首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Breeding of oilseeds focuses on 3 prime objectives: 1) Selection and breeding needed for the introduction of an established oilseed crop to a new area; 2) oil quantity and quality; and 3) meal quantity and quality. One obvious way of increasing the quantity of both oil and meal is to increase yielding ability of cultivars. Oil content has been increased by reducing the thickness of the ovary wall, where the latter is part of the harvest, and/or the seed coat. Usually, increases in oil content achieved in this way are accompanied by an increase in protein content. Oil quality is measured primarily by fatty acid composition, the ideal fatty acid composition depending on the use of the oil. In rapeseed and mustard species the quality of the oil for edible use has been greatly improved by removing the erucic and eicosenoic acids. In sajflower 2 types of oil are available commercially, one with high levels (75–80%) of linoleic acid and another with high levels (75-80%) of oleic acid, the 2 types having different uses. An added component of oil quality is stability of fatty acid composition over a range of environments. Oilseed meals have been improved by increasing protein content, by changing the amino acid profile of the protein, and by reducing levels of toxic compounds.  相似文献   

3.
Fats and oils for food uses are now plentiful on a worldwide basis. Tallow, lard and fish oils, as well as vegetable oils, such as those derived from soybean, sunflower, palm, rapeseed, peanut and cottonseed, are often overproduced. Although many of these products are also used for industrial chemicals, they often are not of the most favorable composition for nonfood applications. A search for new oil-seed crops with more advantageous oil composition has led to the development of excellent candidates that are now close to commercial acceptance. Among them areCrambe, Limnanthes, Vernonia, Sapium andSimmondsia. Other crops are at a much lower stage of development but also have excellent potential. They includeCuphea, Foeniculum, Stokesia, Lesquerella andLunaria. In this age of searching for renewable resources to replace petrochemicals and imported strategic materials, a well-organized research and development program on new oilseed crops could soon result in American self-sufficiency for industrial oils and fatty acids.  相似文献   

4.
Metabolically engineered oilseed crops with enhanced seed tocopherol   总被引:9,自引:0,他引:9  
Tocochromanols (tocopherols and tocotrienols) are important lipid soluble antioxidants and are an essential part of the mammalian diet. Oilseeds are particularly rich in tocochromanols with an average concentration 10-fold higher than other plant tissues. Here we describe a systematic approach to identify rate-limiting reactions in the tocochromanol biosynthetic pathway, and the application of this knowledge to engineer tocochromanol biosynthesis in oilseed crops. Seed-specific expression of genes encoding limiting tocochromanol pathway enzymes in soybean increased total tocochromanols up to 15-fold from 320 ng/mg in WT seed to 4800 ng/mg in seed from the best performing event. Although WT soybean seed contain only traces of tocotrienols, these transgenic soybean accumulated up to 94% of their tocochromanols as tocotrienols. Upon crossing transgenic high tocochromanol soybean with transgenic high alpha-tocopherol soybean, the vitamin E activity in the best performing F2-seed was calculated to be 11-fold higher than the average WT soybean seed vitamin E activity.  相似文献   

5.
Growing evidence suggests that omega-3 long chain polyunsaturated fatty acids (VLC-PUFAs), especially eicosapentaenoic acid (EPA; 20:5Δ5,8,11,14,17) and docosahexaenoic acid (DHA; 22:6Δ4,7,10,13,16,19) play critical roles in human health and development. VLC-PUFAs are mainly found in fish, some fungi, marine bacteria and microalgae. Currently, the predominant dietary sources of VLC-PUFAs are marine fish and seafood. However, the increasing demand for fish and fish oils is putting enormous pressure on marine ecosystems leading to a depletion of fish stocks while commercial cultivation of marine microorganisms and aquaculture are not sustainable and cannot compensate for the shortage in fish supply. Therefore, there is an obvious requirement for an alternative and sustainable source for VLC-PUFAs. Over the last decade, many genes encoding the primary VLC-PUFAs biosynthetic activities became available providing a toolkit for the “reverse-engineering” of transgenic plants to produce fish oils. In this review, we will describe the recent advances in this field and the insights they give us into the complexities of metabolic engineering of oil-seed crops producing VLC-PUFAs.  相似文献   

