首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants provide an excellent system to study CO(2) diffusion because, under light saturated conditions, photosynthesis is limited by CO(2) availability. Recent findings indicate that CO(2) diffusion in leaves can be variable in a short time range. Mesophyll CO(2) conductance could change independently from stomata movement or CO(2) fixing reactions and it was suggested that, beside others, the membranes are mesophyll CO(2) conductance limiting components. Specific aquaporins as membrane intrinsic pore proteins are considered to have a function in the modification of membrane CO(2) conductivity. Because of conflicting data, the mechanism of membrane CO(2) diffusion in plants and animals is a matter of a controversy vivid debate in the scientific community. On one hand, data from biophysics are in favor of CO(2) diffusion limiting mechanisms completely independent from membrane structure and membrane components. On the other, there is increasing evidence from physiology that a change in membrane composition has an effect on CO(2) diffusion.  相似文献   

2.
3.
A new theory and experimental method was developed to measure the diffusion resistance to CO2 in the gas phase of mesophyll leaf tissue. Excised leaves were placed in a chamber and their net evaporation and CO2 assimilation rates measured at two different ambient pressures. These data were used to calculate CO2 gas phase diffusion resistances. A variety of field grown leaves were tested and the effects of various experimental errors considered. Increasing the gas phase diffusion resistance decreased transpiration more than it decreased CO2 assimilation. It was concluded that gas phase diffusion resistance associated with CO2 assimilation may sometimes be 100 or 200 s·m-1 greater than the resistance implied by transpiration rates. This may be due to longer path lengths for the CO2 diffusion, constricted in places by the shape and arrangement of mesophyll cells.  相似文献   

4.
5.
6.
Robert W. Pearcy 《Oecologia》1976,26(3):245-255
Summary Comparative measurements of CO2 exchange and growth rates were made on Atriplex lentiformis (Torr.) Wats. plants from populations native to coastal as well as desert habitats in southern California. While both had similar CO2 exchange rates at moderate growth temperatures, the desert plants had a substantially greater capacity to acclimate to high growth temperatures indicating that clear ecotypic differences in acclimation capacity are present in this species. This large capacity for photosynthetic acclimation resulted in nearly equal CO2 exchange rates of the desert plants under the different day temperatures characteristic of the desert habitat during the summer and winter months. In contrast, the photosynthetic CO2 exchange rates of the coastal plants was markedly reduced by high growth temperatures. The large acclimation capacity of the desert plants may function to maintain high productivities during both the winter and summer months but would not be required in the coastal plants because of the moderate temperatures throughout the year in their native habitat.Relative growth rates (RGR) of the coastal and desert plants were similar at 23°C day/18°C night and 33°C day/25°C night growth temperatures. At 43°C day/30°C night temperatures, however, the RGR of the desert plants was higher than that of the coastal plants. Thus, the larger acclimation capacity of the desert plants is related to a greater ability to maintain high growth rates over a wide range of temperatures as compared to the coastal plants. Small differences in allocation patterns could account for differences in the comparative photosynthetic responses and growth rates in each temperature regime.Supported by National Science Foundation grant # GB 36311  相似文献   

