sulfite using molecular oxygen as electron acceptor, leading to the production of sulfate and hydrogen peroxide. The latter reaction product seems to be the reason why plant SO is localized in peroxisomes, because peroxisomal catalase is able to decompose hydrogen peroxide. On the other hand, we have indications for an additional reaction taking place in peroxisomes: sulfite can be nonenzymatically oxidized by hydrogen peroxide. This will promote the detoxification of hydrogen peroxide especially in the case of high amounts of sulfite. Hence we assume that SO could possibly serve as "safety valve" for detoxifying excess amounts of sulfite and protecting the cell from sulfitolysis. Supportive evidence for this assumption comes from experiments where we fumigated transgenic poplar plants overexpressing ARABIDOPSIS SO with SO(2) gas. In this paper, we try to explain sulfite oxidation in its co-regulation with sulfate assimilation and summarize other sulfite oxidizing activities described in plants. Finally we discuss the importance of sulfite detoxification in plants.  相似文献   

12.
Among the various bacterial isolates, the strain MSF 46 isolated from thorn forest soil samples, Tamil Nadu, India, was screened and characterized for its proteolytic activity. While the 16S rRNA sequencing and biochemical characterization revealed that the strain closely resembles Methylobacterium sp., methylotrophy of the strain was confirmed by the sequence homology of mxaF gene with other relative Methylobacterium sp. The alkaline protease was purified to homogeneity using DEAE cellulose ion exchange chromatography, with a 5.2-fold increase in specific activity and 34% recovery. The apparent molecular weight of the enzyme was determined as 40 kDa by SDS–PAGE study. The pH and temperature optima were 9.0 and 50 °C respectively with maximum protease activity of 1164 U/ml. Protease of MSF 46 was active in a broad pH range 7.0–11.0 with a maximum at pH 8.5 and exhibited thermostability at 50 °C. The enzyme activity was inhibited by PMSF but showed stability with Tween 20, Triton X-100 and hydrogen peroxide. Nearly 30% reduction in enzyme activity was observed in the presence of EDTA and DTT. The enzyme was effective in hydrolyzing gelatin, skimmed milk and blood clots and exhibited the potency for dehairing of goat skin and removing blood stain from cotton fabric. Significant morphological changes were observed under scanning electron microscope between cells grown in normal and casein amended medium. This first detailed report on the production of alkaline protease by a PPFM strain appears promising toward development of protocols for mass production, study of the molecular mechanism and other applications.  相似文献   

13.
Proteolytic activity was detected, using a sensitive radial diffusion plate assay, in the plasma membrane fractions of corn (Zea mays L.) roots and from roots of several other plant species. The proteases could be effectively inhibited in corn with phenylmethane sulfonyl fluoride or chymostatin. Protease activity of oat roots, however, was not significantly reduced by these inhibitors. The results of diffusion plate assay were confirmed with the less sensitive azocasein assay using crude cell homogenates. Chymostatin and phenylmethane sulfonyl fluoride were effective in preventing protease degradation of polypeptides as revealed by electrophoresis. The diffusion plate assay uses a permanent support for a 0.75 millimeter thick agarose slab containing 200 micrograms per milliliter casein. By staining the fixed and dried gel with Coomassie blue R-250, proteolytic activity was visualized as a cleared area around the sample well with a detection limit of about 0.3 nanograms trypsin. The diffusion plate assay should prove useful for screening inhibitors of proteases where limited amounts of material are available, such as with plant cell fractions or highly purified proteins.  相似文献   

14.
The effects of cold and drought stress on antioxidant responses and growth parameters in shoots and roots of lentil (Lens culinaris M cv Sultan 1) seedlings were investigated. Ten-day-old hydroponically grown seedlings were subjected to drought and cold (4°C) stress for 5 days. The length and fresh weight of shoots decreased significantly under both stress conditions, contrary to the increase in these growth parameters for roots under the same conditions. The oxidative damage as generation of malondialdehyde and hydrogen peroxide, was markedly higher in shoots under cold. Both stress conditions caused a significant increase in malondialdehyde levels in root tissues. The increase in proline levels was more pronounced under cold stress in shoots and roots. The tested stress conditions had no significant effect on chlorophyll contents. Superoxide dismutase activity was differentially altered in shoot and root tissues under drought and cold stress. The catalase activity was higher in roots under drought stress. On the other hand, ascorbate peroxidase activity increased in root tissues under cold stress. The results indicate that improved tolerance to cold and drought stress in root and shoot tissues of lentil might be correlated to the increased capacity of antioxidative defense system.  相似文献   

15.
Seeds and seedlings of mung bean (Phaseolus aureus Roxb.) were treated separately with NaCl, KCl, Na2SO4 and K2SO4 solutions of 5 and 10 S/cm conducitivity. The activity of RNase, DNase and protease were estimated in cotyledons, embryo axis, leaves, and roots. Salinity caused inhibition of RNase activity in the cotyledons and roots, but increase in embryo axis and leaves. Activity of DNase was also increased; sodium salt was more effective than potassium irrespective of associated anion. Salinity in general either reduced or had no effect on protease activity in all organs, with the exception of NaCl which doubled it in leaves.  相似文献   