6.
The caatinga semi-arid ecosystem of northeastern Brazil is characterized by a dry, spiny and predominantly deciduous shrub/forest vegetation, and many species there are potential sources of renewable resources for the oleochemical industry. The present research determined the oil content and fatty acid profiles of seeds from eight caatinga species. Seed oils were extracted in a Soxhlet system, and their fatty acid content identified by GC–MS. Oil content varied between 20.2% in Tabebuia impetiginosa (Mart.) Standl. (Bignoniaceae) and 46.4% in Barnebya harleyi (W.R. Anderson & B. Gates) Malpighiaceae. Anemopaegma laeve DC. (Bignoniaceae) had the highest oleic acid content (63.4%), while high levels of linoleic acid were found in Banisteriopsis pubipetala (Juss.) Cuatrec. (42.8%) and B. harleyi (31.9%) (both Malpighiaceae). Palmitic acid was the major fatty acid (50%) in Hippocratea volubilis (L.) (Celastraceae). High levels of linoleic and linolenic acids were found in Croton adamantinus Mull. Arg. (Euphorbiaceae), averaging 44.2% and 45.2% respectively. Gadoleic acid in was the most abundant fatty acid in the oil produced by Serjania lethalis A. St. Hill. (Sapindaceae), averaging 69.6%. B. pubipetala, B. harleyi, C. adamantinus, and H. volubilis were identified as promising species for cultivation.  相似文献   

7.
Oilseed crops play an important role in the agricultural economy. Apart from being an integral component of human diet and industrial applications, they are also gaining importance as replacement to fossil fuels for meeting the energy needs. The last two decades have been marked by several important events in genetic engineering and identification of gene targets for enhancing seed oil content in oilseed crops, and will aid the successful development of new generation high yielding oil crops. Specifically, genetic engineering has shown real breakthrough in enhancing oil content in oilseed rape, camelina, soybean and maize. Moreover, ongoing research efforts to decipher the possibilities of genetic modifications of key regulators of oil accumulation along with physiological and biochemical studies to understand lipid biosynthesis will set a platform to produce transgenic oilseed crops with enhanced oil content. In this review, we briefly describe different genetic engineering approaches explored by different researchers for enhancing oil content. Further, we discuss a few promising and potential approaches and challenges for engineering oil content in oilseed crops.  相似文献   

8.
Abstract

Plant disease caused by pathogenic fungal infection causes maximum crop damage. Among different fungal diseases, rot caused by Sclerotinia spp.; is a primary concern for vegetables and oilseed industry. Disease management using Chemical fungicides is a potential hazard and leads to the development of many fungicide-resistant strains. Hypovirulence associated mycoviruses is a possible environment-friendly solution, and current studies are aiming to exploit their potential as biocontrol agents. The use of the mycovirus mediated hypovirulent approach has emerged as a new technique to identify successful biocontrol agents. Most mycoviruses are known to have RNA genomes, double-stranded RNA (dsRNA) or single-stranded RNA (ssRNA). A total of six dsRNA mycoviruses and a one ssDNA mycovirus have been reported from Sclerotinia sclerotiorum till date which includes the most recent entry as published by Hamid and his group in 2018. In contrast to dsRNA mycovirus, ssDNA mycovirus reported from Sclerotinia sclerotiorum has significant potential to be used as a biocontrol agent in the fields. Despite several reports on mycoviruses of Sclerotinia, not much could be done to explore its commercial importance. The present review describes the recent developments in the area of mycoviruses of Sclerotinia sclerotiorum and associated biocontrol potential.  相似文献   

9.
Nitrogen and sulphur, both vital structural elements, are especially needed for the synthesis of proteins and oils. Investigations revealed the required application of sulphur is one half to one third the amount of nitrogen, and the ratio becomes narrower in mustard (Brassica juncea L.), followed by wheat and rice. The efficiency of an increased level of nitrogen required a proportionately higher amount of sulphur. A critical investigation on the effective utilization of applied vis-à-vis absorbed nitrogen in wheat and mustard envisaged accumulation of NO3-N in vegetative parts when sulphur remained proportionately low. Application of sulphur hastened the chemical reduction of absorbed NO3- for its effective utilization. The effect was more pronounced in mustard than in wheat. Easily available forms of sulphur, like ammonium sulphate and gypsum, as compared to pyrite or elemental sulphur, maintained adequate N to S ratio in rice, resulting in a reduction in the percent of unfilled grain, a major consideration in rice yield. A narrow N to S ratio, with both at higher levels, increased the oil content but raised the saponification value of the oil, a measure of free fatty acids. Whereas, a proportionately narrow N to S ratio at moderate dose resulted in adequately higher seed and oil yield with relatively low saponification value, associated with increased iodine value of the oil, indicating respectively low free fatty acids and higher proportion of unsaturated fatty acids, an index for better quality of the oil.  相似文献   