7.
High Arctic landscapes are expansive and changing rapidly. However, our understanding of their functional responses and potential to mitigate or enhance anthropogenic climate change is limited by few measurements. We collected eddy covariance measurements to quantify the net ecosystem exchange (NEE) of CO2 with polar semidesert and meadow wetland landscapes at the highest latitude location measured to date (82°N). We coupled these rare data with ground and satellite vegetation production measurements (Normalized Difference Vegetation Index; NDVI) to evaluate the effectiveness of upscaling local to regional NEE. During the growing season, the dry polar semidesert landscape was a near‐zero sink of atmospheric CO2 (NEE: ?0.3 ± 13.5 g C m?2). A nearby meadow wetland accumulated over 300 times more carbon (NEE: ?79.3 ± 20.0 g C m?2) than the polar semidesert landscape, and was similar to meadow wetland NEE at much more southerly latitudes. Polar semidesert NEE was most influenced by moisture, with wetter surface soils resulting in greater soil respiration and CO2 emissions. At the meadow wetland, soil heating enhanced plant growth, which in turn increased CO2 uptake. Our upscaling assessment found that polar semidesert NDVI measured on‐site was low (mean: 0.120–0.157) and similar to satellite measurements (mean: 0.155–0.163). However, weak plant growth resulted in poor satellite NDVI–NEE relationships and created challenges for remotely detecting changes in the cycling of carbon on the polar semidesert landscape. The meadow wetland appeared more suitable to assess plant production and NEE via remote sensing; however, high Arctic wetland extent is constrained by topography to small areas that may be difficult to resolve with large satellite pixels. We predict that until summer precipitation and humidity increases enough to offset poor soil moisture retention, climate‐related changes to productivity on polar semideserts may be restricted.  相似文献   

8.
Steady-state room temperature variable fluorescence from leaves was measured as a function of CO2 pressure in Xanthium strumarium L. and Phaseolus vulgaris L. Measurements were made in a range of light intensities, at normal and low O2 parital pressure and over a range of temperatures. At low CO2 pressure fluorescence increased with increasing CO2. At higher CO2 pressure fluorescence usually decreased with increasing CO2 but occasionally increased slightly. The transition CO2 pressure between the responses could be changed by changing light, O2 pressure, or temperature. This breakpoint in the fluorescence-CO2 curve was a reliable indicator of the transition between ribulose 1,5-bisphosphate (RuBP) saturated assimilation and RuBP regeneration limited assimilation. The fluorescence signal was not a reliable indicator of O2-insensitive assimilation in these C3 species.  相似文献   

9.
《植物生态学报》2015,39(9):924
Leaf net photosynthesis is crucial for detecting the mechanism of photosynthesis, whereas community net photosynthesis is useful for understanding the photosynthetic capacity of communities and its relationship with environmental factors. In particular, we need to scale up eco-physiological models from leaf scale to canopy level to study carbon cycling at regional or global scale. We hypothesized that accumulated leaf net photosynthetic rate (Pc) at community scale, i.e., calculated based on leaf net photosynthetic rate (Pn) and leaf area index (LAI), equals to measured net community CO2 exchange (NCE). The purpose of this study is to verify this hypothesis. Our field study was carried out in Duolun, Nei Mongol, China, where we constructed single-species communities by sowing Medicago sativa ‘Aohan’ seeds in three plots (3 m × 5 m) on May 30, 2012. On August 16, 2014, Pn of five healthy leaves of M. sativa ‘Aohan’ in each plot were measured with a LI-6400 portable photosynthesis system at 10:00, and net ecosystem CO2 exchange (NEE) in each plot was measured simultaneously with a LI-8100 system connected with a assimilation chamber (0.5 m × 0.5 m × 0.5 m). Pc was calculated based on Pn, number of leaves (n), LAI percentage of healthy leaves (r) and percentage of received effective light by leaves (m). NCE was derived from NEE and ecosystem respiration rate (Reco). Pc was 3.52 μmol CO2·m-2·s-1, and very close to NCE (3.56 μmol CO2·m-2·s-1), suggesting that leaf-scale photosynthesis may accurately predict community-scale photosynthesis. However, our method could not separate community respiration from soil respiration, and future studies, should be designed to counteract this effect. Scaling up from leaf photosynthesis to community photosynthesis should also consider vertical structure of communities and nonlinear responses of leaf photosynthesis to changes in light quantum.  相似文献   