16.
Pectins were extracted from roots, petioles and leaves of sugar beet, and cross-linked using hydrogen peroxide and peroxidase. The effects on dehydrodiferulate formation were monitored by HPLC and TLC. Dehydrodimers were formed in different proportions to those found in vivo. There was a net loss of around 50% of the phenolic groups (monomers plus dimers) during dimerisation. Gel filtration showed that root and petiole pectin, but not leaf pectin, increased in molecular weight during cross-linking. The effects of varying the cross-linking conditions were investigated, and it was found that hydrogen peroxide concentration was the most important factor in controlling both the type and amount of dehydrodiferulate formed.  相似文献   

17.
In this paper, the effects of some chemical and physical factors such as temperature, pH values, glycerol, and divalent metal cations on the protease activity of venom from jellyfish, Rhopilema esculentum Kishinouye, were assayed. Protease activity was dependent on temperature and pH values. Zn2+, Mg2+, and Mn2+ in sodium phosphate buffer (0.02 M, pH 8.0) could increase protease activity. Mn2+ had the best effects among the three metal cations and the effect was about 20 times of that of Zn2+ or Mg2+ and its maximal protease activity was 2.3 × 105 U/mL. EDTA could increase protease activity. PMSF had hardly affected protease activity. O-Phenanthroline and glycerol played an important part in inhibiting protease activity and their maximal inhibiting rates were 87.5% and 82.1%, respectively.  相似文献   

18.
A new cytoplasmic endoprotease, named protease So, was purified to homogeneity from Escherichia coli by conventional procedures with casein as the substrate. Its molecular weight was 140,000 when determined by gel filtration on Sephadex G-200 and 77,000 when estimated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Thus, it appears to be composed of two identical subunits. Protease So had an isoelectric point of 6.4 and a K(m) of 1.4 muM for casein. In addition to casein, it hydrolyzed globin, glucagon, and denatured bovine serum albumin to acid-soluble peptides but did not degrade insulin, native bovine serum albumin, or the "auto alpha" fragment of beta-galactosidase. A variety of commonly used peptide substrates for endoproteases were not hydrolyzed by protease So. It had a broad pH optimum of 6.5 to 8.0. This enzyme is a serine protease, since it was inhibited by diisopropyl fluorophosphate and phenylmethylsulfonyl fluoride. Although it was not inhibited by chelating agents, divalent cations (e.g., Mg(2+)) stabilized its activity. Protease So was sensitive to inhibition by N-tosyl-l-phenylalanine chloromethyl ketone but not by N-tosyl-l-lysine chloromethyl ketone. Neither ATP nor 5'-diphosphate-guanosine-3'-diphosphate affected the rate of casein hydrolysis. Protease So was distinct from the other soluble endoproteases in E. coli (including proteases Do, Re, Mi, Fa, La, Ci, and Pi) in its physical and chemical properties and also differed from the membrane-associated proteases, protease IV and V, and from two amino acid esterases, originally named protease I and II. The physiological function of protease So is presently unknown.  相似文献   

19.
A thermoalkaline protease with a molecular weight of 22 kDa was purified from the Bacillus cereus SIU1 strain using a combination of Q-Sepharose and Sephadex G-75 chromatography. The kinetic analyses revealed the Km, Vmax and kcat to be 1.09 mg ml?1, 0.909 mg ml?1 min?1 and 3.11 s?1, respectively, towards a casein substrate. The protease was most active and stable at pH 9.0 and between a temperature range of 45–55 °C. It was fully stable at 0.0–2.0% and moderately stable at 2.5–10.0% (w/v) sodium chloride. Phenyl methyl sulfonyl fluoride, ethylene diamine tetra acetic acid and ascorbic acid were inhibitory with regard to enzyme activity, whereas cysteine, β-mercaptoethanol, calcium, magnesium, manganese and copper at concentration of 1.0 mM increased enzyme activity. Sodium dodecyl sulfate, Triton X-100, Tween 80, hydrogen peroxide and sodium perborate significantly enhanced protease activity at 0.1 and 1.0% concentrations. In the presence of 0.1 and 1.0% (w/v) detergents, the protease was fairly stable and retained 50–76% activity. Therefore, it may have a possible application in laundry formulations. An initial analysis of the circular dichroism (CD) spectrum in the ultraviolet range revealed that the protease is predominantly a β-pleated structure and a detailed structural composition showed ~50% β-sheets. The CD-based conformational evaluation of the protease after incubation with modulators, metal ions, detergents and at different pH values, revealed that the change in the β-content directly corresponded to the altered enzyme activity. The protease combined with detergent was able to destain blood stained cloth within 30 min.  相似文献   

20.
MCPA (4-chloro-2-methylphenoxy) acetic acid is a common synthetic auxin used as a herbicide. The purpose of this study was to determine the effects of four new forms of MCPA being the herbicidal ionic liquids (HILs) with MCPA as an anion and two previously known formulations (potassium–sodium salt and 2-ethylhexyl ester) on seed germination and seedling development of winter oilseed rape (Brassica napus). Rape plants are susceptible to MCPA and volunteers can be a big problem in crop rotation. Seedling fresh weight and root length were quantified, mitotic activity, as well as lipid, starch, hydrogen peroxide and polyphenol contents were assessed by light and fluorescence microscopy and the computer-aided cytophotometer. In primary roots mitotic activity was almost completely inhibited under the influence of herbicides, cell elongation zones and root hair zones were significantly reduced, and a characteristic bolded root segment formed just above a meristem. In contrast to the traditional salt formulation the new HILs were weak inducers of hydrogen peroxide synthesis, but were potent stimulators of the synthesis of phenolic compounds and storage as well as emergency substances such as lipids and starch. All tested forms of MCPA caused strong phytotoxic effect on winter rape seedlings, but the tested HILs were more effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号