10.
As a developing country with relatively limited arable land, China is making great efforts for development and use of genetically modified (GM) crops to boost agricultural productivity. Many GM crop varieties have been developed in China in recent years; in particular, China is playing a leading role in development of insect-resistant GM rice lines. To ensure the safe use of GM crops, biosafety risk assessments are required as an important part of the regulatory oversight of such products. With over 20 years of nationwide promotion of agricultural biotechnology, a relatively well-developed regulatory system for risk assessment and management of GM plants has been developed that establishes a firm basis for safe use of GM crops. So far, a total of seven GM crops involving ten events have been approved for commercial planting, and 5 GM crops with a total of 37 events have been approved for import as processing material in China. However, currently only insect-resistant Bt cotton and disease-resistant papaya have been commercially planted on a large scale. The planting of Bt cotton and disease-resistant papaya have provided efficient protection against cotton bollworms and Papaya ringspot virus (PRSV), respectively. As a consequence, chemical application to these crops has been significantly reduced, enhancing farm income while reducing human and non-target organism exposure to toxic chemicals. This article provides useful information for the colleagues, in particular for them whose mother tongue is not Chinese, to clearly understand the biosafety regulation and commercial use of genetically modified crops in China.  相似文献   

11.
A series of rotation experiments at five sites over four years has explored the environmental and agronomic implications of growing herbicide tolerant oilseed rape and sugar beet. This paper reports on the population dynamics of volunteer rape (Brassica napus). The experiments compared four winter oilseed rape (WOSR) cultivars: a conventional cultivar (Apex) and three developmental cultivars either genetically modified (GM) to be tolerant to glyphosate or glufosinate, or conventionally bred to be tolerant to herbicides of the imidazolinone group. Seed losses at harvest averaged 3575 seeds m(-2) but ranged from less than 2000 up to more than 10000 seeds m(-2). There was a rapid decline in seed numbers during the first few months after harvest, resulting in a mean loss of seeds of 60%. In subsequent seasons, the seedbank declined much more slowly at four of the five sites (ca 20% per year) and the models predicted 95% seed loss after approximately 9 years. Seed decline was much faster at the fifth site. There were no clear differences between the four cultivars in either the numbers of seeds shed at harvest or in their subsequent persistence. The importance of the persistence of GM rape seeds, in the context of the coexistence of GM and non-GM crops and the role of good management practices that minimize seed persistence, are discussed.  相似文献   

12.
Use of sunflower (Helianthus annuus L.) for Cu phytoextraction and oilseed production on Cu-contaminated topsoils was investigated in afield trial at a former wood preservation site. Six commercial cultivars and two mutant lines were cultivated in plots with and without the addition of compost (5% w/w) and dolomitic limestone (0.2% w/w). Total soil Cu ranged from 163 to 1170 mg kg(-1). In soil solutions, Cu concentration varied between 0.16-0.93 mg L(-1). The amendment increased soil pH, reduced Cu exposure and promoted sunflower growth. Stem length, shoot and capitulum biomasses, seed yield, and shoot and leaf Cu concentrations were measured. At low total soil Cu, shoot Cu mineralomass was higher in commercial cultivars, Le., Salut, Energic, and Countri, whereas competition and shading affected morphological traits of mutants. Based on shoot yield (7 Mg DW ha(-1)) and Cu concentration, the highest removal was 59 g Cu ha(-1). At high total soil Cu, shoot Cu mineralomass peaked for mutants (e.g., 52 g Cu ha(-1) for Mutant 1 line) and cultivars Energic and Countri. Energic seed yield (3.9 Mg air-DW ha(-1)) would be sufficient to produce oil Phenotype traits and shoot Cu removal depended on sunflower types and Cu exposure.  相似文献   

13.
The International Journal of Life Cycle Assessment - Oilseed crops are expected to become an important feedstock for production of renewable jet fuel. The objective of this study is to determine...  相似文献   