10.
叶片和群落尺度净光合速率关系的探讨   总被引:1,自引:0,他引:1       下载免费PDF全文
叶片净光合速率(Pn)是研究光合作用机理的基本尺度; 而群落净光合速率(Pc)是研究群落光合能力及其与外部环境因子间关系的更好尺度, 特别是区域乃至全球尺度碳循环的研究, 需要将叶片尺度的生理生态模型扩展到冠层尺度。理论上, 群落内所有叶片的累积Pn与实测群落净气体交换速率(NCE)是相等的, 但在野外实际观测中, 两者之间的相互关系目前尚未见报道。该文选取敖汉苜蓿(Medicago sativa ‘Aohan’)人工草地, 采用美国LI-COR公司生产的便携式光合测定系统LI-6400测定Pn, 结合叶面积指数等参数推算Pc, 利用LI-8100连接同化箱测定生态系统净气体交换速率(NEE), 加上土壤呼吸速率, 得到NCE。结果表明: Pc为3.52 μmol CO2·m-2·s-1, 与实测NCE (3.56 μmol CO2·m-2·s-1)基本相等。这表明: 可利用Pn, 结合叶面积指数、群落叶片数目、健康叶片比例和群落可接收有效光照的平均比例等4个关键参数, 准确地换算Pc。然而, 利用同化箱式法测定群落呼吸速率时, 不可避免地会包含土壤呼吸, 所以在观测NCE时, 需要同时测定土壤呼吸。此外, 在冠层模型中, 群落垂直结构和光量子的非线性响应不可忽视。  相似文献   

11.

Background and Aims

Climate warming and increased atmospheric nitrogen (N) deposition both have the potential to increase plant productivity over the next century, yet they can also increase decomposition and respiration. Our aim was to examine the extent to which warming and N addition can, on balance, alter net ecosystem CO2 exchange (NEE) in a grass-dominated system.

Methods

We measured NEE responses to warming and N addition over two growing seasons in a temperate old field using steady-state flow-through chambers, which allowed for the integrated measurement of respiration and photoassimilation effects on net CO2 flux over diel periods. We also assessed the relationship between NEE and plant biomass responses to the warming and N treatments.

Results

In both years, our study system was a net source of carbon (C) during the snow-free season. N addition did not significantly affect diel NEE or dark respiration in either year, despite a doubling in aboveground plant biomass in response to N addition in the second year, and a corresponding increase in peak daily net CO2 photoassimilation in N addition plots. The warming treatment also had no significant effect on NEE, although the flow-through chambers required warming to be temporarily halted during NEE measurements.

Conclusions

Overall, our results both highlight the potential divergence of plant and soil responses to N addition and demonstrate the capacity for a grass-dominated system to function as a net source of C in consecutive years.  相似文献   

12.
Gas exchange is generally regarded to occur between the leaf interior and ambient air, i.e. in vertical (anticlinal) directions of leaf blades. However, inside homobaric leaves, gas movement occurs also in lateral directions. The aim of the present study was to ascertain whether lateral CO2 diffusion affects leaf photosynthesis when illuminated leaves are partially shaded. Measurements using gas exchange and chlorophyll fluorescence imaging techniques were performed on homobaric leaves of Vicia faba and Nicotiana tabacum or on heterobaric leaves of Glycine max and Phaseolus vulgaris. For homobaric leaves, gas exchange inside a clamp-on leaf chamber was affected by shading the leaf outside the chamber. The quantum yield of photosystem II (Phi(PSII)) was highest directly adjacent to a light/shade border (LSB). Phi(PSII) decreased in the illuminated leaf parts with distance from the LSB, while the opposite was observed for nonphotochemical quenching. These effects became most pronounced at low stomatal conductance. They were not observed in heterobaric leaves. The results suggest that plants with homobaric leaves can benefit from lateral CO2 flux, in particular when stomata are closed (e.g. under drought stress). This may enhance photosynthetic, instead of nonphotochemical, processes near LSBs in such leaves and reduce the photoinhibitory effects of excess light.  相似文献   