14.
15.
Ben-Ari G 《Plant cell reports》2012,31(8):1357-1369
The phytohormone abscisic acid (ABA) affects a wide range of stages of plant development as well as the plant's response to biotic and abiotic stresses. Manipulation of ABA signaling in commercial crops holds promising potential for improving crop yields. Several decades of research have been invested in attempts to identify the first components of the ABA signaling cascade. It was only in 2009, that two independent groups identified the PYR/PYL/RCAR protein family as the plant ABA receptor. This finding was followed by a surge of studies on ABA signal transduction, many of them using Arabidopsis as their model. The ABA signaling cascade was found to consist of a double-negative regulatory mechanism assembled from three protein families. These include the ABA receptors, the PP2C family of inhibitors, and the kinase family, SnRK2. It was found that ABA-bound PYR/RCARs inhibit PP2C activity, and that PP2Cs inactivate SnRK2s. Researchers today are examining how the elucidation of the ABA signaling cascade in Arabidopsis can be applied to improvements in commercial agriculture. In this article, we have attempted to review recent studies which address this issue. In it, we discuss various approaches useful in identifying the genetic and protein components involved. Finally, we suggest possible commercial applications of genetic manipulation of ABA signaling to improve crop yields.  相似文献   

16.
Of the several possible sources of tomato mosaic virus, seeds and root debris in the soil are considered to be of greatest importance. A survey of 374,000 seedlings on ten commercial holdings found 0.05% of them infected, and although these were removed virus had been spread to other young plants which did not show infection when transplanted into the growing houses, seven of twenty-two of which contained a few infected plants when sampled shortly after planting. Virus overwintering on clothing, and debris on structures, are thought to be of minor importance, and smoking tobacco is seldom a source of infection for the tomato crop. A further survey of seventy-eight samples from tomato crops in Britain confirmed the 1960-61 survey: all were infected with tomato strains of TMV, none with tobacco strains, but one of the 187 infected seedlings referred to above was carrying a tobacco strain. Petunia was not as satisfactory as a special cultivar of White Burley tobacco for distinguishing between the tobacco and tomato TMV isolates. Observations and tests on a commercial holding showed that TMV was readily carried from plants in infected glasshouses into clean ones by workers, and once introduced, spread rapidly within the crop.  相似文献   

17.
The International Journal of Life Cycle Assessment - The original version of this article unfortunately contained a mistake. Figure 12 was incorrect. The correct Fig. 12 is given...  相似文献   

18.

With a steadily increasing population, the demand for crops to feed the world population and satisfy the energy needs is also increasing. The diminishing land resources and changing environmental conditions, specifically global warming, have further exacerbated these problems. Developing heat-tolerant crops that maintain yield under stress is one way to keep pace with future demands. Heat stress tolerance is a complex trait; hence it is vital to identify major contributors to heat stress tolerance and develop molecular markers to breed for them. The present communication reviews the recent progress made in this direction in oilseed crops soybean and peanuts, where heat-induced membrane lipid unsaturation was identified as an indicator of heat tolerance and the heat-induced changes in the expression pattern of the fatty acid desaturase gene as a marker to select for this trait. The further efforts underway and the future research needed in this direction are discussed.

  相似文献   

19.

Key message

Different responses of photosystem I and II to chilling.

Abstract

Tropical crops are sensitive to chilling stress, but the underlying physiological mechanisms are unclear. We investigated the maximum quantum yield of PSII (F v/F m), the maximum photo-oxidizable P700 (P m), the energy distribution in PSII, and the redox state of P700 in leaves of seedlings of three promising oilseed crops originating from tropical regions, Plukenetia volubilis, Jatropha curcas and Ricinus communis, during chilling treatment and subsequent recovery under a photon flux density of 450 μmol m?2 s?1. Our results showed that F v/F m decreased progressively and significantly to about 44.7, 62.2 and 77.0 % of the control after chilling treatment for 3 days in P. volubilis, J. curcas and R. communis, respectively, mainly due to the decrease in F m (maximum fluorescence of PSII). After recovery under 18 °C for 6 days, F v/F m recovered to 81.4 and 94.9 % of the control in J. curcas and R. communis, but only to 26.3 % in P. volubilis. Under chilling stress and subsequent recovery, P m remained stable in J. curcas and R. communis, whereas it decreased slightly in P. volubilis. These results indicated that PSII was more sensitive to chilling stress than PSI under moderate light for all three species, and that P. volubilis was the most susceptible. Cyclic electron flow around PSI and effective quantum yield of photosystem II [Y (CEF)/Y (II)] ratio were stimulated much more in J. curcas and R. communis compared with that in P. volubilis under chilling conditions, resulting in more severe injury as indicated by higher accumulation of hydrogen peroxide and malondialdehyde. There was a significantly negative relationship between F v/F m and Y (CEF)/Y (II), suggesting that stimulation of Y (CEF)/Y (II) plays a pivotal role in protecting PSI and PSII from photoinhibition caused by chilling stress.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号