13.
采用涡度相关法,对2011年生长季的黄河三角洲芦苇湿地净生态系统CO2交换(NEE)进行了观测,研究湿地NEE的变化规律及其影响因子.结果表明: 不同月份芦苇湿地的NEE日变化均呈“U”形曲线,CO2最大净吸收率和释放率的日均值分别为(0.44±0.03)和(0.16±0.01) mg CO2·m-2·s-1;芦苇湿地NEE、生态系统呼吸(Reco)、总初级生产力(GPP)的季节变化均呈现生长旺季(7—9月)较高、生长初期(5—6月)和生长末期(10—11月)较低的趋势;Reco和NEE在8月达到峰值,GPP在7月达到峰值.芦苇湿地生态系统的CO2交换受到光合有效辐射(PAR)、土壤温度(Ts)和土壤体积含水量(SWC)的共同影响.白天NEE与PAR呈直角双曲线关系;5 cm深处Ts与夜间生态系统呼吸(Reco,n)呈指数关系,生态系统呼吸的温度敏感性(Q10)为2.30,SWC和Ts是影响芦苇湿地Reco,n的主要因子.在整个生长季,黄河三角洲芦苇湿地生态系统是一个明显的CO2的汇,总净固碳量为780.95 g CO2·m-2.  相似文献   

14.
Lateral diffusion of CO(2) was investigated in photosynthesizing leaves with different anatomy by gas exchange and chlorophyll a fluorescence imaging using grease to block stomata. When one-half of the leaf surface of the heterobaric species Helianthus annuus was covered by 4-mm-diameter patches of grease, the response of net CO(2) assimilation rate (A) to intercellular CO(2) concentration (C(i)) indicated that higher ambient CO(2) concentrations (C(a)) caused only limited lateral diffusion into the greased areas. When single 4-mm patches were applied to leaves of heterobaric Phaseolus vulgaris and homobaric Commelina communis, chlorophyll a fluorescence images showed dramatic declines in the quantum efficiency of photosystem II electron transport (measured as F(q)'/F(m)') across the patch, demonstrating that lateral CO(2) diffusion could not support A. The F(q)'/F(m)' values were used to compute images of C(i) across patches, and their dependence on C(a) was assessed. At high C(a), the patch effect was less in C. communis than P. vulgaris. A finite-volume porous-medium model for assimilation rate and lateral CO(2) diffusion was developed to analyze the patch images. The model estimated that the effective lateral CO(2) diffusion coefficients inside C. communis and P. vulgaris leaves were 22% and 12% of that for free air, respectively. We conclude that, in the light, lateral CO(2) diffusion cannot support appreciable photosynthesis over distances of more than approximately 0.3 mm in normal leaves, irrespective of the presence or absence of bundle sheath extensions, because of the CO(2) assimilation by cells along the diffusion pathway.  相似文献   

15.
16.
The rate of transfer of H14CO-3 and 14CO2 from the alveoli to the capillaries was studied in rabbit lungs perfused without erythrocytes. Aliquots of 0.5 ml of buffered solutions containing these 14C indicators and 3H2) were injected into the distal airways, and the recoveries of 14C and 3H were compared in the left atrial outflow. It was assumed that 3H2O had equilibrated between the alveoli and fluid leaving the pulmonary capillaries, and a decline in the initial 14C recovery relative to that of 3H was attributed to incomplete equilibration of 14C between these compartments. No disequilibrium of 14C could be detected at pH 7.4 when excess carbonic anhydrase was present. When the pH was increased to 8.4, 14C equilibration was only 69% complete at 36 ml/min and 41% complete at 160 ml/min. Confirmatory evidence was obtained that carbonic anhydrase is associated with the endothelial side of the alveolar-capillary barrier but is absent on the epithelial surface. The data suggest that the barrier is at least 600 times more permeable to 14CO2 than to H14CO-3, and diffusion of 14CO2 would not limit exchange at normal pH unless pulmonary flow reached extremely high values.  相似文献   

17.
The rate of C14O2 incorporation into amino acids and organic acids in C. reinhardtii is a function of particular stages of development in the life cycle of the alga. Gametic differentiation in nitrogen free medium is accompanied by a reduced rate of amino acid synthesis and a higher synthesis of organic acids than that found for the cells undergoing vegetative development. The addition of ammonium to differentiating gametes results in an increased synthesis of amino acids, particularly the basic ones, and a concomitant reduction in organic acid synthesis.  相似文献   

18.
A new approach to the quantitation of chemical exchange rates is presented, and its utility isillustrated with application to the exchange of protein amide protons with bulk water. Theapproach consists of a selective-inversion exchange HMQC experiment in which a short spinecho diffusion filter has been inserted into the exchange period. In this way, the kinetics ofexchange are encoded directly in an apparent diffusion coefficient which is a function of theposition of the diffusion filter in the pulse sequence. A detailed theoretical analysis of thisexperiment indicates that, in addition to the measurement of simple exchange rates, theexperiment is capable of measuring the effect of mediated exchange, e.g. the transfer ofmagnetization from bulk water to an amide site mediated by an internal bound water moleculeor a labile protein side-chain proton in fast exchange with bulk water. Experimental resultsfor rapid water/amide exchange in acyl carrier protein are shown to be quantitativelyconsistent with the exchange rates measured using a selective-inversion exchange experiment.  相似文献   

19.
Important gas exchange characteristics of C4 plants depend on the properties of phophoenolpyruvate carboxylase (PEPC), the enzyme catalysing the primary fixation of CO2 during C4 photosynthesis. In this study, the relationship between intracellular resistance for CO2 fixation (ri) at high photosynthetically active photon flux densities (PPFD) and maximum PEPC activity in vitro (Vpm) was examined in leaves of Zea mays L. The analysis allowed the estimation of the Michaelis constant Kp of the enzyme for CO2 (or the equivalent number for bicarbonate) in vivo. At low PPFD (below 100 mol m-2 s-1) the initial slopes of the curves describing net CO2 uptake rate A as a function of intercellular CO2 concentration ci increased with increasing PPFD. The increase (i. e. a decrease in ri) was interpreted as due to a reversible activation of PEPC by light. Including this assumption into a model of C4 photosynthesis enabled us to reproduce A(ci) response curves measured at low levels of PPFD. Fitting the model to experimental data resulted in values for KI, the PPFD at which PEPC reaches half of its full activation, of about 200 mol m-2 s-1. Similar results were derived from the dependence of ri on PPFD. The analysis of the relationships between ri and Vpm and between ri and PPFD, as well as fitting of the model to gas exchange data all gave rise to estimates for the resistance for CO2 transfer within mesophyll cells that are comparable with those known from C3 plants.  相似文献   

20.
周丽艳  贾丙瑞  曾伟  王宇  周广胜 《生态学报》2010,30(24):6919-6926
对2006-2008年寒温带原始兴安落叶松林生长季(6-10月份)生态系统CO2交换及其影响因素的分析表明:净生态系统CO2交换(NEE)呈单峰型曲线,最大值出现在9:00-10:00。兴安落叶松林的NEE在生长季前期(6-8月份)呈净碳吸收,生长季末期(9-10月份)呈碳排放。生长季6、7\,8月份的NEE平均值分别为-0.082、-0.082\,-0.061 mgCO2 ?m-2 ?s-1,生长季末期9\,10月份的NEE平均值分别为0.009\,0.014 mgCO2 ?m-2 ?s-1。6-10月份原始兴安落叶松林生长季每天的固碳时间从14h(5:00-19:00)逐渐缩短为9h(7:30-16:30)。从不同温度下NEE光响应特征可知,原始兴安落叶松林NEE最适气温是20-30 ℃,NEE最大值为-0.43 mgCO2 ?m-2 ?s-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号